Чем измерить цветовую температуру
Бюджетный спектрометр-пульсметр Uprtek MF250N
Спектрометр — прибор, измеряющий спектр света и позволяющий определить такие параметры, как цветовая температура и индекс цветопередачи. Пульсметр — прибор, измеряющий пульсацию света.
Uprtek MF250N совмещает эти два прибора и, судя по всему, является самым дешёвым спектрометром в мире.
Спектрометры бывают двух видов — те, которые анализируют свет и те, которые анализируют свойства материалов в отражённом свете. Статья в википедии посвящена вторым, а те спектрометры, о которых я рассказываю, используются для анализа света.
Спектрометры Uprtek производит одноимённая тайваньская компания. В разработке спектрометров и написании математических моделей участвовала Санкт-Петербургская компания ИНТЕХ Инжиниринг, она же занимается продажей продукции Uprtek в России. Ещё раз хочу выразить благодарность этой компании и её генеральному директору Алексею Панкрашкину за спектрометр MK350D, предоставленный для проекта Lamptest.
UPRtek MF250N анализирует видимый свет в диапазоне длины волн 380-780 нм и может воспринимать свет при освещённости 70-70000 лк. Разрешение матрицы 16 бит, шаг измерения длины волны 1 нм, шаг записи в файл 2 нм, точность измерения длины волны ± 1 нм, погрешность измерения освещенности ± 5%. По спектру рассчитывается пиковая длина волны, коррелированная цветовая температура (погрешность измерения ± 3.5%), усреднённый индекс цветопередачи Ra (погрешность измерения ± 2.5%). Точность измерений параметров цвета у MF250N немного ниже, чем у более дорогих спектрометров Uprtek (у них погрешность измерения цветовой температуры не превышает 2%, а погрешность измерения CRI 1.5%).
С помощью отдельного датчика измеряются параметры пульсации света. Скорость измерения — 5 измерений в секунду. Диапазон освещённости для измерения пульсации — 30-60000 лк. Измеряемая частота пульсации 5-2000 Гц. Отображаемые параметры пульсации: индекс пульсации, коэффициент пульсации, уровень видимого стробоскопического эффекта (SVM), частота пульсации. Есть режимы графика БПФ (быстрое преобразование Фурье) и осциллографа.
Питание — 4 батареи АА. Время непрерывной работы от батарей — до 5 часов. Размер и вес прибора с батареями — 80x65x30 мм, 300 г.
В комплект поставки входит чехол.
Измерительная головка спектрометра отсоединяется для того, чтобы её можно было переворачивать. Используется разъём USB Type C, но назначение контактов скорее всего нестандартное.
Окно датчиков закрывается непрозрачной крышкой. В центре белое окошко датчика спектрометра (свет раскладывается на спектр с помощью дифракционной решётки и попадает на линейную CMOS-матрицу), сверху окно датчика пульсации.
Прибор питается от четырёх батареек AA. Можно использовать аккумуляторы.
На левом торце кнопка включения/выключения.
На правом торце кнопка запуска измерения спектра.
Экран прибора имеет размеры 43 x 58 мм (2.8″). Он не сенсорный. Выбор режимов осуществляется четырьмя кнопками.
На правом торце есть резиновая наклейка, под которой есть разъём MiniUSB и слот для карты памяти MicroSD. Разъём использовать не получится, а на карту можно сохранять результаты измерений.
При включении прибор предлагает откалиброваться. Для калибровки нужно закрыть крышку датчика и нажать кнопку с кружком.
Управление осуществляется через меню. Кнопки со стрелками перемещают указатель по меню, кнопка с точкой активирует нужный пункт, кнопка «назад» позволяет вернуться в главное меню.
Первый пункт — основные параметры света.
CCT — цветовая температура;
CRI — индекс цветопередачи;
Lux — освещённость;
λP — пиковая длина волны;
iTime — время интеграции (спектрометр делает много измерений в течение указанного времени и вычисляет средние значения. Чем меньше света, тем большее требуется время интеграции).
Второй пункт — спектр.
Третий, четвёртый и пятый пункты касаются измерения пульсации. Пульсация измеряется непрерывно. Остановить и продолжить непрерывное измерение (режим HOLD) можно кнопкой на правом торце прибора.
Основной экран измерения пульсации — режим FLICKER.
Findex — индекс пульсации. Параметр, учитывающий как изменение яркости при пульсации, так и скважность импульсов.
Fpercent(%) — процент пульсации. Когда пульсация отсутствует, он равен нулю. При максимальной пульсации его значение составляет 100%. Процент пульсации рассчитывается по минимуму и максимуму яркости света.
SVM (Stroboscopic Visibility Measure) — уровень видимого стробоскопического эффекта.
Freq (Hz) — основная частота пульсации.
Режим FFT отображает распределение пульсации по частотам по методу быстрого преобразования Фурье.
Режим LIGHTWAVE отображает осциллограмму формы пульсации.
В режиме SYSTEM можно включить или отключить звук нажатия кнопок, настроить яркость экрана и режим энергосбережения, посмотреть версию прошивки.
Сохранить данные измерения на карту памяти можно в режимах BASIC и FLICKER. Для этого нужно нажать и подержать кнопку с точкой, находясь в одном из этих режимов.
Каждому новому сохранению присваивается новый номер.
Данные сохраняются в формате Excel. Результаты спектрометрии в файле RAW_SPD.XLS, результаты измерения пульсации в файле RAW_FLK.XLS.
Каждая строка в файле RAW_SPD.XLS — новое измерение. В столбце 1 — номер измерения, в столбцах 2-6 цветовая температура, индекс цветопередачи, освещённость, пиковая длина волны, время интеграции. В столбцах 7-207 значения уровня по длинам волн (за единицу принимается значение уровня на пиковой длине волны).
Формат файла RAW_FLK.XLS.
Не удобно, что прибор не может измерять одновременно параметры спектра и пульсации. Переход из одного режима в другой тоже не самый удобный — чтобы перейти из режима измерения параметров спектра в режим измерения пульсации нужно нажать четыре кнопки: (назад, вправо, вправо, точка).
Не очень удобно, что нет автоматического сохранения на карту памяти и нужно каждый раз держать кнопку с точкой в течение двух секунд. С другой стороны хорошо, что возможность сохранения вообще появилась, ведь в предыдущих версиях прошивки её не было.
Однако, не стоит забывать, что Uprtek MF250N стоит вдвое дешевле других спектрометров и он ещё и измеряет пульсацию, так что небольшие недостатки ему можно простить, учитывая что точность измерений у него лишь немного меньше, чем у гораздо более дорогих приборов.
Измерение цветовой температуры
По ощущениям измерение цветовой температуры и цвета бывают теплыми и холодными. На самом деле все оттенки очень горячие. Не бывает холодных, так как каждый цвет имеет температуру, достаточно высокую. Цветовая температура – длина волны излучения – является фундаментальной и ключевой характеристикой всех световых источников, учитывая и полупроводниковый вариант. Восприятие человеческим глазом как излучателя, так и общей обстановки непосредственно зависит от характеристики температуры цвета. Этот фактор нужно учитывать при покупке того или иного светодиодного устройства. Термин цветовой температуры предложил физик-теоретик из Германии Макс Планк. Ученый изначально использовал его, чтобы определять уровень нагрева звезд и других небесных объектов.
Такое понятие означает температурный режим, при котором даже полностью черный предмет излучает в определенном диапазоне электромагнитные волны установленной продолжительности, которые воспринимаются оптической системой человека как цвет. С увеличением цветовой температуры освещающего аппарата цвет, который исходит от этого источника, будет становиться белее, то есть светлеть. После появления и распространения светодиодных светильников цветовая температура обрела абсолютно другое значение.
Единица измерения цветовой температуры
Важные моменты при выборе освещения. Измерение цветовой температуры.
Уют и психологический комфорт интерьера, дизайн которого включает в себя освещение полупроводниковым излучателем, зависит именно от температуры свечения. Например, поток света, исходящий от стандартной лампы накаливания, имеет 2800 Кальвинов, а солнечное сияние — примерно 5500 К. Пламя восковой свечи, которую часто применяют для создания романтической обстановки, — 1500 К. Не для кого не секрет, что холодные тона лучше устанавливать в офисных помещениях, кабинетах или зданиях государственных органов, где все должно быть серьезно и официально, так как холодный тон настраивает людей на работу, заряжает их энергией. Теплые или даже горячие оттенки, напротив, расслабляют человека, позволяет ему отдохнуть от тяжелого рабочего дня и прибавляют уюта домашней обстановке.
Как выглядит цветовая температура
Рассмотрите следующие картинки, чтобы представить, как определяется температура цвета в реальной жизни.
Ксеноновые автомобильные фары:
Как мы видим, высокая температура присуща желтым оттенкам, низкая же — белым или голубым. Интересно, что холодные и теплые цвета не зря так называются. Присмотритесь к фаре с температурой 15000 К. Не напоминает кусочек льда? А светильник на 3000 К похож на солнце, горячее, струящее лучи света.
Люминесцентные лампы:
Здесь горячий цвет представляется в виде оранжевой лампочки, а холодный — в виде пурпурной. Промежуточные оттенки: белый и голубой.
Измерение цветовой температуры на глаз
Как измерить цветовую температуру на глаз. Когда вы видите тлеющие в костре угольки, красные, раскаленные, можете с гордостью заявить друзьям, что температура этого красного оттенка примерно 800 Кельвинов.
Свет свечи, как уже говорилось, имеет 1500-2000 К.
У лампы накаливания 40 Ватт — 2200 К.
Во время съемки кино применяются лампы на 3200 К.
Лампа дневного света — 4200 К.
Зимой небо голубое, ясное. Ученые провели исследования и сделали вывод, что в это время цветовая температура неба — 15000 К.
В северных широтах, то есть в Швеции, Канаде, Норвегии и так далее, небо составляет 20000 Кельвин.
Отсутствие температуры
Световое излучение, как и все другое, начинается с нуля. Ноль в нашем случае — это черный цвет, другими словами, отсутствие любого цвета. Черный — это 0 интенсивности, насыщенности, цветового тона. Мы видим предмет черным потому, что он поглощает почти весь попадающий на него цвет. Есть понятие абсолютно черного тела — идеализированного объекта, поглощающего все излучение, которое на него падает, и ничего не отражающего. Несомненно, в реальном мире такого феномена нет, природа не создала абсолютно черных предметов. Даже тела, кажущиеся нам черными, на самом деле не являются таковыми. Можно изготовить модель почти абсолютно черного предмета. Такое изобретение представляет собой черный куб, пустой внутри, с небольшим отверстием, пропускающим лучи света. Конструкция имеет сходство со скворечником.
Попадающее внутрь свечение будет отражаться от стенок куба, из-за чего полностью поглотится. Наружное отверстие после этого будет казаться совершенно черным. Даже после покраски куба в черный цвет отверстие все равно будет темнее, что является примером абсолютно черного тела. На самом деле отверстие не может в прямом смысле слова являться телом. Оно лишь показывает, каким может быть такой предмет.
Измерение цветовой температуры.Фотометрический метод.
Учтите, что в домашних условиях точно измерить температуру свечения без профессионального оборудования не получится, но общее представление составить можно. Эта методика измерения применяется светотехническими лабораториями, научно-исследовательскими центрами, а также в профильных компаниях, которые производят полупроводниковые источники света. Предусматривается использование специального физического устройства — фотометрического шара с двухметровым диаметром. Сначала температурные параметры калибруют, а затем производят сложные расчеты, благодаря которым можно построить контрольные графики.
Понятно, что в домашних условиях применение фотометрической методики нецелесообразно, но все же такую сферу можно соорудить самостоятельно, однако будет нелегко получить высокую точность расчетов. Помимо этого, понадобится купить еще несколько дорогостоящих устройств для получения правильных данных цветовых параметров светодиодных конструкций. Исходя из этих фактов, можно сделать вывод, что фотометрический способ, также называемый гониометрическим, подходит только для заводов и специализированных лабораторий. Если не погас огонек любознательности и вы все еще хотите измерить цветовую температуру дома, пойдите более простой и действенной дорожкой.
Измерение цветовой температуры спектрометром.
МК350N — буквенно-цифровое название самого популярного измерительного устройства для выявления физических характеристик световых источников.
Параметры, которые определяет МK350N:
Этот список можно пополнить, но ограничимся лишь основными пунктами.
Спектрометр славится эффективностью, точностью расчетов и функционированием без сложной калибровки, поэтому часто покупается «домашними» измерителями. После всех преимуществ сложилось впечатление, что это изделие идеально. Устройство и вправду получит все необходимые данные о температуре свечения, уровне освещенности и другие, но и стоит оно недешево. В России профессиональную модель можно найти за 2 тысячи долларов, которые отбивают всякое желание исследовать. Не спешите расстраиваться Измерение цветовой температуры можно проводить и не профессиональными устройствами, потому что на российском рынке продаются и любительские приборы, стоимость которых устроит почти каждого измерителя.
5 фактов о цветовой температуре. Какую выбрать?
В быту распространено мнение, что искусственный свет может быть «тёплым» и «холодным». Речь идёт, прежде всего, об оттенках светового излучения. Понятие «температура света» (или «цветовая температура») действительно имеет важное значение для светодизайна в интерьере. Но так ли на самом деле холодны «холодные» оттенки света? И как выбрать температуру света для конкретного помещения? Давайте разбираться.
В чем измеряют цветовую температуру?
Данное понятие относится к физике. Учёные давно установили, что каждый цвет имеет свою «температуру», которая измеряется в Кельвинах (К). Этот параметр указывают на упаковках ламп. Нулём цветовой температуры (0 Кельвинов) обладает абсолютно чёрный цвет (черное тело).
Факт № 1. Как видим, на самом деле те цвета, которые в быту считаются «холодными» (белый, голубой), получаются от максимально горячих тел.
Стоит заметить, что лампы не нагреваются до таких температур, а величина в Кельвинах — сравнительный условный показатель.
Как это работает в обычной жизни?
Данный температурный принцип работает при производстве источников света и их выборе для применения в интерьерах. Все лампы имеют определённую температуру.
При выборе источников света необходимо знать, какая температура соответствует тому или иному оттенку. Для некоторых зон в интерьере дизайнеры рекомендуют применять лампы соответствующей цветовой температуры.
Цветовая температура, K | Оттенок | Применение |
2500–3000 | Тёплый оранжевый | Уютная вечерняя атмосфера в спальне, гостиной. Освещение обеденного стола. Торшеры, бра, прикроватные светильники. |
3000–4000 | Тёплый желтоватый | Комфортный и расслабляющий свет для жилых комнат. Чаще всего такую температуру используют в лампах люстр и настенных светильников. |
4000–5000 | Нейтральный белый | Дневной свет для жилых комнат, кухни, рабочих мест офисов, уголков для чтения. Подходит для потолочных и подвесных светильников. |
5000–6500 | Голубоватый | Такую цветовую температуру не используют в доме. Чаще применяют в ювелирных магазинах, музеях. |
Факт № 2. Для определённых зон в доме или квартире, а также под конкретные ситуации (для гостиной — приём гостей, романтический ужин и т. д.) подбирают источники света с наиболее комфортным оттенком и соответствующей цветовой температурой.
Цветовая температура источника света и восприятие её оттенков
Комбинируя источники освещения с разной температурой в пределах одного помещения, можно изменять цветовое восприятие предметов в интерьере. Но не увлекайтесь! Важно следить за гармоничностью цветов, так как в противном случае может получиться «цветовая дискотека», которая будет раздражать глаза. Да и неудачный светодизайн покажет вкус хозяина квартиры не с лучшей стороны.
Совершив ошибку при выборе лампы определенной цветовой температуры, вы можете существенно изменить цветовое восприятие интерьера.
Факт № 3. Наши глаза различают около 10 млн. различных оттенков, поэтому от освещения напрямую зависит, как мы будем воспринимать цвет предметов интерьера.
Что такое индекс цветопередачи?
Свет может изменять яркость и насыщенность цветов в помещении. Такое явление называют метамеризмом.
Каждая лампа обладает определенной цветопередачей, которая на упаковке обозначается индексом Ra (или CRl). Данный параметр источника определяется его способностью максимально точно передавать цвета освещаемого объекта. Лучшего результата вы добьетесь, используя лампы с индексом цветопередачи от 80 Ra и выше. Это позволит всем цветам интерьера выглядеть наиболее естественно.
Характеристика | Коэффициент | Примеры ламп |
---|---|---|
Эталон | 99–100 | Лампы накаливания, галогенные лампы |
Очень хорошая | Более 90 | Люминесцентные лампы с пятикомпонентным люминофором, Лампы МГЛ (металогалогенные), современные светодиодные лампы |
Очень хорошая | 80–89 | Люминесцентные лампы с трехкомпонентным люминофором, светодиодные лампы |
Хорошая | 70–79 | Люминесцентные лампы ЛБЦ, ЛДЦ, светодиодные лампы |
Хорошая | 60–69 | Люминесцентные лампы ЛД, ЛБ, светодиодные лампы |
Посредственная | 40–59 | Лампы ДРЛ (ртутные), НЛВД с улучшенной цветопередачей |
Плохая | Менее 39 | Лампы ДНат (натриевые) |
Факт № 4. Различные типы ламп, обладая одинаковой цветовой температурой, могут передавать цвета по-разному. Индекс цветопередачи определяет степень отклонения цвета предметов интерьера от его настоящего при освещении той или иной лампой.
Цветовая температура и наши эмоции
Температура света способна напрямую влиять на психологическое состояние человека.Так, теплые оранжевые и желтоватые оттенки лучше всего использовать для утра, так как они способствуют мягкому пробуждению, настраивают на положительный лад и стимулируют деятельность. Также эти оттенки хороши для применения в вечернее время из-за их успокаивающего эффекта.
Источники света с нейтральным белым идеальны для помещений, в которых проводят большое количество времени, работают в течение длительного срока. Такие оттенки наиболее соответствуют полуденному солнечному свету, поэтому организм воспринимает такое освещение как сигнал к активной деятельности.
Лампы с высокой цветовой температурой нельзя использовать долгое время, так как они обладают чрезвычайно активизирующим воздействием на психику человека. При краткосрочном использовании такой свет стимулирует организм. А при долгосрочном возможен обратный эффект — торможения, депрессии.
При низком уровне освещенности (мало света), то есть при «теплом свете» (Тцв=3000 К), человек лучше чувствует себя, это наиболее комфортная температура для человека. Если освещенность будет высокая (>700 лк), то появится дискомфорт и боль в глазах. И наоборот: Тцв=5000 К — комфортно от 700 лк до 2500 лк, но при освещенности менее 150 лк свет будет восприниматься тревожно (лунный свет).
Факт № 5. Температура света влияет на психологическое состояние человека, создаёт определённую атмосферу в помещении, активизирует работу организма или, напротив, расслабляет.
Человеческий глаз устроен таким образом, что способен улавливать малейшие отклонения цветовой температуры. Причем их диапазон чрезвычайно широк — от 2500 до 10000 К. Изменения данного показателя влияют на наше эмоциональное и психологическое состояние, работоспособность. Именно поэтому при создании гармоничного и комфортного освещения нельзя пренебрегать фактами, приведёнными в этой статье.
В дальнейших публикациях мы познакомим вас с не менее важными особенностями светодизайна, которые позволят вам создавать комфортные и эстетичные интерьеры. Подписывайтесь на обновления нашего блога и черпайте идеи для своих работ!