Чем измеряется расстояние в геометрии
61. Стереометрия
Читать 0 мин.
61.333. Расстояния
Расстояния
Задача на нахождения расстояния в стереометрической фигуре является главной и самой важной из всех. Прежде всего определимся с тем, что имеется ввиду под словом «расстояние», ведь их может быть бесконечно много.
Расстояние между объектами в геометрии – это кратчайшее из расстояний между ними.
В стереометрии найти расстояние можно между следующими комбинациями фигур:
РАССТОЯНИЕ МЕЖДУ ТОЧКАМИ
Расстояние между точками– это длина отрезка, соединяющего эти точки.
В задачах на стереометрию мы не можем просто воспользоваться линейкой, и длину этого отрезка должны найти аналитически. Поэтому длину отрезка AB между точками A и B находят как сторону треугольника, если отрезок AB удается включить в некоторый треугольник в качестве одной из его сторон.
То есть если в задаче предлагается найти расстояние между точками, нужно задать себе вопрос: «В каком треугольнике этот отрезок является стороной?», затем построить этот треугольник и найти в нем нужную сторону.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПРЯМОЙ
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки на прямую.
Этот отрезок перпендикуляра можно вычислить, включив его в треугольник (или трапецию) в качестве одной из высот. То есть нужно задать себе вопрос: «В каком треугольнике этот отрезок является высотой?», затем построить этот треугольник и найти в нем высоту.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ
Существует несколько способов нахождения расстояния от точки до плоскости:
К этому способу, аналогично, обращаются, если расстояние из точки M на плоскость опускать неудобно, а удобно опустить равный ему перпендикуляр из другой точки, лежащей на одной плоскости с M.
Расстояние от точки M до плоскости β – это перпендикуляр, опущенный из точки на плоскость, то есть по сути это высота в некоторой пирамиде с вершиной M и плоскостью основания, лежащей на β. Если легко вычислить объем этой пирамиды, используя другое основание и другую высоту, то через этот объем можно найти нужное расстояние.
РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ
Существует несколько способов нахождения расстояния между скрещивающимися прямыми:
1. Построение взаимного перпендикуляра.
2. Построение параллельной прямой.
К этому способу обращаются, если строить взаимный перпендикуляр неудобно и одна из скрещивающихся прямых уже заключена в удобную плоскость.
К этому способу обращаются, если строить взаимный перпендикуляр неудобно и скрещивающиеся прямые уже заключены в удобные плоскости.
3. Построение параллельной плоскости.
Расстояние
Расстояние, в широком смысле, степень удалённости объектов друг от друга. Расстояние является фундаментальным понятием геометрии. Термин часто используется в других науках и дисциплинах: астрономия, география, геодезия, навигация и др.
Содержание
Расстояние в математике
Содержание термина «расстояние» в математике связано с понятием метрики и метрического пространства.
Расстояние в технике
Расстояние между объектами — длина отрезка прямой, соединяющей два объекта. Расстояние в этом смысле является физической величиной с размерностью длины, значение расстояния выражается в единицах длины.
Другие использования
В проксемике понятие расстояния используют для описания личного пространства человека.
См. также
Полезное
Смотреть что такое «Расстояние» в других словарях:
РАССТОЯНИЕ — РАССТОЯНИЕ, расстояния, ср. 1. Пространство, разделяющее два пункта, промежуток между чем нибудь. Кратчайшее расстояние между двумя точками по прямой. Живет от нас на расстоянии двух километров. «Комендант подпустил их на самое близкое расстояние … Толковый словарь Ушакова
РАССТОЯНИЕ — геометрическое понятие, содержание которого зависит от того, для каких объектов оно определяется. Напр., расстояние между двумя точками длина соединяющего их отрезка прямой, расстояние от точки до прямой (или плоскости) длина отрезка… … Большой Энциклопедический словарь
расстояние — Общий термин, характеризующий степень удаленности объектов в пространстве координат: геометрических, логических и др. Например, в телекоммуникационных системах означает дальность связи, а в теории кодирования характеризует меру различия между… … Справочник технического переводчика
расстояние — РАССТОЯНИЕ, дистанция … Словарь-тезаурус синонимов русской речи
расстояние S’H’ — расстояние S’H’ Расстояние от вершины задней поверхности до задней главной точки. [ГОСТ 7427 76] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
расстояние SH — Расстояние от вершины передней поверхности до передней главной точки. [ГОСТ 7427 76] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
расстояние a — Расстояние от передней главной точки до осевой точки предмета. [ГОСТ 7427 76] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
расстояние a’ — расстояние a’ Расстояние от задней главной точки до осевой точки изображения. [ГОСТ 7427 76] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
расстояние a’p’ — расстояние a’p’ Расстояние от задней главной точки до осевой точки выходного зрачка. [ГОСТ 7427 76] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
расстояние ap — Расстояние от передней главной точки до осевой точки входного зрачка. [ГОСТ 7427 76] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика
Расстояние от точки до точки: формулы, примеры, решения
В данной статье рассмотрим способы определить расстояние от точки до точки теоретически и на примере конкретных задач. И для начала введем некоторые определения.
Расстояние между точками – это длина отрезка, их соединяющего, в имеющемся масштабе. Задать масштаб необходимо, чтобы иметь для измерения единицу длины. Потому в основном задача нахождения расстояния между точками решается при использовании их координат на координатной прямой, в координатной плоскости или трехмерном пространстве.
Расстояние между точками на координатной прямой
В целом можно говорить о том, что оценка длины некого отрезка происходит в сравнении с отрезком, принятым за единицу длины в заданном масштабе.
Если точке А соответствует целое действительное число, отложив последовательно от точки О до точки по прямой О А отрезки – единицы длины, мы можем определить длину отрезка O A по итоговому количеству отложенных единичных отрезков.
Резюмируя: расстояние от начала отсчета до точки, которой соответствует действительное число на координатной прямой, равно:
При этом очевидно, что сама длина отрезка не может быть отрицательной, поэтому, используя знак модуля, запишем расстояние от точки O до точки A с координатой x A : O A = x A
Расстояние между точками на плоскости
— если точки А и В совпадают, то расстояние между ними равно нулю;
— если точки A и B не лежат на прямой, перпендикулярной одной из координатных осей, найдем расстояние между ними, выведя формулу расчета:
Сформируем вывод из полученного результата: расстояние от точки А до точки В на плоскости определяется расчётом по формуле с использованием координат этих точек
Для ситуации, когда точки A и B лежат на прямой, перпендикулярной оси абсцисс:
Для случая, когда точки A и B лежат на прямой, перпендикулярной оси ординат:
Расстояние между точками в пространстве
Из курса геометрии известно, что квадрат диагонали параллелепипеда равен сумме квадратов его измерений. Исходя из этого утверждения получим равенство: A B 2 = A x B x 2 + A y B y 2 + A z B z 2
Используя полученные ранее выводы, запишем следующее:
Итоговая формула для определения расстояния между точками в пространстве будет выглядеть следующим образом:
Полученная формула действительна также для случаев, когда:
— лежат на одной координатной оси или прямой, параллельной одной из координатных осей.
Примеры решения задач на нахождение расстояния между точками
Решение
Решение
А также используем имеющееся условие, что А В = 5 и тогда будет верным равенство:
λ 2 + 16 = 5 λ 2 + 16 = 25 λ = ± 3
Решение
Единицы измерения расстояния
Это служебный список статей, созданный для координации работ по развитию темы. Его необходимо преобразовать в информационный список или глоссарий или перенести в один из проектов. Данное предупреждение не устанавливается на информационные списки и глоссарии. |
Содержание
Единицы измерения расстояния
Метрическая система
Основной единицей измерения расстояния в метрической системе измерений является метр. В повседневной жизни применяются также производные величины:
Британская/Американская система
Старорусская система
Японская система
Древнегреческая система
Типографическая система
Флотская система
Единицы, применяемые в астрономии
Единицы, набранные малым шрифтом, практически не используются или устарели.
Единицы, применяемые в физике
Единицы, применяемые в технике
Ссылки
Примечания
Полезное
Смотреть что такое «Единицы измерения расстояния» в других словарях:
Единицы измерения — В физике и технике единицы измерения (единицы физических величин, единицы величин[1]) используются для стандартизованного представления результатов измерений. Использование термина единица измерения противоречит рекомендациям метрологических… … Википедия
Единицы измерения длины — Содержание 1 Единицы измерения расстояния 1.1 Метрическая система 1.2 Британская/Американская система … Википедия
ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН — величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… … Энциклопедия Кольера
Единица измерения расстояния — Содержание 1 Единицы измерения расстояния 1.1 Метрическая система 1.2 Британская/Американская система … Википедия
Единицы величин — В физике и технике единицы измерения (единицы физических величин, единицы величин[1]) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного… … Википедия
Единицы физических величин — В физике и технике единицы измерения (единицы физических величин, единицы величин[1]) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного… … Википедия
ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ — Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера
Единицы мер — С древнейших времен употребляются для практических надобностей троякого рода меры: пространственности, веса и времени. Е. меры называется такая основная мера, которой или частями которой измеряются другие величины того же рода. В новейшее время к … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
ЕДИНИЦЫ МЕР И ВЕСОВ — ЕДИНИЦЫ МЕР И ВЕСОВ, установленные по соглашению единицы, выражающие размер количества чего либо объема, длины или веса. В прежнее время измерения основывались на размерах тела, зерен и т. д., и поэтому системы мер отличались чрезмерным… … Научно-технический энциклопедический словарь
Измерения и измерительные приборы — Законы явлений природы, как выражения количественных отношений между факторами явлений, выводятся на основании измерений этих факторов. Приборы, приспособленные к таким измерениям, называются измерительными. Всякое измерение, какой бы ни было… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Время, скорость, расстояние
Расстояние
Мы постоянно ходим пешком и ездим на транспорте из одной точки в другую. Давайте узнаем, как можно посчитать это пройденное расстояние.
Расстояние — это длина от одного пункта до другого.
Расстояние обозначается латинской буквой s.
Единицы расстояния чаще всего выражаются в метрах (м), километрах (км).
Формула пути
Чтобы найти расстояние, нужно умножить скорость на время движения:
s = v × t
Скорость
Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.
Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.
Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.
Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.
Формула скорости
Чтобы найти скорость, нужно разделить путь на время:
v = s : t
Показатели скорости чаще всего выражаются в м/сек или км/час.
Скорость сближения — это расстояние, которое прошли два объекта навстречу друг другу за единицу времени. Чтобы найти скорость сближения, нужно сложить скорости объектов.
Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, которые движутся в противоположных направлениях.
Чтобы найти скорость удаления, нужно сложить скорости объектов.
Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.
Онлайн-курсы по математике для детей — отличный способ разобраться в сложных темах под руководством внимательного преподавателя.
Время
Время — самое дорогое, что у нас есть. Но кроме философии, у времени есть важная роль и в математике.
Время — это продолжительность каких-то действий, событий.
Время движения обозначается латинской буквой t.
Чаще всего вам будут встречаться такие единицы времени, как секунды, минуты и часы.
Формула времени
Чтобы найти время, нужно разделить расстояние на скорость:
t = s : v
Эта формула пригодится, если нужно узнать, за какое время тело преодолеет то или иное расстояние.
Взаимосвязь скорости, времени, расстояния
Скорость, время и расстояние связаны между собой очень крепко. Одно без другого даже сложно представить.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t.
Задачка 1. Мы вышли из дома и направились в гости в соседний двор. Мы дошли до соседнего двора за 15 минут. Фитнес-браслет показал, что наша скорость была 50 метров в минуту. Какое расстояние мы прошли?
Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Умножив 50 метров на 15, мы определим расстояние от дома до магазина:
s = v × t = 50 × 15 = 750 м
Ответ: мы прошли 750 метров.
Если известно время и расстояние, то можно найти скорость: v = s : t.
Задачка 2. Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние между двором и площадкой — 100 метров. Первый школьник добежал за 25 секунд, второй за 50 секунд. Кто добежал быстрее?
Быстрее добежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. В этой задаче скорость школьников — это расстояние, которое они пробегают за 1 секунду.
Чтобы найти скорость, нужно расстояние разделить на время движения. Найдем скорость первого школьника: для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:
Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).
В нашей задаче расстояние дано в метрах, а время в секундах. Значит, будем измерять скорость в метрах в секунду (м/с).
Так мы узнали, что скорость движения первого школьника 4 метра в секунду.
Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:
Значит, скорость движения второго школьника составляет 2 метра в секунду.
Сейчас можно сравнить скорости движения каждого школьника и узнать, кто добежал быстрее.
Скорость первого школьника больше. Значит, он добежал до спортивной площадки быстрее.
Ответ: первый школьник добежал быстрее.
Если известны скорость и расстояние, то можно найти время: t = s : v.
Задачка 3. От школы до стадиона 500 метров. Мы должны дойти до него пешком. Наша скорость будет 100 метров в минуту. За какое время мы дойдем до стадиона из школы?
Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?
Чтобы ответить на этот вопрос, нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое дойдем до стадиона:
t = s : v = 500 : 100 = 5 м
Ответ: от школы до стадиона мы дойдем за 5 минут.
Специально для уроков математики можно распечатать или нарисовать самостоятельно такую таблицу, чтобы быстрее запомнить и применять формулы скорости, времени, расстояния.