Чем можно измерить частоту
Частотомер. Виды и устройство. Работа и применение. Особенности
Частотомер представляет собой специализированный измерительный прибор, созданный для определения частоты, то есть периода колебаний электросигнала. Частота – один из основных показателей тока. Она определяет число колебаний за определенный временной цикл. Измеряется частота в герцах, она обратно пропорциональна периоду колебаний. Элементы оборудования, работающие на электрическом токе, должны работать на токах определенной частоты. Именно поэтому так важны устройства для определения частоты протекающего тока.
Зная частоту, можно своевременно настроить, обслужить, диагностировать и выполнить регулировку оборудования разнообразного назначения, осуществить контроль протекания технологических процессов. Приборы для измерения частоты могут иметь разное конструктивное исполнение, что определяется их назначением и особенностями работы. Подобные приборы требуются во многих областях науки и промышленности. Особенное значение приборы для измерения частоты имеют в телекоммуникационной, радиоэлектронной и электротехнической деятельности.
Частотомер, исходя из метода измерения, может быть двух типов:
Аналоговые устройства предназначены в основном для определения колебаний синусоидального характера. Приборы сравнения применяются для измерения дискретных частот, гармонических параметров и так далее. Подобные устройства используются в большей части случаев для измерения частоты гармонического характера, находящихся в диапазоне 20-2500 Герц. Однако они имеют ограниченность использования, что вызвано невысокой точностью и высокой потребляемой мощностью.
В зависимости от типа конструктивного исполнения устройства бывают стационарными, переносными, либо щитовыми. Конкретный тип конструкции определяется областью применения устройства.
Больше всего распространены устройства прямого отсчета, то есть цифровые устройства. Они позволяют с удобством и высокой точностью измерять необходимые параметры частоты. Главная их особенность в том, что они подсчитывают число импульсов, поступающих от входного формирователя за конкретный период времени. Данный прибор способен измерить не только частоту, но также периоды времени и число импульсов.
Цифровые устройства позволяют выполнять с большой точностью исследования частот импульсного и гармонического характера в пределах 10 Гц – 50 ГГц. Подобные приборы в основном применяются для измерения частот, временных параметров.
По принципу действия подобный частотомер можно классифицировать на 4 группы:
В отдельную категорию можно выделить устройства, которые расширяют функционал следящих устройств. Это могут быть сервисные или универсальные приборы. Сервисные устройства имеют малые габариты, так как в них применяются интегральные схемы. Чаще всего они применяются в качестве автономных устройств, переносных, а также встроенных агрегатов в структуре автоматизированных систем. Их можно использовать для измерения разных величин.
Универсальные аппараты в большинстве случаев многофункциональны. Они имеют конструкцию, которая позволяет задействовать сменные блоки. Благодаря этому можно существенно повысить их функциональность. Специализированные устройства заточены под конкретные параметры измерений, поэтому в большей части случаев у них более простая конструкция.
Устройство
Частотомер может иметь разное конструктивное исполнение. К примеру, электронно-счетное устройство выделяется блочно-модульным исполнением. Его базу составляет кроссплата, где монтируются модульные платы. От них выходят проводники на управляющие и индикаторные элементы, в том числе входящие и выходящие разъемы. Лампы и индикаторы находятся в модуле, которой расположен за панелью. Индикация осуществляется динамически.
В отдельной кассете находится блок питания и генератор. Имеется возможность подключить внешний генератор. Для защиты от перегрева используется термостат. Вычисление осуществляется с помощью декад и делителей. Кроме того, в состав устройства входят умножитель, узел сброса и самонастройки, автоматический блок и входной формирователь. В качестве элементной базы для этих элементов используются транзисторы. Подобные устройства уже считаются устаревшими, но все равно иногда применяются.
Самый простой частотомер производится на базе микросхем. В качестве входного элемента используется триггер Шмидта, трансформирующий напряжение синусоидального характера в импульсы одинаковой частоты. Чтобы триггер нормально работал, требуется конкретная амплитуда входного сигнала. Важно, чтобы она не была выше заданной величины. Чтобы повысить чувствительность, в устройстве может применяться дополнительный усилитель входящего сигнала. К примеру, для этого может быть использован полупроводниковый транзистор малой мощности либо аналоговая микросхема.
Когда колебания проходят через конденсатор, происходит усиление его показателей посредством второго конденсатора. После этого колебания направляются на вход триггера. Следующий конденсатор убирает обратную связь. Чтобы пользователь мог увидеть показатели частоты, используются стрелочные приспособления, а также подсвечиваемая шкала.
Принцип действия
Частотомер позволяет определить частоту тока в элементе какого-нибудь оборудования. Например, Вам надо получить схему, которая состоит из 2-х блоков: передатчика и приемника. До готовности передатчика можно задействовать генератор сигналов. Большинство генераторов способно обеспечить создание сигналов с разными параметрами.
Чтобы точно определить частоту сигнала необходимо подключить генератор к входу устройства для измерения частоты. У ряда генераторов имеются встроенные модули, предназначенные для определения частоты. Цифровой частотомер использует счетно-импульсный принцип, благодаря которому счетный блок подсчитывает число импульсов, поступающих на вход за конкретный период времени. То есть устройство осуществляет подсчет числа импульсов, период времени определяется с помощью опорных частот.
На входе устройства измеряемое колебание усиливается, превращаясь в последовательность усиленных импульсов с такой же частотой, которую и необходимо измерить. В то же время кварцевый генератор создает последовательность эталонных импульсов, которые приводят к старту схемы управления. В качестве нее выступает стробирующая схема. Она задает стандартное время измерений, за которое подаются колебания на вход. Счетчик устройства подсчитывает импульсы за данный период времени. Их количество выводится на цифровом индикаторе. В случае необходимости нового измерения имеется кнопка, которая направляет сигнал на схему сброса. Она ставит счетчик в нулевое положение.
Применение
Универсальный частотомер в большинстве случаев используется для автоматизированного определения частоты, непрерывности сигналов, времени, пика напряжения, которое является входящим. Также устройство применяется с целью исследования времени прохождения импульсов, времени, фазового сдвига между сигналов, исследования отношений частотных характеристик, подсчитывания количества импульсов.
Частотомер в большей части случаев используется с целью настраивания, испытания и калибрующих работ в разнообразных устройствах. К примеру, это могут быть преобразователи, генераторы, фильтрующие устройства. Частотомеры часто применяют для настраивания оборудования связи и так далее. Они довольно часто применяются в связном деле, измерительной технике, навигации, локации, ядерной физике, электронике, а также при создании, изготовлении и эксплуатации радиоэлектронных устройств.
Как измерить частоту переменного тока?
Какие приборы можно использовать
Классификация частотомеров
Все данные приборы делятся на две основные группы по области их применения:
По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.
Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:
Мультиметр с функцией измерения частоты переменного тока
Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе — это мультиметр. Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи.
Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:
Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.
Как выполняется измерение частоты
Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:
Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.
Другие альтернативные методы измерения
Самый эффективный и простой способ проверки частоты — это использование осциллографа. Именно осциллографом пользуются все профессиональные электронщики, так как на нём можно визуально увидеть не только цифры, но и саму диаграмму. При этом нужно обязательно отключить встроенный генератор. Новичку в электронике будет довольно проблематично выполнить данные измерения с помощью этого прибора. О том, как пользоваться осциллографом, мы рассказали в отдельной статье.
Второй вариант — это измерение с помощью конденсаторного частотомера, имеющего диапазон измерений 10 Гц-1 МГц и погрешность около 2%. Он определяет среднее значение тока разрядки и зарядки, которое будет пропорционально частоте и измеряется косвенно с помощью магнитоэлектрического амперметра, со специальной шкалой.
Ещё один метод называется резонансный и основан он на явлении резонанса, возникающего в электрическом контуре. Тоже имеет шкалу с механизмом точной подстройки. Однако промышленную величину в 50 Гц этим способом невозможно проверить, работает он от 50 000 Гц.
Также вы должны знать, что существует реле частоты. Обычно на предприятиях, подстанциях, электростанциях — это основное устройство, которым контролируют изменение частоты. Данное реле воздействует на другие устройства защиты и автоматики для поддержания частоты на необходимом уровне. Есть разные типы реле частоты с разным функционалом, об этом мы расскажем в других публикациях.
Все же мультиметры и электронные цифровые частотомеры работают на обычном счёте импульсов, которые являются неотъемлемой частью, как импульсного так и другого переменного напряжения, необязательно синусоидального за определенный промежуток времени, обеспечивая при этом максимальную точность, а также широчайший диапазон.
Напоследок рекомендуем просмотреть полезное видео по теме:
Теперь вы знаете, как выполнить измерение частоты тока в сети мультиметром и частотомером. Надеемся, предоставленная информация была для вас полезной!
Будет интересно прочитать:
Измерение частоты
Цепи и оборудование могут быть предназначены для работы с постоянной или переменной частотой. Работа при частоте, которая отличается от указанной, может привести к неправильному функционированию.
Например, двигатель переменного тока, рассчитанный на работу при 60 Гц, работает медленнее при частоте ниже 60 Гц или быстрее при частоте выше 60 Гц. Для двигателей переменного тока любое изменение частоты приводит к пропорциональному изменению частоты вращения двигателя. Снижение частоты на пять процентов приводит к снижению частоты вращения двигателя на пять процентов.
На некоторых цифровых мультиметрах предусмотрены дополнительные режимы измерения частоты:
Цифровые мультиметры с символом частоты на регуляторе
Цифровой мультиметр с кнопкой частоты
Рекомендации по измерениям частоты
В некоторых цепях точное измерение частоты невозможно из-за достаточно сильных искажений. Пример. Частотно-регулируемые приводы (ЧРП) переменного тока могут искажать частоту.
Для получения точных показаний при проверке ЧРП рекомендуется использовать функцию фильтра нижних частот при измерении напряжения переменного тока () ac V (
). На измерительных приборах без функции
переведите регулятор в положение измерения напряжения постоянного тока, затем снова нажмите кнопку измерения частоты Hz, чтобы измерить частоту в этом режиме. Если прибор позволяет измерять отдельные частоты, при изменении диапазона можно компенсировать шум.
С целью определения частот периодических сигналов, а также для выявления гармонических компонентов спектров — применяют специальные радиоизмерительные (и электроизмерительные) приборы, называемые частотомерами.
На сегодняшний день частотомеры существуют двух типов по методу измерения: аналоговые (для непосредственной оценки частоты) и приборы сравнения (к коим относятся: электронно-счетные, гетеродинные, резонансные и т.д.).
Аналоговые подходят для исследования синусоидальных колебаний, гетеродинные, резонансные и вибрационные — для измерения гармонических составляющих сигнала, электронно-счетные и конденсаторные — для определения частот дискретных событий.
Аналоговый стрелочный частотомер
Стрелочный аналоговый частотомер относится к электромеханическим измерительным приборам, и работает по принципу магнитоэлектрической, электромагнитной или электродинамической системы.
Работа такого прибора основывается на зависимости модуля полного сопротивления составной измерительной цепи от параметров проходящего через нее тока. Измерительная цепь прибора состоит из частотозависимого и частотонезависимого сопротивлений.
Итак, на плечи логометра подаются разные сигналы: на одно плечо измеряемый ток подается через частотонезависимую цепь, на другое — через частотозависимую цепь. В итоге стрелка прибора устанавливается в такое положение, в котором магнитные потоки токов через два плеча найдут равновесие.
Пример частотомера, работающего по такому принципу — советский М800, предназначенный для измерения частот токов в диапазоне от 900 до 1100 Гц в цепях передвижных и стационарных объектов. Потребляемая прибором мощность — 7 Вт.
Язычковый вибрационный частотомер
Язычковый вибрационный частотомер имеет на своей шкале набор пластинок в форме упругих стальных язычков, причем каждый из язычков обладает собственной резонансной частотой механических колебаний. Резонансные колебания язычков возбуждаются посредством действия переменного магнитного поля электромагнита.
При прохождении анализируемого тока через цепь электромагнита, язычок с наиболее близкой резонансной частотой к частоте тока, начинает колебаться с наибольшей амплитудой. Частота резонансных колебаний каждого язычка отражена на шкале прибора. Так что визуальная индикация весьма отчетлива.
Пример вибрационного язычкового частотомера — прибор В80, который применяется для измерения частоты в цепях переменного тока. Диапазон частот — от 48 до 52 Гц, потребляемая мощность частотомера — 3,5 Вт.
Сегодня можно встретить конденсаторные частотомеры на диапазоны, входящие в интервал от 10 Гц до 10 МГц. Принцип работы этих приборов базируется на чередовании процессов заряда и разряда конденсатора. Конденсатор заряжается от батареи, затем разряжается на электромеханическую систему.
Частота повторений заряда-разряда совпадает с частотой исследуемого сигнала, ибо сам измеряемый сигнал задает импульс на переключение. Мы знаем, что заряд CU протекает за один рабочий цикл, следовательно протекающий через магнитоэлектрическую систему ток пропорционален частоте. Таким образом амперы пропорциональны герцам.
Пример конденсаторного частотомера с 21 диапазоном измерения — прибор Ф5043, применяемый для настройки низкочастотной аппаратуры. Минимальная измеряемая частота — 25 Гц, максимальная — 20 кГц. Потребление прибора в рабочем режиме — не более 13 Вт.
Для настройки и обслуживания приемопередающих устройств, для измерений несущих частот модулированных сигналов — полезны частотомеры гетеродинные. Частота исследуемого сигнала сравнивается с частотой сигнала гетеродина (вспомогательного перестраиваемого генератора) до достижения нулевых биений.
Нулевые биения свидетельствуют о совпадении частоты исследуемого сигнала с частотой гетеродина. Пример проверенного временем гетеродинного частотомера — ламповый «Волномер Ч4-1», используемый для градуировки передатчиков и приемников, работающих с незатухающими колебаниями. Рабочий диапазон прибора — от 125 кГц до 20 МГц.
Частота перестраиваемого резонатора сравнивается с частотой исследуемого сигнала. Резонатором служит колебательный контур, объемный резонатор или четвертьволновой отрезок линии. Исследуемый сигнал поступает к резонатору, с выхода резонатора сигнал идет на гальванометр.
Максимальные показания гальванометра свидетельствуют о наилучшем совпадении собственной частоты резонатора с частотой исследуемого сигнала. Оператор регулирует резонатор при помощи лимба. В некоторых моделях резонансных частотомеров применяются усилители для повышения чувствительности.
Пример резонансного частотомера — прибор Ч2-33, предназначенный для настройки приемников и передатчиков с частотами непрерывных и импульсно-модулированных сигналов от 7 до 9 ГГц. Потребление прибора не более 30 Вт.
Электронно-счетный частотомер просто считает количество импульсов. Считаемые импульсы формируются входными цепями из периодического сигнала произвольной формы. При этом интервал времени счета задается с опорой на кварцевый генератор прибора. Таким образом, электронно-счетный частотомер является прибором сравнения, точность которого зависит от качества эталона.
Электронно-счетные частотомеры являются приборами весьма универсальными, отличаются широкими диапазонами измерения частоты и высокой точностью. Например, диапазон измерений прибора Ч3-33- от 0,1 Гц до 1,5 ГГц, а точность составляет 0,0000001. Доступные измеряемые частоты повышаются до десятков гигагерц благодаря применению делителей в современных приборах.
В общем и целом, электронно-счетные частотомеры являются на сегодняшний день наиболее распространенными и востребованными профессиональными приборами данного назначения. Они позволяют не только измерять частоты, но позволяют также находить и длительности импульсов, и интервалы между ними, и даже вычислять отношения между частотами, не говоря о подсчете количества импульсов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Радиолюбительские измерения: когда нет частотомера
В радиолюбительской практике, в силу ограниченности бюджета, часто возникает ситуация, когда тот или иной нужный для работы прибор недоступен. В такой ситуации приходится вычислять нужный параметр по результатам косвенных измерений, т.е. «сверлить пилой и пилить буравчиком».
В процессе отладки разрабатываемого мной устройства возникла необходимость провести калибровку цифрового синтезатора частоты в составе этого устройства. Задача является тривиальной при наличии частотомера электронно-счётного (ЭСЧ). Проблема же заключалась в том, что «взять взаймы» частотомер мне не удалось.
Если описать работу применённого в устройстве синтезатора частоты совсем просто, он образует на выходе сигнал с частотой Fs путём обработки входного сигнала от опорного генератора с частотой Fxo:
В качестве частотозадающего элемента опорного генератора был использован недорогой кварцевый резонатор с маркировкой на корпусе «TXC 25.0F6QF». Точное значение частоты сигнала опорного генератора известно не было. В настройках синтезатора опорная частота была указана константой 25000000 Hz. Сам синтезатор частоты был запрограммирован на вывод сигнала частотой 9996 kHz.
Проверка работоспособности схемы
Для проверки работоспособности синтезатора был использован цифровой осциллограф Rigol DS1102E. В настройках канала было включено измерение частоты.
Осциллограф на выводах кварцевого резонатора показал измеренное значение 25.00 MHz, а на выходе синтезатора – 10.00 MHz. В принципе, это уже было неплохо: схема работала.
Метод биений частоты
Аналогом калибровки частотозадающих цепей методом биений является методика настройки музыкальных инструментов по камертону. Звук, извлекаемый из инструмента, накладывается на звук камертона. Если тоны не совпадают, возникают хорошо заметные на слух «биения» частоты. Подстройка тона музыкального инструмента производится до появления «нулевых биений», т.е. состояния, когда частоты совпадают.
Применение радиоприёмника с панорамным индикатором
Проще всего калибровку синтезатора частоты методом биений было провести с использованием радиоприёмника с панорамным индикатором и сигнала радиостанции RWM в качестве контрольного сигнала.
В качестве контрольного приёмника использовался SoftRock RX Ensemble II с программой HDSDR. Шкала приёмника была ранее откалибрована по сигналам радиостанции RWM на всех трёх частотах: 4996000, 9996000 и 14996000 Hz. В качестве контрольного сигнала использовался сигнал радиостанции RWM на частоте 9996000 Hz.
На скриншоте виден приём секундных меток RWM на частоте 9996000 Hz и приём выходного сигнала синтезатора на частоте, примерно, 9997970 Hz. При задании частоты синтезатора использовалась константа 25000000 Hz (номинальная частота кварцевого резонатора). При проведении калибровки эта константа была умножена на отношение частот 9997970 Hz и 9996000 Hz. В результате было получено значение реальной частоты запуска кварцевого резонатора 25004927 Hz. Это значение было занесено константой в прошивку устройства. На скриншоте показан результат проведения калибровки:
Частота выходного сигнала синтезатора 9996 kHz точно соответствует частоте приёма секундных меток RWM на частоте 9996000 Hz.
После проведения калибровки осциллограф показал на выводах кварцевого резонатора – 25.00 MHz, а на выходе синтезатора – 10.00 MHz, т.е. те же самые значения, что и до калибровки.
Использование сигналов вещательных радиостанций
В Перми в светлое время суток стабильно принимается сигнал RWM на частоте 9996 kHz, а в тёмное время суток – на частоте 4996 kHz. Если прохождение радиоволн нестабильно, и сигналы RWM не принимаются, на сайте hfcc.org можно найти частоты и расписание работы вещательных радиостанций.
Несущие сигналы вещательных станций тоже можно, при необходимости, использовать в качестве контрольных, т.к. они обычно имеют отклонение частоты не более 10 Hz от частоты вещания.
Краткие выводы
Наиболее простой и точный способ измерения частоты сигнала в радиодиапазоне — измерение частоты электронно-счётным частотомером.
Получить приблизительное значение частоты сигнала можно, приняв его на контрольный приёмник с калиброванной шкалой.
Получить при использовании контрольного приёмника точное значение частоты сигнала можно по «нулевым биениям» измеряемого сигнала с контрольным сигналом, полученным от эталонного источника.
Необходимые дополнения:
Калибровку синтезатора можно было бы провести: