Что нужно чтобы ввести систему отсчета

Система отсчёта в физике — что это, определение и виды

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчетаОпределение понятия система отсчёта в физике и механике включает в себя совокупность, которая состоит из тела отсчёта, системы координат, а также времени. Именно по отношению к этим параметрам изучается движение материальной точки или же состояние её равновесия.

С точки зрения современной физики, всякое движение можно признать относительным. Таким образом, любое движение тела можно рассматривать исключительно по отношению к другому материальному объекту или же совокупности таких объектов. Например, мы не можем указать, каков характер движения Луны в общем, но может определить её перемещение относительно Солнца, Земли, Звёзд, других планет и пр.

В ряде случаев подобная закономерность бывает связана не с единой материальной точкой, а с множеством базовых точек отсчёта. Эти базовые тела отсчёта могут задавать совокупность координат.

Основные составляющие

Основными составляющими любой системы отсчёта в механике можно считать следующие компоненты:

Для того чтобы решить конкретную задачу, необходимо определить наиболее подходящую для этого сетку координат и структуру. Идеальные часы в каждой из них потребуются лишь одни. В этом случае начало, тело отсчёта и векторы координатных осей можно выбирать произвольно.

Основные свойства

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчетаЭти структуры в физике и геометрии имеют ряд существенных различий. К физическим свойствам, которые учитываются при построении и решении задачи, относятся изотропность и однородность.

Под однородностью в физике принято понимать тождественность всех точек в пространстве. Этот фактор имеет в физике немаловажное значение. Во всех точках Земли и Солнечной системы в целом законы Ньютона в физики действуют абсолютно идентично. Благодаря этому начало отсчёта может быть размещено в любой удобной точке. И если исследователь поворачивает сетку координат вокруг начальной точки, при этом никакие другие параметры задачи не будут изменяться. Все направления, которые начинаются от этой точки, имеют абсолютно тождественные свойства. Такая закономерность называется изотропностью пространства.

Виды систем отсчёта

Существует несколько видов — подвижные и неподвижные, инерциальные и неинерциальные.

Если такая совокупность координат и времени требуется для проведения кинематических исследований, в этом случае все подобные структуры являются равноправными. Если же речь идёт о решении динамических задач, предпочтение отдаётся инерциальным разновидностям – в них движение имеет более простые характеристики.

Инерциальные системы отсчёта

Инерциальными называют такие совокупности, в которых физическое тело сохраняет состояние покоя или продолжает равномерно передвигаться, если на него не воздействуют внешние силы или суммарное воздействие этих сил равняется нулю. В этом случае на тело действует инерция, что и даёт название системе.

Одна и та же совокупность в одном случае может считаться инерциальной, а в другом будет признана неинерциальной. Это происходит в тех случаях, когда погрешность в результате неинерциальности слишком ничтожна и ею можно свободно пренебречь.

Неинерциальные системы отсчёта

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчетаНеинерциальные разновидности наравне с инерциальными связываются с планетой Земля. Учитывая космические масштабы, считать Землю инерциальной совокупностью можно весьма грубо и приблизительно.

Отличительной чертой неинерциальной системы является то, что она перемещается по отношению к инерциальной с некоторым ускорением. В этом случае законы Ньютона могут утратить свою силу и требуют введения дополнительных переменных. Без этих переменных описание такой совокупности будет недостоверным.

Проще всего рассматривать неинерциальную систему на примере. Такая характеристика движения характерна для всех тел, которые имеют сложную траекторию движения. Наиболее ярким примером такой системы можно считать вращение планет, в том числе и Земли.

Движение в неинерциальных системах отсчёта впервые изучено Коперником. Именно он доказал, что движение с участием нескольких сил может быть весьма сложным. До этого считалось, что движение Земли относится к инерциальным и описывалось оно законами Ньютона.

Источник

Системы отсчета и их виды

В физике часто встречаются термины «система отсчета» и «инерциальная система отсчета». Ознакомимся с ними.

Что такое система отсчета

Система отсчета содержит:

Если все три пункта выполнены, то говорят, что задана система отсчета.

С телом отсчета связаны координатные оси, если тело отсчета будет двигаться, то система отсчета будет передвигаться совместно с ним.

Системы отсчета используются не только в физике. В повседневной жизни мы пользуемся картами местности. При этом, на карте мы отмечаем две точки:

Проложив маршрут и измерив расстояние между этими точками, мы сможем посчитать расстояние, которое нужно преодолеть, чтобы переместиться. А указав интервал времени, мы сможем рассчитать, с кокой скоростью нужно двигаться, чтобы вовремя прибыть к месту назначения.

Виды систем отсчета и их сравнение

Все системы отсчета (сокращенно СО) можно разделить на два вида:

От того, как система отсчета движется, зависит, можно ли считать ее инерциальной, или нет.

Инерциальные системы отсчета

Инерциальная система отсчета — это такая, которая:

Примеры инерциальных систем отсчета:

Примечания:

1. Вместо слов «скорость не меняется», физики часто употребляют такие слова: «скорость постоянная», или «модуль вектора скорости сохраняется».

2. Скорость – это вектор, у любого вектора есть две главные характеристики:

Подробнее о векторах и их характеристиках «здесь».

Не инерциальные системы отсчета

Не инерциальная система отсчета — это такая, которая:

Бывает и так, что одновременно изменяет и по модулю, и по направлению. Главное, что изменяет. Например, гоночный автомобиль на соревнованиях входит в поворот и одновременно набирает скорость.

Примеры не инерциальных систем отсчета:

Для чего нужно знать, к какому виду отнести систему отсчета

Предположим, нам нужно решить какую-то задачу механики. Чтобы ее решить мы вводим систему отсчета. Является ли система отсчета инерциальной, нужно знать потому, что

Для иллюстрации рассмотрим такой пример:

Представим, что мы находимся внутри пассажирского вагона. Поднимем на вытянутой руке мяч и разожмем ладонь, чтобы мяч из нее выпал. Будем изучать траекторию, по которой мяч движется. На всех рисунках пунктиром обозначено начальное положение мяча, а сплошным кругом — его конечное положение. Рассмотрим движение мяча в каждом из случаев:

Случай 1. Вагон покоится

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Когда вагон покоится, свободно падающий мяч падает вертикально

Случай 2. Вагон движется равномерно прямолинейно

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Красная стрелка — это вектор скорости вагона, он обозначен символом \( \vec \) и указывает направление, в котором вагон движется.

Когда вагон движется равномерно прямолинейно, свободно падающий мяч падает вертикально

Случай 3. Вагон движется прямолинейно равнозамедленно

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Вектор скорости вагона обозначен символом \( \vec \) и указывает направление, в котором вагон движется. Вектор ускорения вагона обозначен символом \( \vec \). Вагон замедляется, так как скорость и ускорение направлены в противоположные стороны.

Когда вагон движется прямолинейно равнозамедленно, свободно падающий мяч отклоняется от вертикали.

Случай 4. Вагон движется прямолинейно равноускоренно

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Вектор скорости вагона \( \vec \) и вектор ускорения вагона \( \vec \) сонаправлены. Это говорит о том, что вагон ускоряется.

Когда вагон движется прямолинейно равноускоренно, свободно падающий мяч отклоняется от вертикали

Случай 5. Вагон движется криволинейно

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

На рисунке представлена одна из возможных траекторий движения мяча. Траектория мяча будет зависеть от того, будет ли вагон, входящий в поворот, ускоряться, или замедляться.

Изогнутая стрелка указывает направление, в котором вагон поворачивает (изменяет направление движения).

Когда вагон движется криволинейно, свободно падающий мяч отклоняется от вертикали.

Подведем итог:

В первых двух случаях (см. рис. №1, №2), траектории мяча были одинаковыми. В этих двух случаях вагон является инерциальной системой отсчета.

Рисунки №3, №4 и №5 иллюстрируют неинерциальные системы отсчета. В случаях, представленных на этих рисунках, траектории мяча различаются. Формы траекторий зависят от дополнительных сил, действующих в неинерциальных системах отсчета на мяч.

Источник

Система отсчета

Система отсчета – это совокупность тела отсчета, со связанной с ним системой координат и прибором для измерения времени.

Что такое система отсчета. Афинная и декартовая системы координат

Если рассматривать все системы отсчета относительно кинематики – они аналогичные. В кинематике не указываются преимущества одной системы отсчета при сравнении с другой. Для удобства решения выбирается наиболее приемлемая система.

Чтобы описать пространство, в котором происходит движение материальной точки, система отсчета связывается с пространственной системой координат.

Системой пространственных координат называют совокупность определений, которая может реализовать метод координат, то есть определение положения точки или тела с помощью чисел или символов.

Числа, способные указать положение выбранной точки в трехмерном пространстве, называются координатами этой точки.

Аффинная система координат – это три линейно независимых вектора (координатных осей), выходящие из одной точки, то есть из начала отсчета.

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Чтобы однозначно определить положение точки М в пространстве, то предполагают наличие зависимости радиус-вектора r → от параметра t (времени) таким образом, что каждому значению параметра t соответствует одно значение функции:

Данное равенство получило название кинематического уравнения движения материальной точки М в векторной форме.

Цилиндрическая и сферическая системы координат

Чтобы описать криволинейное и аффинное движение, применяют криволинейные системы координат, которые упрощают форму записи законов движения тел для облегчения вычисления. Чаще всего используют цилиндрические и сферические системы координат.

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Связь между декартовыми и цилиндрическими координатами может быть задана при помощи формул:

Рисунок 4 показывает, что можно вывести формулы, связывающие сферические и декартовые координаты:

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Рисунок 4 . Сферические координаты точки М

Имеются другие системы криволинейных координат, с помощью которых возможно нахождение координат заданной точки: параболические, гиперболические, эллиптические и другие.

Система отсчета выбирается индивидуально относительно каждого случая в отдельности, учитывается особенность движения тела, с помощью которой определяется наиболее простой закон движения заданного тела или точки.

Источник

Что нужно чтобы ввести систему отсчета

Система отсчёта — это совокупность тела отсчета, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел.

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Движущиеся тела изменяют своё положение относительно других тел в пространстве с течением времени. Положение автомобиля, мчащегося по шоссе, изменяется относительно указателей на километровых столбах, положение корабля, плывущего в море недалеко от берега, меняется относительно береговой линии, а о движении самолёта, летящего над землей, можно судить по изменению его положения относительно поверхности Земли. Можно показать, что одно и то же тело при одном и том же движении может одновременно по-разному перемещаться относительно разных тел.

Абсолютная система отсчёта

Часто в физике какую-то СО считают наиболее удобной (привилегированной) в рамках решения данной задачи — это определяется простотой расчётов либо записи уравнений динамики тел и полей в ней. Обычно такая возможность связана с симметрией задачи.

С другой стороны, ранее считалось, что существует некая «фундаментальная» система отсчёта, простота записи в которой законов природы выделяет её из всех остальных систем. Например, физики XIX в. считали что, система, относительно которой покоится эфир электродинамики Максвелла, является привилегированной, и поэтому она была названа Абсолютной Системой Отсчета (АСО). В современных представлениях никакой системы отсчёта, выделенной именно таким способом, не существует, так как законы природы, выраженные в тензорной форме, имеют один и тот же вид во всех системах отсчёта — то есть во всех точках пространства и во все моменты времени. Это условие — локальная пространственно-временная инвариантность — является одним из проверяемых оснований физики.

Иногда абсолютной системой отсчета называют систему, связанную с реликтовым излучением, то есть инерциальную систему отсчета, в которой реликтовое излучение не имеет дипольной анизотропии.

Источник

Что такое система отсчета. Инерциальная система отсчета

Цилиндрическая и сферическая системы координат

Чтобы описать криволинейное и аффинное движение, применяют криволинейные системы координат, которые упрощают форму записи законов движения тел для облегчения вычисления. Чаще всего используют цилиндрические и сферические системы координат.

Представление цилиндрической системы координат включает в себя трехмерную ось координат, которая является обобщением полярной на трехмерное пространство добавлением третьей координаты, задающей смещение произвольной точки М вдоль оси OZ относительно координатной плоскости OXY. Положение точки М может быть определено скалярами ρ, φ и z, где ρ – характеризует расстояние от точки М к оси OZ, φ – является углом, образованным проекцией радиус-вектора точки М на плоскость OXY с положительным направлением ОХ, z – проекцией точки М на ось OZ. Рисунок 3. Цилиндрические координаты точки М

Связь между декартовыми и цилиндрическими координатами может быть задана при помощи формул:

Сферическая система координат характеризуется тройкой скалярных величин, которые определяют положение точки в пространстве, состоящие из длины ее радиус-вектора ρ и двух углов: φ – угла, образованного проекцией радиус-вектора точки М на плоскость OXY с положительным направлением ОХ, θ – угла, располагаемого между радиус-вектором точки М и осью OZ.

Рисунок 4 показывает, что можно вывести формулы, связывающие сферические и декартовые координаты:

Что нужно чтобы ввести систему отсчета. Смотреть фото Что нужно чтобы ввести систему отсчета. Смотреть картинку Что нужно чтобы ввести систему отсчета. Картинка про Что нужно чтобы ввести систему отсчета. Фото Что нужно чтобы ввести систему отсчета

Рисунок 4 . Сферические координаты точки М

Имеются другие системы криволинейных координат, с помощью которых возможно нахождение координат заданной точки: параболические, гиперболические, эллиптические и другие.

Система отсчета выбирается индивидуально относительно каждого случая в отдельности, учитывается особенность движения тела, с помощью которой определяется наиболее простой закон движения заданного тела или точки.

Всё ещё сложно? Наши эксперты помогут разобраться Все услуги

Видео

Переход в повернутую систему отсчета

Этот тип «отношений» между системами отсчета не настолько интуитивно понятен в вычислениях. Но допустим, вычисляя расстояние от дома до машины, вы не учли того, что за ось X надо было взять не перпендикуляр от стены дома, а вектор от дома к магазину. Точка отсчета не поменялась, а направление теперь совсем другое. Но заново мерить опять же не нужно. Все, что потребуется для преобразования, – угол α между осями X старой и новой систем отсчета. После этого к нам на помощь придет тригонометрия:

Вот так просто и изящно – почти любой калькулятор вычислит синус и косинус. Полезно также знать, как перейти обратно из новой системы отсчета в старую:

Виды систем отсчета и их сравнение

Все системы отсчета (сокращенно СО) можно разделить на два вида:

От того, как система отсчета движется, зависит, можно ли считать ее инерциальной, или нет.

Инерциальные системы отсчета

Инерциальная система отсчета — это такая, которая:

Примеры инерциальных систем отсчета:

Примечания:

1. Вместо слов «скорость не меняется», физики часто употребляют такие слова: «скорость постоянная», или «модуль вектора скорости сохраняется».

2. Скорость – это вектор, у любого вектора есть две главные характеристики:

Подробнее о векторах и их характеристиках «здесь».

Не инерциальные системы отсчета

Не инерциальная система отсчета — это такая, которая:

Бывает и так, что одновременно изменяет и по модулю, и по направлению. Главное, что изменяет. Например, гоночный автомобиль на соревнованиях входит в поворот и одновременно набирает скорость.

Примеры не инерциальных систем отсчета:

Абсолютная система отсчёта

Часто в физике какую-то СО считают наиболее удобной (привилегированной) в рамках решения данной задачи — это определяется простотой расчётов либо записи уравнений динамики тел и полей в ней. Обычно такая возможность связана с симметрией задачи.

С другой стороны, ранее считалось, что существует некая «фундаментальная» система отсчёта, простота записи в которой законов природы выделяет её из всех остальных систем. Например, физики XIX в. считали что, система, относительно которой покоится эфир электродинамики Максвелла, является привилегированной, и поэтому она была названа Абсолютной Системой Отсчета (АСО). В современных представлениях никакой системы отсчёта, выделенной именно таким способом, не существует, так как законы природы, выраженные в тензорной форме, имеют один и тот же вид во всех системах отсчёта — то есть во всех точках пространства и во все моменты времени. Это условие — локальная пространственно-временная инвариантность — является одним из проверяемых оснований физики.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *