Что обозначает дес в математике

Что обозначает дес в математике

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

Смотреть что такое «дес.» в других словарях:

десѧть — ДЕСѦТ|Ь (385), Е числ. Название числа 10 (·і҃·): а ˫азъ далъ рѹкою своѥю. и осеньнѥѥ полюдиѥ даровьноѥ полътрети˫а десѩте гривьнъ ст҃омѹ же геѡргиеви. Гр ок. 1130; да десѩть лѣтъ испълньше съвьршению причастѩтьсѩ. (τὴν δεκαετίαν) КЕ XII, 82б; а… … Словарь древнерусского языка (XI-XIV вв.)

Дес — DES, delivered ex ship базисные транспортные условия поставки, по которым продавец передает товар в распоряжение покупателя на борту судна в порту назначения и несет все расходы и риски по доставке товара. Словарь бизнес терминов. Академик.ру.… … Словарь бизнес-терминов

дес — бітті. Күш бітті, жігерленді, құлшынды. Тұйғынға д е с б і т і п, сақпанның тасындай атылды (Б. Дәулетбаев, Парыз, 101) … Қазақ тілінің түсіндірме сөздігі

десіс — дес етістігінен жасалған ортақ етіс. Айнымайық, д е с і с к е н уәдеден (Ғашық наме., 60). Анам әжемді қатты сыйлайтын, екеуі ищәй д е с і с к е н емес (Қазақст. әйелдері, 1975, 8, 27) … Қазақ тілінің түсіндірме сөздігі

десісу — десіс етістігінің қимыл атауы … Қазақ тілінің түсіндірме сөздігі

дес. л. — дес. л. д. л. десертная ложка … Словарь сокращений и аббревиатур

ДЕС — поставка с судна англ.: DES, delivered ex ship морские перевозки англ., морск. Источник: http://www.agrotovary.ru/a id 4053.html … Словарь сокращений и аббревиатур

ДЕС — доставлено с судна (в указанном порту назначения) (DES Delivered ex Schip (named port of destination)) разновидность коммерческих условий поставки и оплаты товаров, используемых исключительно при морской или внутренней водной перевозке грузов.… … Внешнеэкономический толковый словарь

дес — плотно, наглухо; дес бӣ плотный … Нанайско-русский словарь

Дес ВС — ДесВС Дес ВС десантно высадочные средства ДесВС Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с … Словарь сокращений и аббревиатур

Источник

Десятичные цифры

Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.

Предполагается, что основание 10 связано с количеством пальцев рук у человека.

Древнейшая известная запись позиционной десятичной системы обнаружена в Индии, в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах, для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.

Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось неправильное название — «арабская».

Один десятичный разряд (дес.р) в десятичной системе счисления называется декада, децит.

В цифровой электронике одному десятичному разряду десятичной системы счисления соответствует один десятичный триггер.

В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр, при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Так как четыре двоичных разряда имеют 16 состояний, то при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются.

См. также

Полезное

Смотреть что такое «Десятичные цифры» в других словарях:

«ЦИФРЫ НЕ ПРИВОДЯТСЯ» — биржевой термин, сообщение о том, что информация на табло, тикере о сделках отстает на одну минуту от реальных сделок, совершаемых в операционном зале биржи, после чего на строке табло печатается, появляется, повторяясь, последнее число и… … Экономический словарь

ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ — Интуитивное представление о числе, по видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно. Прежде чем человек научился считать или придумал слова для обозначения… … Энциклопедия Кольера

ЦИФРЫ НЕ ПРИВОДЯТСЯ — на бирже: сообщение о том, что информация на тикере, на табло о сделках отстает на одну минуту от реальных сделок, совершаемых в операционном зале биржи, после чего на строке тикера печатается, повторяясь, последнее число и десятичные знаки цены… … Энциклопедический словарь экономики и права

ЦИФРЫ НЕ ПРИВОДЯТСЯ — сообщение, обозначающее, что информация о сделках на ленте тикера отстает на одну минуту от сделок, фактически совершаемых в операционном зале биржи. Затем на ленте печатается только последняя цифра и десятичные знаки цены до тех пор пока лента… … Большой экономический словарь

цифры не приводятся — биржевой термин, сообщение о том, что информация на тикере о сделках отстает на одну минуту от реальных сделок, совершаемых в операционном зале биржи, после чего на строке тикера печатается, повторяясь, последнее число и десятичные знаки цены… … Словарь экономических терминов

Арабские цифры — совр. знаки для обозначения чисел (количественных числительных), номеров, а с присоединением (наращением) падежного окончания и порядковых числительных. А. ц. перенесены в Европу арабами в XIII в. и широко распространились в ней во 2 й половине… … Издательский словарь-справочник

Двоичная система счисления — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Числа с собственными именами — В этот список включены числа, имеющие собственные названия, не являющиеся стандартными сложносоставными названиями чисел. Именные названия степеней тысячи приводятся, только если у них есть иные названия. Содержание 1 Натуральные числа 1.1… … Википедия

МАНТИССА — (лат. mantissa). Десятичные цифры в логарифмах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАНТИССА 1) в логарифмах дробная часть (в виде десятичной дроби); 2) приставка, прибавление, придача. Словарь… … Словарь иностранных слов русского языка

Источник

Десятичный разделитель

Десятичный разделитель — знак, используемый для разделения целой и дробной частей вещественного числа в форме десятичной дроби в системе десятичного исчисления. Для дробей в иных системах счисления может использоваться термин разделитель целой и дробной частей числа. Иногда также могут употребляться термины десятичная точка и десятичная запятая.

В англоязычных странах в качестве десятичного разделителя используется точка, в большинстве остальных — запятая (,).

Выбор символа для десятичного разделителя влияет и на выбор знака разделителя групп разрядов, который используется для того, чтобы упростить чтение больших чисел. Например, в русскоязычной среде в качестве этого разделителя принято использовать точку (.) или пробел.

Содержание

История вопроса

В Средние века, в допечатную эпоху было принято надчёркивать (¯) целую часть числа. Таким способом пользовался, например, иранский математик ал-Хорезми. Позже для этих целей стал применяться небольшой вертикальный штрих (ˌ) (символ U+02CC). Уже после начала книгопечатания этот штрих стало естественным отображать либо точкой, либо запятой. Большинство стран выбрали в качестве десятичного символа запятую. Однако англоязычные страны предпочли точку, а запятую стали использовать как разделитель групп разрядов.

В США в качестве десятичного разделителя использовалась точка. В Британской империи в рукописной записи также использовали точку, однако в типографском наборе предпочтительнее был интерпункт — точка, расположенная на середине строки (·). Но такой символ уже был общеупотребительным в математике для обозначения операции умножения, и система СИ не допускала его использования в качестве разделителя. В то же время использование точки допускалось. Поэтому в Британии постепенно переняли американскую систему.

В ЮАР при принятии метрической системы в качестве разделителя стали использовать запятую, заменив принятую в бывших британских колониях точку.

В большинстве международных организаций (таких, как Международное бюро мер и весов и ISO) до 1997 года во всех языках, включая английский, в качестве десятичного разделителя рекомендовалось использовать только запятую. Затем постепенно начался процесс признания точки в качестве десятичного разделителя, увенчавшийся принятием в 2003 году нормы ISO 31-0, допускающей использование как точки, так и запятой.

В арабских странах в качестве десятичного разделителя используется особый символ моммайе: «٫» (U+066B).

Разделитель групп разрядов

Для упрощения чтения, цифры в больших числах слева (а иногда и справа) от знака десятичного разделителя могут быть разделены на группы специальным символом — разделителем групп разрядов. Разбивка на группы осуществляется начиная от десятичного разделителя. Как правило, группы состоят из трёх цифр. В то же время в некоторых странах числа традиционно делятся на группы из двух или четырёх цифр. Деление на группы, как правило, не осуществляется, если с соответствующей стороны от десятичного разделителя не больше четырёх или пяти цифр.

Так же, как и в случае с десятичным разделителем, для разделителя групп разрядов используются разные символы. Если в качестве десятичного разделителя используется точка, то разделитель групп разрядов может быть представлен запятой, апострофом или пробелом, а если запятая, — то точкой (например, в испанском языке [1] [2] ) или пробелом. Таким образом, значение точки и запятой оказывается зависимым от контекста (например, запись 1,546 в английской нотации обозначает тысяча пятьсот сорок шесть, а в русской — одна целая пятьсот сорок шесть тысячных). Поэтому, чтобы избежать неоднозначности, для разделителя групп разрядов международные стандарты (ISO, Международное бюро мер и весов, ИЮПАК) рекомендуют всегда использовать пробел (или тонкую шпацию при типографском наборе).

Десятичные разделители в разных странах

Что обозначает дес в математике. Смотреть фото Что обозначает дес в математике. Смотреть картинку Что обозначает дес в математике. Картинка про Что обозначает дес в математике. Фото Что обозначает дес в математике

Что обозначает дес в математике. Смотреть фото Что обозначает дес в математике. Смотреть картинку Что обозначает дес в математике. Картинка про Что обозначает дес в математике. Фото Что обозначает дес в математике

Страны, использующие точку

Австралия и ОкеанияАмерикаАзияАфрикаЕвропа
Австралия, Новая ЗеландияАнглоязычная Канада, Мексика, СШАБруней, Израиль, Индия, Китай, КНДР, Малайзия, Пакистан, Сингапур,Тайвань, Таиланд, Филиппины, Шри Ланка, Южная Корея, ЯпонияБотсвана, Зимбабве, НигерияВеликобритания, Ирландия
Страны, использующие запятую

Австралия и ОкеанияАмерикаАзияАфрикаЕвропа
Вся Южная Америка, кроме Перу,
а также Гватемала, Гондурас, Доминиканская республика, франкоязычная Канада, Куба, Никарагуа, Панама, Сальвадор
Вьетнам, Индонезия, ТурцияКамерун, ЮАРВся Европа, кроме Великобритании и Ирландии, а также все страны бывшего СССР
А также в искусственных языках интерлингва и эсперанто.
Страны, использующие моммайе

Австралия и ОкеанияАмерикаАзияАфрикаЕвропа
Бахрейн, Иран, Ирак, Катар, Кувейт, ОАЭ, Оман, Саудовская Аравия, Сирия

Распространение систем обозначений

Все страны, использующие в качестве десятичного разделителя запятую, знакомы и с англоязычной нотацией из-за того, что такая система используется во многих электронных устройствах, например, калькуляторах.

Большинство операционных систем позволяют пользователю выбрать предпочтительные символы для десятичного разделителя и для разделителя групп разрядов, и программное обеспечение может учитывать этот выбор.

В большинстве языков программирования в качестве десятичного разделителя используется точка, а при разработке языка Алгол между разработчиками разыгралась «десятичная буря» (см. в статье о языке Алгол): европейцы требовали выбрать запятую, а американцы — точку.

Источник

Системы счисления. Перевод из одной системы в другую.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0000
1111
21022
311103
4100114
51011210
61102011
71112112
810002213
9100110014
10101010120
11101110221
12110011022
13110111123
14111011224
15111112030

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

00
11
22
33
44
55
66
77
88
99
10
11
1210
1311
1412
1513

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Что обозначает дес в математике. Смотреть фото Что обозначает дес в математике. Смотреть картинку Что обозначает дес в математике. Картинка про Что обозначает дес в математике. Фото Что обозначает дес в математике

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Что обозначает дес в математике. Смотреть фото Что обозначает дес в математике. Смотреть картинку Что обозначает дес в математике. Картинка про Что обозначает дес в математике. Фото Что обозначает дес в математике

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

Что обозначает дес в математике. Смотреть фото Что обозначает дес в математике. Смотреть картинку Что обозначает дес в математике. Картинка про Что обозначает дес в математике. Фото Что обозначает дес в математике

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

00
11
102
113
1004
1015
1106
1117

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

00
11
102
113
1004
1015
1106
1117
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:

Источник

Натуральные числа

Что обозначает дес в математике. Смотреть фото Что обозначает дес в математике. Смотреть картинку Что обозначает дес в математике. Картинка про Что обозначает дес в математике. Фото Что обозначает дес в математике

Определение натурального числа

Натуральные числа — это числа, которые мы используем для подсчета чего-то конкретного, осязаемого.

Вот какие числа называют натуральными: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 и т. д.

Натуральный ряд — последовательность всех натуральных чисел, расположенных в порядке возрастания. Первые сто можно посмотреть в таблице.

Какие операции возможны над натуральными числами

Записывайтесь на курсы обучения математике для учеников с 1 по 11 классы!

Десятичная запись натурального числа

В школе мы проходим тему натуральных чисел в 5 классе, но на самом деле многое нам может быть интуитивно понятно и раньше. Проговорим важные правила.

Мы регулярно используем цифры: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. При записи любого натурального числа можно использовать только эти цифры без каких-либо других символов. Записываем цифры одну за другой в строчку слева направо, используем одну высоту.

Примеры правильной записи натуральных чисел: 208, 567, 24, 1 467, 899 112. Эти примеры показывают нам, что последовательность цифр может быть разной и некоторые даже могут повторяться.

077, 0, 004, 0931 — это примеры неправильной записи натуральных чисел, потому что ноль расположен слева. Число не может начинаться с нуля. Это и есть десятичная запись натурального числа.

Количественный смысл натуральных чисел

Натуральные числа несут в себе количественный смысл, то есть выступают в качестве инструмента для нумерации.

Представим, что перед нами банан 🍌. Мы можем записать, что видим 1 банан. При этом натуральное число 1 читается как «один» или «единица».

Но термин «единица» имеет еще одно значение: то, что можно рассмотреть, как единое целое. Элемент множества можно обозначить единицей. Например, любое дерево из множества деревьев — единица, любой листок из множества листков — единица.

Представим, что перед нами 2 банана 🍌🍌. Натуральное число 2 читается как «два». Далее, по аналогии:

🍌🍌🍌3 предмета («три»)
🍌🍌🍌🍌4 предмета («четыре»)
🍌🍌🍌🍌🍌5 предметов («пять»)
🍌🍌🍌🍌🍌🍌6 предметов («шесть»)
🍌🍌🍌🍌🍌🍌🍌7 предметов («семь»)
🍌🍌🍌🍌🍌🍌🍌🍌8 предметов («восемь»)
🍌🍌🍌🍌🍌🍌🍌🍌🍌9 предметов («девять»)

Основная функция натурального числа — указать количество предметов.

Если запись числа совпадает с цифрой 0, то его называют «ноль». Напомним, что ноль — не натуральное число, но он может обозначать отсутствие. Ноль предметов значит — ни одного.

Однозначные, двузначные и трехзначные натуральные числа

Однозначное натуральное число — это такое число, в составе которого один знак, одна цифра. Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Двузначные натуральные числа — те, в составе которых два знака, две цифры. Цифры могут повторяться или быть различными. Например: 88, 53, 70.

Если множество предметов состоит из девяти и еще одного, значит, речь идет об 1 десятке («один десяток») предметов. Если один десяток и еще один, значит, перед нами 2 десятка («два десятка») и так далее.

По сути, двузначное число — это набор однозначных чисел, где одно записывается справа, а другое слева. Число слева показывает количество десятков в составе натурального числа, а число справа — количество единиц. Всего двузначных натуральных чисел — 90.

Трехзначные натуральные числа — числа, в составе которых три знака, три цифры. Например: 666, 389, 702.

Одна сотня — это множество, состоящее из десяти десятков. Сотня и еще одна сотня — 2 сотни. Прибавим еще одну сотню — 3 сотни.

Вот как происходит запись трехзначного числа: натуральные числа записываются одно за другим слева направо.

Крайнее правое однозначное число указывает на количество единиц, следующее — на количество десятков, крайнее левое — на количество сотен. Цифра 0 показывает отсутствие единиц или десятков. Поэтому 506 — это 5 сотен, 0 десятков и 6 единиц.

Точно так же определяются четырехзначные, пятизначные, шестизначные и другие натуральные числа.

Многозначные натуральные числа

Многозначные натуральные числа состоят из двух и более знаков.

1 000 — это множество с десятью сотнями, 1 000 000 состоит из тысячи тысяч, а один миллиард — это тысяча миллионов. Тысяча миллионов, только представьте! То есть мы можем рассмотреть любое многозначное натуральное число как набор однозначных натуральных чисел.

Например, 2 873 206 содержит в себе: 6 единиц, 0 десятков, 2 сотни, 3 тысячи, 7 десятков тысяч, 8 сотен тысяч и 2 миллиона.

Сколько всего натуральных чисел?

Однозначных 9, двузначных 90, трехзначных 900 и т.д.

Свойства натуральных чисел

Об особенностях натуральных чисел мы уже знаем. А теперь подробно расскажем про их свойства:

множество натуральных чиселбесконечно и начинается с единицы (1)
за каждым натуральным числом следует другоеоно больше предыдущего на 1
результат деления натурального числа на единицу (1)само натуральное число: 5 : 1 = 5
результат деления натурального числа самого на себяединица (1): 6 : 6 = 1
переместительный закон сложенияот перестановки мест слагаемых сумма не меняется: 4 + 3 = 3 + 4
сочетательный закон сложениярезультат сложения нескольких слагаемых не зависит от порядка действий: (2 + 3) + 4 = 2 + (3 + 4)
переместительный закон умноженияот перестановки мест множителей произведение не изменится: 4 × 5 = 5 × 4
сочетательный закон умножениярезультат произведения множителей не зависит от порядка действий; можно хоть так, хоть эдак: (6 × 7) × 8 = 6 × (7 × 8)
распределительный закон умножения относительно сложениячтобы умножить сумму на число, нужно каждое слагаемое умножить на это число и полученные результаты сложить: 4 × (5 + 6) = 4 × 5 + 4 × 6
распределительный закон умножения относительно вычитаниячтобы умножить разность на число, можно умножить на это число отдельно уменьшаемое и вычитаемое, а затем из первого произведения вычесть второе: 3 × (4 − 5) = 3 × 4 − 3 × 5
распределительный закон деления относительно сложениячтобы разделить сумму на число, можно разделить на это число каждое слагаемое и сложить полученные результаты: (9 + 8) : 3 = 9 : 3 + 8 : 3
распределительный закон деления относительно вычитаниячтобы разделить разность на число, можно разделить на это число сначала уменьшаемое, а затем вычитаемое, и из первого произведения вычесть второе: (5 − 3) : 2 = 5 : 2 − 3 : 2

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Десятичная система счисления

Люди в разные времена использовали разные методы записи чисел. И каждая система счисления имеет свои правила и особенности.

Десятичная система счисления — самая распространенная система счисления, в которой для записи чисел используют десять знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

В десятичной системе значение одной и той же цифры зависит от ее позиции в записи числа. Например, число 555 состоит из трех одинаковых цифр. В этом числе первая слева цифра означает пять сотен, вторая — пять десятков, а третья — пять единиц. Так как значение цифры зависит от ее позиции, десятичную систему счисления называют позиционной.

Вопрос для самопроверки

Сколько натуральных чисел можно отметить на координатном луче между точками с координатами:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *