Что образуется при окислении 1г белка
Что образуется при окислении 1г белка
Какие органические вещества в организме человека могут выполнять энергетическую функцию? Выберите три верных ответа из шести и запишите цифры, под которыми они указаны.
2) нуклеиновая кислота
Единственным источником энергии для организма человека является окисление органических веществ, поступающих с пищей. При расщеплении пищевых продуктов до конечных элементов — углекислого газа и воды, — выделяется энергия, часть которой переходит в механическую работу, выполняемую мышцами, другая часть используется для синтеза более сложных соединений или накапливается в специальных макроэргических соединениях (АТФ).
Углеводы являются основным источником энергии в клетке. При окислении 1 г углеводов выделяется 17,6 кДж энергии. У животных в клетках печени откладывается гликоген. В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения.
Липиды (в том числе нейтральные жиры) выполняют энергетическую функцию. При расщеплении жиров выделяется больше энергии, чем при расщеплении белков и углеводов. При окислении 1 г жира образуется 38,9 кДж энергии. Липиды обеспечивают 25−30% энергетических потребностей организма.
Белки тоже следует отметить — при окислении 1 г белка в среднем освобождается энергия, равная 17,6 кДж.
АТФ — энергетический нуклеотид (аденозинтрифосфорная кислота). Это вещество главный аккумулятор энергии в живой клетке.
Следует обратить внимание на пункт 2 (нуклеиновые кислоты — ДНК и РНК). Существуют ферменты — нуклеазы, которые расщепляют нуклеиновые кислоты поступающие с пищей до нуклеотидов, но количество данной энергии не учитывается при расчете энергетических потребностей организма, и энергетической роли им не отводится. И по сути — АТФ — мономерная форма — нуклеотид, так же «обычно» к АТФ не применяется термин «нуклеиновая кислота».
Что образуется при окислении 1г белка
Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия (рис. 26). Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.
Превращение и использование энергии
В процессе обмена веществ постоянно происходит превращение энергии: энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую. Человек и животные получают энергию из окружающей среды в виде потенциальной энергии, заключенной в химических связях молекул жиров, белков и углеводов. Все процессы жизнедеятельности обеспечиваются энергией за счет анаэробного и аэробного метаболизма. Получение энергии без участия кислорода, например, гликолиз, (расщепление глюкозы до молочной кислоты) называется анаэробным обменом. В ходе анаэробного расщепления глюкозы (гликолиза) или ее резервного субстрата гликогена (гликогенолиза) превращение 1 моля глюкозы в 2 моля лактата приводит к образованию 2 молей АТФ. Энергии, образующейся в ходе анаэробных процессов, недостаточно для осуществления активной жизни, реакции, происходящие с участием кислорода, энергетически более эффективны. Все процессы, генерирующие энергию с участием кислорода, называются аэробным обменом. При окислении сложных молекул химические связи разрываются, сначала органические молекулы распадаются до трехуглеродных соединений, которые включаются в цикл Кребса (цикл лимонной кислоты), а далее окисляются до СО2 и Н2О. Высвободившиеся в этих реакциях протоны и электроны вступают в цепь переноса электронов, в которой кислород служит конечным акцептором электронов. Биологическое окисление в сущности представляет собой «сгорание» вещества при низкой температуре, часть энергии, высвобождающейся при окислении, запасается в высокоэнергетических фосфатных связях аденозинтрифосфата (АТФ). АТФ является аккумулятором химической энергии и средством ее переноса, диффундируя в те места, где она требуется. Общее количество молекул АТФ, образующихся при полном окислении 1 моля глюкозы до СО2 и Н2О, составляет 25,5 молей. При полном окислении молекулы жиров образуется большее количество молей АТФ, чем при окислении молекулы углеводов.
Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма.
Единица измерения энергии, обычно применяемая в биологии и медицине, – калория (кал). Она определяется как количество энергии, необходимое для повышения температуры 1 г воды на ГС. В Международной системе единиц (СИ) при измерении энергетических величин используется джоуль (1 ккал = 4,19 кДж).
Энергетический эквивалент пищи
Количество энергии, выделяемой при окислении какого-либо соединения, не зависит от числа промежуточных этапов его распада, т. е. от того, сгорело ли оно или окислилось в ходе катаболических процессов. Запас энергии в пище определяется в калориметрической бомбе – замкнутой камере, погруженной в водяную баню. Точно взвешенную пробу помещают в эту камеру, наполненную чистым О2, и поджигают. Количество выделившейся энергии определяется по изменению температуры воды, окружающей камеру.
При окислении углеводов выделяется 17,17 кДж/г (4,1 ккал/г), окисление 1 г жира дает 38,96 кДж (9,3 ккал). Запасание энергии в форме жира является наиболее экономичным способом длительного хранения энергии в организме. Белки окисляются в организме не полностью. Аминогруппы отщепляются от молекулы белка и выводятся с мочой в форме мочевины. Поэтому при сжигании белка в калориметрической бомбе выделяется больше энергии, чем при его окислении в организме: при сжигании белка в калориметрической бомбе выделяется 22,61 кДж/г (5,4 ккал/г), а при окислении в организме – 17,17 кДж/г (4,1 ккал/г). Разница приходится на ту энергию, которая выделяется при сжигании мочевины.
Определение уровня метаболизма
Почти половина всей энергии, получаемой в результате катаболизма, теряется в виде тепла в процессе образования молекул АТФ. Мышечное сокращение – процесс еще менее эффективный. Около 80% энергии, используемой при мышечном сокращении, теряется в виде тепла и только 20% превращается в механическую работу (сокращение мышцы). Если человек не совершает работу, то практически вся генерируемая им энергия теряется в форме тепла (например, у человека, лежащего в постели). Следовательно, величина теплопродукции является точным выражением величины обмена в организме человека.
Для определения количества затрачиваемой организмом энергии применяют прямую и непрямую калориметрию. Первые прямые измерения энергетического обмена провели в 1788 г. Лавуазье и Лаплас.
Прямая калориметрия заключается в непосредственном измерении тепла, выделяемого организмом. Для этого животное или человек помещается в специальную герметическую камеру, по трубам, проходящим через нее, протекает вода. Для вычисления теплопродукции используются данные о теплоемкости жидкости, ее объеме, протекающем через камеру за единицу времени, и разности температур поступающей в камеру и вытекающей жидкости.
Непрямая калориметрия основана на том, что источником энергии в организме являются окислительные процессы, при которых потребляется кислород и выделяется углекислый газ. Поэтому энергетический обмен можно оценивать, исследуя газообмен. Наиболее распространен способ Дугласа – Холдейна, при котором в течение 10- 15 мин собирают выдыхаемый обследуемым человеком воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем определяют объем выдохнутого воздуха и процентное содержание в нем О2 и СО2. По соотношению между количеством выделенного углекислого газа и количеством потребленного за данный период времени кислорода – дыхательному коэффициенту (ДК) – можно установить, какие вещества окисляются в организме. ДК при окислении белков равен 0,8, при окислении жиров – 0,7, а углеводов – 1,0. Каждому значению ДК соответствует определенный калорический эквивалент кислорода, т. е. то количество тепла, которое выделяется при окислении какого-либо вещества на каждый литр поглощенного при этом кислорода. Количество энергии на единицу потребляемого О2 зависит от типа окисляющихся в организме веществ. Калорический эквивалент кислорода при окислении углеводов равен 21 кДж на 1 л О2 (5 ккал/л), белков – 18,7 кДж (4,5 ккал), жиров – 19,8 кДж (4,74 ккал).
Для косвенного определения интенсивности обмена могут быть использованы некоторые физиологические параметры, связанные с потреблением кислорода: частота дыханий и вентиляционный объем, частота сокращений сердца и минутный объем кровотока – все они отражают затраты энергии. Однако эти показатели недостаточно точны.
Интенсивность энергетического обмена значительно варьирует и зависит от многих факторов. Поэтому для сравнения энергетических затрат у разных людей была введена условная стандартная величина – основной обмен.
Основной обмен (ОО) – это минимальные для бодрствующего организма затраты энергии, определенные в строго контролируемых стандартных условиях:
Основные закономерности метаболических процессов в организме человека. Часть 2.
Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.
Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.
При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.
Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».
Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.
— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;
— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;
— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;
— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;
— регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;
— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;
— энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).
При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.
Таблица 1. 1. Аминокислоты, входящие в состав белков человека.
1. Незаменимые
2. Частично заменимые
3. Условно заменимые
4. Заменимые
Таблица 1. 2. Классификация липидов организма человека.
1. Гликолипиды.
Содержат углеводный компонент.
2. Жиры.
3. Минорные липиды.
4. Стероиды.
А. Стерины (спирты).
Наиболее важен холестерин.
В. Стериды.
Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.
5. Фосфолипипы.
Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.
Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.
Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.
Статья добавлена 31 мая 2016 г.
Белки, жиры, углеводы. Справка
В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.
Функции белков:
1. Основной строительный материал в организме.
2. Являются переносчиками витаминов, гормонов, жирных кислот и др. веществ.
3. Обеспечивают нормальное функционировании иммунной системы.
4. Обеспечивают состояние «аппарата наследственности».
5. Являются катализаторами всех биохимических метаболических реакций организма.
Организм человека в нормальных условиях (в условиях, когда нет необходимости пополнения дефицита аминокислот за счет распада сывороточных и клеточных белков) практически лишен резервов белка (резерв – 45 г: 40 г в мыщцах, 5 г в крови и печени), поэтому единственным источником пополнения фонда аминокислот, из которых синтезируются белки организма, могут служить только белки пищи.
Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот.
Различают заменимые аминокислоты (синтезируются в организме) и незаменимые аминокислоты (не могут синтезироваться в организме, а поэтому должны поступать в организм в пищей). К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.
Недостаток незаменимых аминокислот в пище приводит к нарушениям белкового обмена.
Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин, незаменимыми условно — аргинин и гистидин. Все эти аминокислоты человек получает только с пищей.
Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин; условно заменимые — аргинин и гистидин.
Белки, в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.
Функции жиров в организме:
• являются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;
• являются компонентом структурных элементов клетки — ядра, цитоплазмы, мембраны;
• депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы — от механических повреждений.
Различают нейтральные жиры (триацилглицеролы), фосфолипиды, стероиды (холестерин).
Уровень жирных кислот в организме регулируется как отложением (депонированием) их в жировой ткани, так и высвобождением из нее. По мере увеличения уровня глюкозы в крови жирные кислоты под влиянием инсулина, депонируются в жировой ткани.
Высвобождение жирных кислот из жировой ткани стимулируется адреналином, глюкагоном и соматотропым гармоном, тормозится — инсулином.
Жиры, как энергетический материал используется главным образом при выполнении длительной физической работы умеренной и средней интенсивности (работа в режиме аэробной производительности организма). В начале мышечной деятельности используются преимущественно углеводы, но по мере уменьшения их запасов начинается окисление жиров.
Обмен липидов тесно связан с обменом белков и углеводов. Поступающие в избытке в организм углеводы и белки превращаются в жир. При голодании жиры, расщепляясь, служат источником углеводов.
Жирные кислоты являются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания.
К незаменимым жирным кислотам, которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10–12 г).
Линолевая и лоноленовая кислоты содержатся в растительных жирах, арахидовая — только в животных.
Недостаток незаменимых жирных кислот приводит к нарушению функций почек, кожным нарушениям, повреждениям клеток, метаболическим расстройствам. Избыток незаменимых жирных кислот приводит к повышенной потребности токоферола (витамина Е).
Функции углеводов в организме:
• Являются непосредственным источником энергии для организма.
• Участвуют в пластических процессах метаболизма.
• Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.
Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды.
На углеводы должно приходиться до 50 – 60% энергоценности пищевого рациона.
В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются ) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена.
В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.
Содержание гликогена в печени составляет 150–200 г.
Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом «депо».
Около 70% углеводов пищи окисляется в тканях до воды и двуокиси углерода.
Углеводы используются организмом либо как прямой источник тепла (глюкозо–6–фосфат), либо как энергетический резерв (гликоген);
Основные углеводы – сахара, крахмал, клетчатка – содержатся в растительной пище, суточная потребность в которой у человека составляет около 500 г (минимальная потребность 100–150 г/сут).
При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.
Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышенной аллергизации организма, сахарному диабету.
Материал подготовлен на основе информации из открытых источников