Что образуется при пересечении двух плоскостей
Пересекающиеся плоскости
Плоскость — это одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.
Линия пересечения двух плоскостей — это прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.
Содержание:
Понятие пересекающихся плоскостей
Определение. Плоскости, которые имеют хотя бы одну общую точку, называют пересекающимися.
Аксиома 5. Если две различные плоскости имеют общую точку, то они пересекаются по прямой.
При этом если какая-либо точка принадлежит обеим плоскостям, то она принадлежит прямой . Плоскости
и
в этом случае являются пересекающимися по прямой
(рис. 2.379).
Пример:
Дана плоскость . Доказать, что существует другая плоскость (3, пересекающая
.
Решение:
Из условия задачи имеем:
1. Плоскость (дано) (рис. 2.380).
2. Нужно доказать, что существует другая плоскость , пересекающая
.
Мы знаем, что на основании аксиомы 3 (аксиомы плоскости) три точки определяют единственную плоскость.
3. Возьмем точки А и В, принадлежащие плоскости , и точку С, не лежащую на прямой АВ и не принадлежащую
(построение) (рис. 2.381).
4. Точки А, В и С не лежат на одной прямой. Через них можно провести плоскость , и притом только одну (3, аксиома 3).
5. Плоскости и
имеют общую точку (1, 3, 4).
6. Плоскости и
пересекаются по прямой АВ (5, аксиома 5) (рис. 2.382).
7. Мы доказали, что существует плоскость Р, пересекающая . (6)
Замечание. Если допустить, что точка С лежит на прямой АВ, то она будет лежать и в плоскости , что противоречит выбору точки С.
Двугранные углы
При пересечении плоскостей образуются двугранные углы.
Определение. Фигуру, образованную двумя полуплоскостями, исходящими из одной прямой, называют двугранным углом. Прямую называют ребром, а полуплоскости — сторонами или гранями двугранного угла.
На рисунке 2.383 изображен двугранный угол с ребром АВ.
Этот угол можно обозначать двумя буквами, поставленными у его ребра (двугранный угол АВ). Но если при одном ребре лежит несколько двугранных углов, то каждый из них обозначают четырьмя буквами, из которых две средние стоят при ребре, одна крайняя — у одной грани, другая — у другой (рис. 2.384).
Определение. Если через произвольную точку ребра двугранного угла провести плоскость, перпендикулярную ребру, то в пересечении этой плоскости с двугранным углом образуется угол, который называют линейным углом двугранного угла.
На рисунке 2.385 изображен линейный угол АОВ двугранного угла АОСВ. Вершиной линейного угла служит точка О, лежащая на ребре ос двугранного угла, а сторонами — лучи граней, исходящие из точки о и перпендикулярные ребру двугранного угла.
Двугранный угол имеет бесконечное множество линейных углов (рис. 2.386).
Определение. Градусной мерой двугранного угла называют градусную меру любого из его линейных углов.
Определение. Двугранный угол называется прямым (острым, тупым), если его градусная мера равна 90° (меньше 90°, больше 90°).
Можно доказать следующее утверждение.
Теорема 1. Все линейные углы двугранного угла равны друг другу.
Для двугранных углов так же, как и для плоских, вводится понятие его градусной меры — величины.
Определение. Два двугранных угла называют равными, если они имеют одну и ту же градусную меру.
Если градусная мера одного из двугранных углов больше градусной меры другого, то говорят, что первый двугранный угол больше второго, а второй меньше первого. На рисунке 2.387 изображены три двугранных угла с общим ребром АВ. Двугранные углы CABD и DABE равны, так как их градусные меры равны 30°. Двугранный угол САВЕ больше двугранного угла CABD.
Подобно плоским углам, двугранные углы могут быть смежные, вертикальные и пр.
Если два смежных двугранных угла равны между собой, то каждый из них называется прямым двугранным углом.
Все сказанное можно сформулировать в виде теорем.
Теорема 2. 1. Равным двугранным углам соответствуют равные линейные углы.
2. Большему двугранному углу соответствует больший линейный угол.
Верна и обратная теорема.
Теорема 3. 1. Равным линейным углам соответствуют равные двугранные углы.
2. Большему линейному углу соответствует больший двугранный угол.
Из теорем 2 и 3 легко получить три следствия.
Следствие 1. Прямому двугранному углу соответствует прямой линейный угол, и обратно.
Следствие 2. Все прямые двугранные углы равны, потому что у них равны линейные углы.
Следствие 3. Вертикальные двугранные углы равны.
Пример:
Из условия теоремы имеем:
1. PABQ и — два данных двугранных угла (рис. 2.388).
2. Вложим угол в угол АВ так, чтобы ребро
совпало с ребром АВ, а грань
— с гранью Р (построение) (рис. 2.389).
3. Если эти двугранные углы равны, то грань совпадает с Q; если же двугранные углы не равны, то грань займет некоторое положение, не совпадающее с Q, например положение
(1, 2).
4. Возьмем на общем ребре какую-нибудь точку В и проведем через нее плоскость , перпендикулярную ребру АВ (построение) (рис. 2.390).
5. От пересечения этой плоскости с гранями двугранных углов получатся линейные углы.
Ясно, что если двугранные углы совпадут, то у них окажется один и тот же линейный угол cbd; если же двугранные углы не совпадут (если, например, грань займет положение
то у большего двугранного угла окажется больший линейный угол (именно
) (3, 4).
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Угол между прямой и плоскостью. Угол между плоскостями. Двугранный угол. Перпендикулярные плоскости
Угол между прямой и плоскостью – угол между прямой и ее проекцией на плоскость.
Двугранным углом называют часть пространства, ограниченную двумя полуплоскостями с общей границей.
Двугранные углы называют равными двугранными углами, если их можно совместить.
Угол между плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.
Этот угол не зависит от выбора такой плоскости.
Угол между двумя параллельными плоскостями принимается равным нулю.
При пересечении двух плоскостей образуется четыре двугранных угла. Наименьший из этих углов обычно и называют углом между плоскостями.
Различие между двугранным углом и углом между плоскостями в том, что двугранный угол может быть и острым, и тупым, а угол между плоскостями только острым! НЕ ПУТАЙ!
Если при пересечении двух плоскостей образовалось 4 равных двугранных угла, то такие двугранные углы называют прямыми двугранными углами, а сами плоскости называют перпендикулярными плоскостями.
Выберем произвольную точку С на ребре AB двугранного угла и проведем через нее перпендикуляры CD и CE в каждой из граней двугранного угла. Угол DCE, образованный перпендикулярами CD и CE, называют линейным углом двугранного угла.
На рисунке угол \(\phi\) является линейным углом двугранного угла с гранями \(\alpha\) и \(\beta\) и ребром AB. Линейные углы двугранных углов используются, в частности, для того, чтобы измерять двугранные углы. Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла.
Плоскости называются перпендикулярными, если угол между ними равен 90°.
Взаимное расположение двух плоскостей.
Две различные плоскости в пространстве либо параллельны, либо пересекаются.
Параллельность двух плоскостей
Определение. Две плоскости в пространстве называются параллельными, если они не пересекаются.
Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны.
Основные свойства параллельности плоскостей.
Пересечение двух плоскостей
Две плоскости пересекаются по прямой. Общая прямая двух плоскостей называется ребром двугранного угла, образованного при пересечении данных плоскостей. При пересечении двух плоскостей образуются четыре двугранных угла. Если все они равны, то плоскости называются перпендикулярными.
Признак перпендикулярности плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Из признака перпендикулярности плоскостей следует, что плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
Угол между плоскостями — наименьший из двугранных углов, образованных при пересечении плоскостей.
Угловая величина двугранного угла — это величина линейного угла данного двугранного угла.
Чтобы найти линейный угол двугранного угла надо из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру. Все линейные углы двугранного угла равны друг другу.
Тренировочные задания
Дан куб . Найдите угол между плоскостями
и
.
Дан куб . Точка
— середина ребра
. Найдите угол между плоскостями
и
.
В кубе все рёбра равны
. На его ребре
отмечена точка
так, что
. Через точки
и
построена плоскость
, параллельная прямой
. Найдите угол наклона плоскости
к плоскости грани
.
Дана правильная треугольная призма , у которой сторона основания равна
, а боковое ребро равно
. Через точки
,
и середину
ребра
проведена плоскость. Найдите угол между плоскостью сечения и плоскостью ABC.
Все рёбра правильной треугольной призмы имеют длину
. Точки
и
— середины рёбер
и
соответственно. Найдите угол между плоскостями
и
.
Основанием пирамиды является прямоугольник
, в котором
. Диагонали прямоугольника
пересекаются в точке
. Отрезок
является высотой пирамиды
. Из вершин
и
опущены перпендикуляры
и
на ребро
. Найдите двугранный угол пирамиды при ребре
, если
.
В основании прямой призмы лежит квадрат
со стороной
, а высота призмы равна
. Точка
лежит на диагонали
, причём
. Найдите угол между плоскостью
и плоскостью
.
Взаимное расположение плоскостей
Параллельные плоскости
Получим условия параллельности или совпадения двух плоскостей и заданных общими уравнениями:
Необходимым и достаточным условием параллельности или совпадения плоскостей (4.23) является условие коллинеарности их нормалей Следовательно, если плоскости (4.23) параллельны или совпадают, то т.е. существует такое число что
Плоскости совпадают, если помимо этих условий справедливо Тогда первое уравнение в (4.23) имеет вид т.е. равносильно второму, поскольку
Таким образом, плоскости (4.23) параллельны тогда и только тогда, когда соответствующие коэффициенты при неизвестных в их уравнениях пропорциональны, т.е. существует такое число что но Плоскости (4.23) совпадают тогда и только тогда, когда все соответствующие коэффициенты в их уравнениях пропорциональны: и
Условия параллельности и совпадения плоскостей (4.23) можно записать в виде
Отсюда следует критерий параллельности или совпадения двух плоскостей (4.23):
Поверхности уровня линейного четырехчлена
Поверхностью уровня функции трех переменных называется геометрическое место точек координатного пространства в которых функция принимает постоянное значение, т.е.
Для линейного четырехчлена уравнение поверхности уровня имеет вид
При любом фиксированном значении постоянной уравнение (4.24) описывает плоскость. Рассмотрим поведение семейства поверхностей уровня, отличающихся значением постоянной. Поскольку коэффициенты и не изменяются, то у всех плоскостей (4.24) будет одна и та же нормаль Следовательно, поверхности уровня линейного четырехчлена D представляют собой семейство параллельных плоскостей (рис.4.19). Поскольку нормаль совпадает с градиентом (см. пункт 3 замечаний 4.2), а градиент направлен в сторону наискорейшего возрастания функции, то при увеличении постоянной поверхности уровня (4.24) переносятся параллельно в направлении нормали.
Пересекающиеся плоскости
Необходимым и достаточным условием пересечения двух плоскостей (4.22) является условие неколлинеарности их нормалей, или, что то же самое, условие непропорциональности коэффициентов при неизвестных:
При этом условии система уравнений
имеет бесконечно много решений, которые определяют прямую пересечения плоскостей, заданных уравнениями (4.23).
Угол между плоскостями
Угол между двумя плоскостями можно определить как угол между их нормальными векторами. По этому определению получаются не один угол, а два смежных угла, дополняющих друг друга до В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е. величина угла между двумя плоскостями удовлетворяет условию
Если — нормали к плоскостям и соответственно (рис.4.20,а), то величина угла между этими плоскостями вычисляется по формуле:
Необходимым и достаточным условием перпендикулярности плоскостей (4.23) является условие ортогональности их нормалей, т.е.
При пересечении двух плоскостей образуются четыре двугранных угла (рис.4.20). Величина двугранного угла удовлетворяет условию
Пример 4.10. Найти величину того угла, образованного плоскостями и внутри которого лежит точка
Решение. По уравнениям плоскостей находим нормали а также величину угла между нормалями, используя (4.26):
Подставляя координаты точки в левые части уравнений плоскостей, выясняем, каким полупространствам принадлежит эта точка. Для плоскости имеем 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAN8AAAARBAMAAACvNWTbAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAEHRSTlMAYP4P3segIFPuP7ONfi1w1Fgf5QAAAqVJREFUOMtjYKA7KAAjCDBGYkMA3wMEm/0BhmZhJFl0uXcYqu3AZOa2nQdgIk1hOwNQlDC6uS6AsblcZ15AM4FRHc60SkGTE02NQBPhcfMBUUlKjnChT0pzDFDUrHzAqgFjlxZw60DtgQlVwi3kmT0FLWjmMQShhchJg0qQ13KWI4R+r0O1j+HSBjYdGPtmA5cSRJoFJrQF4UMGF1Sd/NoMh0DG8zbARJjnMvAqA+l8JFXf0EP9dQPCh5cSGCYtQLGQMQ23hXw7GIJAMcB+FBbPjIoMjCDD8qsQ6eSbFUa6MHKGsewLGCYVoFhYaobbQqCPVMCqma9+hvB5tRg4dIF0aqw3PBxbYrag2VjojZRs+VQZUCzcxYbHQnaRcKjFXy9DohlooRqQTmOw3AASBoktNWCbjqqtZyvYBRAnsc5DsZDxAMRCA6wWMp6Gp1KR4yCSDWohmAXMEQkQZaA0wigIApDY5p4FsgnijJ8LIJKSgoISQJapAdhCqCkQC8E6JSD2JMHTS+thJAsfMLDpAykhkDcfgxIXqoWMKiAL9UBMDj8QaQi2UBDIyl21WgPoBA5tHBY2OcAsXL0dGqS6YPeBLeQDBaumAb82SrhcM+BSAkYiMzgilz7gf4AcpKmhkaoJYCdjCVLedIZFsBju3gXOKIqghAqylFsPlq5UGfh1UBKakgCjJjzJhDOwPkDNh6y4Ew2TIkOTArTMyYOkIl0GXqB6dj+GlxtgqnYwmDqjaAs1YNOFFytTXJwMiLaQNZjh0AVIIj0OKyYYTEA2LcmZBs8WpTmuqNmidE8SvKBNUlJCyxY8kzRhRS+jp9IUAZRcEX1MB5INL8OETONDQTaxdyDsYG5cjJa4F/ZhqWBYiKmFuCTA5vJ+Rgg1LiCzRuOnoDYEAJ1BjPvu16j0AAAAAElFTkSuQmCC» style=»vertical-align: middle;» /> значит, точка лежит в положительном полупространстве, определяемом плоскостью Для плоскости имеем 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAMYAAAARBAMAAAB0js75AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAYQ6sm+EgQMJ68VMw0spZRHUAAAJySURBVDjLvZXNa9RAGMafzWa/SJBOD3oQlhSsiMqyUAUtKBVq/QDFr9iDCKs9KIJSxc+DotVCW3sI0kK9iEqVirisgngQS0EQW6EsiBcV6bpL17aav8HMTCbZGbrrzRySd57MvL/MM+9MgP9yfQjDHGDJLzcqbVk4qebSmlSFdXn99WAg7Nw05Eg91hwv5yQh9WJiKmhMd6sZU3OKcGnbMJDo034UhLLfPeZH/vfcxWSRRxf4YwQzT0XvM/1VP9ogpBmFkVjCZgt6N9IHhLTjsoi4ZJYRK3Ghiz8mrFQlyBAVjB5hVT9jXAv81IuYbUJ0AZmfQtoFmZFYtPSKxMhPGX/qM1JjjBEZFAavzyKTRbwZmYcB41ROYuAN9AWJ8QlGuT7j4zrulXHHz3OuAytYqnRWDNq99bAlMYDW3xLDm36pPmM46a9Hoo1Xxg2foX2heTUq7aGTkxlpR2HMsh7WcoyUIxgw23rZaI9BJf07bbUzDUk67CUhjwhhpWU+o/fzhAwSspIt62d6jx0KGS2EjBGyyotOI2DA3EJnMukx6EqMMu+20wLu5U5wRjOVzzoKI8qm0fo4ZJxgjNVedOvK9arYPfF9hdArow/3vNZaWg8V6EuSV9o3TMtedUKnem45rwYGhn511CJoUWVuAletwPxICcl5iREt4L7E0B28r7/miM0Jp/gmTnr7w0HiiW0XxfyO0mKrZbTb9nOJ8cC2x//NMPiKe19dxd4ckq7rBrX7rnNcqt2I93K+lqF5QlC7sbx7RGZE84s0l3E7ONNGR9QzLf5W2YPh1dXo6O6RmxfDc9QkVt1Rjiq8asRoafjz+Avab6T1GhuezwAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> значит, точка лежит также в положительном полупространстве, определяемом плоскостью Поскольку точка принадлежит одноименным полупространствам (положительным), то искомый угол — это угол смежный найденному углу
Пучки плоскостей
Собственным пучком плоскостей называется совокупность всех плоскостей, проходящих через фиксированную прямую ( ось пучка ).
Несобственным пучком плоскостей называется совокупность плоскостей, параллельных фиксированной плоскости (осью несобственного пучка плоскостей считается бесконечно удаленная прямая).
Любые две плоскости и определяют пучок плоскостей, содержащий заданные плоскости и Если плоскости и пересекаются, то прямая пересечения является осью собственного пучка (рис.4.21,а). Если плоскости и параллельны, то они определяют несобственный пучок параллельных плоскостей (рис.4.21,б).
Пусть заданы уравнения двух плоскостей (4.23):
Линейной комбинацией этих уравнений называется уравнение
где числа — коэффициенты линейной комбинации. Его можно записать в форме
Заметим, что линейная комбинация уравнений является уравнением первой степени для любых значений коэффициентов, кроме случая, когда все коэффициенты при неизвестных равны нулю, т.е. при одновременном выполнении условий
Эти значения параметров считаются недопустимыми.
Уравнение (4.27) называется уравнением пучка плоскостей, содержащего плоскости
При любых допустимых значениях параметров уравнение (4.27) задает плоскость, принадлежащую пучку, и наоборот, для любой плоскости пучка найдутся такие значения параметров что уравнение (4.27) будет задавать эту плоскость.
Доказательство утверждения аналогично доказательству свойства пучка прямых.
Пример 4.11. Составить уравнение плоскости, проходящей через прямую пересечения плоскостей и через точку
Решение. Искомая плоскость входит в пучок плоскостей, задаваемый уравнением (4.27)
Подставляя координаты точки получаем:
Возьмем, например, и подставим в уравнение пучка:
Итак, искомое уравнение получено.
Связки плоскостей
Собственной связкой плоскостей называется совокупность всех плоскостей, проходящих через фиксированную точку ( центр связки ).
Несобственной связкой плоскостей называется совокупность плоскостей, параллельных фиксированной прямой (центром несобственной связки плоскостей считается бесконечно удаленная точка).
Уравнение собственной связки плоскостей с центром имеет вид
где — произвольные параметры, одновременно не равные нулю.
Уравнение связки плоскостей (собственной (рис.4.22,а) или несобственной (рис.4.22,6)) можно получить в виде линейной комбинации уравнений трех плоскостей:
где — коэффициенты линейной комбинации. Заметим, что линейная комбинация уравнений является уравнением первой степени для любых значений коэффициентов, кроме случая, когда все коэффициенты при неизвестных равны нулю. Эти значения параметров считаются недопустимыми.
Уравнение (4.28) называется уравнением связки плоскостей, содержащей три плоскости
При любых допустимых значениях параметров уравнение (4.28) задает плоскость, принадлежащую связке, и наоборот, для любой плоскости связки найдутся такие значения параметров что уравнение (4.28) будет задавать эту плоскость.
Доказательство утверждения аналогично доказательству свойства пучка прямых.