Что общего в экспериментальных методах изучения мегамира и микромира
§ 15. Масштабы Вселенной
Мы думаем, что изучаем звезды,
а оказалось, что изучаем атом.
Р. Фейнман
Что понимают под Вселенной? Что такое микромир, макромир и мегамир и каковы их масштабы? Чем ограничены наши возможности при изучении больших масштабов мегамира и мельчайших масштабов микромира?
Урок-лекция
ОБРАЗ ВСЕЛЕННОЙ. Под Вселенной понимают совокупность всех объектов, которые так или иначе наблюдаются человеком. Из них лишь немногие доступны для наблюдения с помощью органов чувств. Эту часть мира называют макромиром. Мельчайшие объекты (атомы, элементарные частицы) составляют микромир. Объекты, имеющие гигантские размеры и удаленные от нас на очень большие расстояния, называют мегамиром.
Сделайте предположение, почему С. Дали назвал свою картину «Ядерный крест».
МАСШТАБЫ МИРОВ. Границы между этими мирами достаточно условны. Чтобы наглядно представить объекты макромира, микромира и мегамира, будем мысленно увеличивать или уменьшать некоторую сферу в большое число раз.
Начнем со сферы радиусом 10 см. Это типичный размер объекта макромира. Чтобы достаточно быстро добраться до границ познанного мира, нам придется увеличивать и уменьшать сферу во много раз. Возьмем в качестве такого большого числа миллиард.
1. Увеличив сферу радиусом 10 см в миллиард раз, мы получим сферу радиусом 100 000 км. Что это за размеры? Это приблизительно четверть расстояния от Земли до Луны. Такие расстояния вполне доступны для передвижения человека; так, астронавты уже побывали на Луне. Все, что имеет размеры такого порядка, следует отнести к макромиру (рис. 8).
Рис. 8 Масштабы макромира
2. Сделав увеличение еще в миллиард раз, мы получим сферу радиусом 10 14 км. Это. конечно же, астрономические размеры. В астрономии для удобства измерения расстояний используют световые единицы, которые соответствуют времени, необходимому свету, чтобы преодолеть определенное расстояние.
Что же представляет собой сфера радиусом 10 св. лет? Расстояние до ближайшей к нам звезды равно примерно 4 св. года. (Солнце, конечно, тоже одна из звезд, но в данном случае мы его не рассматриваем.) Сфера радиусом 10 св. лет, центр которой находится на Солнце, содержит около десятка звезд. Расстояние в несколько световых лет уже недоступно для перемещения человека. При достижимых для человека скоростях (около 30 км/с) добраться до ближайшей звезды можно примерно за 40 ООО лет. Каких-то иных мощных двигателей, например работающих на основе ядерных реакций, в настоящее время не существует даже в проекте. Так что в обозримое время человечество вынуждено мириться с тем, что перемещение на звезды невозможно.
Конечно же, расстояние в 10 св. лет относится уже к мегамиру. Тем не менее это ближний к нам космос. Мы достаточно много знаем о ближайших к нам звездах: довольно точно измерены расстояния до них, температура их поверхности, определены их состав, размеры и масса. У некоторых звезд обнаружены спутники — планеты. Данные сведения получены при изучении спектров излучения этих звезд. Можно сказать, что сфера радиусом 10 св. лет достаточно хорошо изученный космос.
Несложно рассчитать, сколько километров составляет световой год: 1 св. год = 300 000 км/с х 3600 с х 24 ч х 365,25 сут. = 9 467 280 000 000 км ≈ 10 13 км. Таким образом, 10 14 км ≈ 10 св. лет.
3. Сделав очередное увеличение в миллиард раз, мы получим сферу радиусом 10 млрд св. лет. Именно на таком расстоянии от нас находятся самые отдаленные объекты, которые мы способны наблюдать. Мы получили, таким образом, сферу, в которой лежат все наблюдаемые нами объекты Вселенной. Заметим, что объекты, находящиеся от нас на таком огромном расстоянии, — это очень яркие светила; звезда, сравнимая с Солнцем, не была бы видна даже в самые мощные телескопы.
Что находится за пределами этой сферы, сказать трудно. Общепринятая гипотеза говорит, что мы вообще не можем наблюдать объекты, удаленные от нас на расстояния более 13 млрд св. лет. Этот факт связан с тем, что наша Вселенная родилась 13 млрд лет тому назад, поэтому свет от более удаленных объектов просто еще не дошел до нас. Итак, мы добрались до границ мегамира (рис. 9).
Рис. 9. Масштабы мегамира
Граница наблюдаемой нами Вселенной находится на расстоянии приблизительно 10 млрд св. лет.
Объекты такого размера недоступны для наблюдения невооруженным глазом и даже не видны в самые мощные микроскопы, поскольку длина волны видимого света лежит в диапазоне 300—700 нм, т. е. в тысячи раз превосходит размеры объектов. О структуре атомов и молекул судят по косвенным данным, в частности по спектрам атомов и молекул. Все картинки, на которых изображены атомы и молекулы, есть плоды модельных образов. Тем не менее можно считать, что мир атомов и молекул — мир размером порядка 0,1 нм — уже достаточно хорошо изучен и каких-то принципиально новых законов в этом мире не появится.
Какими причинами ограничен наш доступ в более мелкие масштабы? Дело в том, что основным методом изучения структуры микрочастиц является наблюдение за столкновениями между различными частицами. Законы природы таковы, что на малых расстояниях частицы отталкиваются друг от друга. Поэтому, чем более мелкие масштабы исследуют ученые, тем большую энергию необходимо сообщить сталкивающимся частицам. Эта энергия сообщается при разгоне частиц на ускорителях, причем, чем большую энергию необходимо сообщить, тем больше должны быть размеры ускорителей. Современные ускорители имеют размеры в несколько километров. Для того чтобы продвинуться еще больше в глубь микромира, необходимы ускорители размером с земной шар.
Итак, теперь вы должны представлять, каким масштабам соответствует микромир (рис. 10).
Микромир 10. Масштабы микромира
§ 15. Масштабы Вселенной
Мы думаем, что изучаем звезды,
а оказалось, что изучаем атом.
Р. Фейнман
Что понимают под Вселенной? Что такое микромир, макромир и мегамир и каковы их масштабы? Чем ограничены наши возможности при изучении больших масштабов мегамира и мельчайших масштабов микромира?
Урок-лекция
Образ вселенной. Под Вселенной понимают совокупность всех объектов, которые так или иначе наблюдаются человеком. Из них лишь немногие доступны для наблюдения с помощью органов чувств. Эту часть мира называют макромиром. Мельчайшие объекты (атомы, элементарные частицы) составляют микромир. Объекты, имеющие гигантские размеры и удаленные от нас на очень большие расстояния, называют мегамиром.
Сделайте предположение, почему С. Дали назвал свою картину «Ядерный крест».
Масштабы миров. Границы между этими мирами достаточно условны. Чтобы наглядно представить объекты макромира, микромира и мегамира, будем мысленно увеличивать или уменьшать некоторую сферу в большое число раз.
Начнем со сферы радиусом 10 см. Это типичный размер объекта макромира. Чтобы достаточно быстро добраться до границ познанного мира, нам придется увеличивать и уменьшать сферу во много раз. Возьмем в качестве такого большого числа миллиард.
1. Увеличив сферу радиусом 10 см в миллиард раз, мы получим сферу радиусом 100 000 км. Что это за размеры? Это приблизительно четверть расстояния от Земли до Луны. Такие расстояния вполне доступны для передвижения человека; так, астронавты уже побывали на Луне. Все, что имеет размеры такого порядка, следует отнести к макромиру (рис. 8).
Рис. 8 Масштабы макромира
2. Сделав увеличение еще в миллиард раз, мы получим сферу радиусом 10 14 км. Это. конечно же, астрономические размеры. В астрономии для удобства измерения расстояний используют световые единицы, которые соответствуют времени, необходимому свету, чтобы преодолеть определенное расстояние.
Что же представляет собой сфера радиусом 10 св. лет? Расстояние до ближайшей к нам звезды равно примерно 4 св. года. (Солнце, конечно, тоже одна из звезд, но в данном случае мы его не рассматриваем.) Сфера радиусом 10 св. лет, центр которой находится на Солнце, содержит около десятка звезд. Расстояние в несколько световых лет уже недоступно для перемещения человека. При достижимых для человека скоростях (около 30 км/с) добраться до ближайшей звезды можно примерно за 40 ООО лет. Каких-то иных мощных двигателей, например работающих на основе ядерных реакций, в настоящее время не существует даже в проекте. Так что в обозримое время человечество вынуждено мириться с тем, что перемещение на звезды невозможно.
Конечно же, расстояние в 10 св. лет относится уже к мегамиру. Тем не менее это ближний к нам космос. Мы достаточно много знаем о ближайших к нам звездах: довольно точно измерены расстояния до них, температура их поверхности, определены их состав, размеры и масса. У некоторых звезд обнаружены спутники — планеты. Данные сведения получены при изучении спектров излучения этих звезд. Можно сказать, что сфера радиусом 10 св. лет достаточно хорошо изученный космос.
Несложно рассчитать, сколько километров составляет световой год: 1 св. год = 300 000 км/с х 3600 с х 24 ч х 365,25 сут. = 9 467 280 000 000 км ≈ 10 13 км. Таким образом, 10 14 км ≈ 10 св. лет.
3. Сделав очередное увеличение в миллиард раз, мы получим сферу радиусом 10 млрд св. лет. Именно на таком расстоянии от нас находятся самые отдаленные объекты, которые мы способны наблюдать. Мы получили, таким образом, сферу, в которой лежат все наблюдаемые нами объекты Вселенной. Заметим, что объекты, находящиеся от нас на таком огромном расстоянии, — это очень яркие светила; звезда, сравнимая с Солнцем, не была бы видна даже в самые мощные телескопы.
Что находится за пределами этой сферы, сказать трудно. Общепринятая гипотеза говорит, что мы вообще не можем наблюдать объекты, удаленные от нас на расстояния более 13 млрд св. лет. Этот факт связан с тем, что наша Вселенная родилась 13 млрд лет тому назад, поэтому свет от более удаленных объектов просто еще не дошел до нас. Итак, мы добрались до границ мегамира (рис. 9).
Рис. 9. Масштабы мегамира
Граница наблюдаемой нами Вселенной находится на расстоянии приблизительно 10 млрд св. лет.
Объекты такого размера недоступны для наблюдения невооруженным глазом и даже не видны в самые мощные микроскопы, поскольку длина волны видимого света лежит в диапазоне 300—700 нм, т. е. в тысячи раз превосходит размеры объектов. О структуре атомов и молекул судят по косвенным данным, в частности по спектрам атомов и молекул. Все картинки, на которых изображены атомы и молекулы, есть плоды модельных образов. Тем не менее можно считать, что мир атомов и молекул — мир размером порядка 0,1 нм — уже достаточно хорошо изучен и каких-то принципиально новых законов в этом мире не появится.
Какими причинами ограничен наш доступ в более мелкие масштабы? Дело в том, что основным методом изучения структуры микрочастиц является наблюдение за столкновениями между различными частицами. Законы природы таковы, что на малых расстояниях частицы отталкиваются друг от друга. Поэтому, чем более мелкие масштабы исследуют ученые, тем большую энергию необходимо сообщить сталкивающимся частицам. Эта энергия сообщается при разгоне частиц на ускорителях, причем, чем большую энергию необходимо сообщить, тем больше должны быть размеры ускорителей. Современные ускорители имеют размеры в несколько километров. Для того чтобы продвинуться еще больше в глубь микромира, необходимы ускорители размером с земной шар.
Итак, теперь вы должны представлять, каким масштабам соответствует микромир (рис. 10).
Микромир 10. Масштабы микромира
Филин С. Концепции современного естествознания: конспект лекций
ОГЛАВЛЕНИЕ
ЛЕКЦИЯ № 16. Микро-, макро-, мегамир
1. Микромир
Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое. В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.
Микромир имеет свои особенности, которые можно выразить так:
1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.
Так как была установлена бессмысленность применения единиц измерения расстояния и веса по отношению к объектам микромира, то, естественно, потребовалось изобрести новые единицы измерения. Так, расстояния между ближайшими звездами и планетами измеряются не в километрах, а в световых годах. Световой год – это такое расстояние, которое солнечный свет проходит за один земной год.
Изучение микромира вместе с изучением мегамира способствовало крушению теории Ньютона. Таким образом, была разрушена механистическая картина мира.
В 1927 г. Нильс Бор вносит еще один свой вклад в развитие науки: он сформулировал принцип дополнительности. Причиной, послужившей для формулировки данного принципа, стала двойственная природа света (так называемый корпускулярно-волновой дуализм света). Сам же Бор утверждал, что появление данного принципа было связано с изучением микромира из макромира. В качестве обоснования этого он приводил следующее:
1) предпринимались попытки объяснить явления микромира посредством понятий, которые были выработаны при изучении макромира;
2) в сознании человека возникали сложности, связанные с разделением бытия на субъект и объект;
3) при наблюдении и описании явлений микромира мы не можем абстрагироваться от явлений, относящихся к макромиру наблюдателя, и средств наблюдения.
Нильс Бор утверждал, что «принцип дополнительности» подходит как для исследования микромира, так и для исследования в других науках (в частности, в психологии).
В заключение данного вопроса стоит сказать, что микромир является основой нашего макромира. Также в науке можно выделить «микромикромир». Или, по-другому, наномир. Наномир, в отличие от микромира, является носителем света, точнее, всего спектра электромагнитных процессов, фундаментом, поддерживающим структуру элементарных частиц, фундаментальных взаимодействий и большинства явлений, известных современной науке.
Таким образом, предметы, окружающие нас, а также само тело человека не являются единым целым. Все это состоит из «частей», т. е. молекул. Молекулы, в свою очередь, также делятся на более мелкие составляющие части – атомы. Атомы тоже, в свою очередь, делятся на еще более мелкие составляющие части, которые именуются элементарными частицами.
Всю эту систему можно представить как дом или здание. Здание не является цельным куском, т. к. оно построено, допустим, с помощью кирпичной кладки, а кирпичная кладка состоит непосредственно из кирпича и раствора цемента. Если же начнет разрушаться кирпич, то, естественно, рухнет и все строение. Так и наша Вселенная – разрушение ее, если это произойдет вообще, также начнется с наномира и микромира.
2. Макромир
Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира (т. е. атомов и молекул). Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека. И, что естественно, человек является самой главной составляющей макромира.
Что же такое человек? Древний античный философ Платон как-то сказал, что человек – это двуногое животное без перьев. В ответ на это его оппоненты принесли ему ощипанного петуха и сказали: вот, Платон, твой человек! Изучение человека как объекта макромира с точки зрения его физических данных неправильно.
Прежде всего отметим, что человек – это целая совокупность различных систем: кровеносной, нервной, мышечной, костной системы и т. д. Но помимо этого, одной из составляющих человека является его энергия, которая тесно связана с физиологией. Причем энергия может рассматриваться в двух смыслах:
1) как движение и способность производить работу;
2) «подвижность» человека, его активность.
Также энергию называют аурой или ци. Энергию (или ауру) можно, как и физическое тело, развивать и укреплять.
Нервная система, мышечная система, другие системы, энергия – еще не все составляющие человека. Самой главной такой «составляющей» является сознание. Что такое сознание? Где оно находится? Можно ли его потрогать, подержать в руках, посмотреть на него?
До сих пор на эти вопросы ответов нет, да и, скорее всего, не будет. Сознание – это нематериальный объект. Сознание нельзя взять и отделить от человека – оно неотделимо.
Но вместе с этим можно попытаться выделить ингредиенты, которые составляют человеческое сознание:
Интеллект – это мыслительная и умственная способность человека. Психологи утверждают, что главной функцией интеллекта является память. Действительно, мы не можем себе представить, что же было бы с нами, если бы памяти у нас не было вообще. Просыпаясь каждое утро, человек бы начинал соображать: кто я? Что я здесь делаю? Кто меня окружает? и т. д.
К подсознанию относятся все наши «рабочие» навыки. Навыки складываются из многократно повторяемых и однообразных действий. Для того чтобы проиллюстрировать, что такое навыки, достаточно вспомнить, что мы умеем писать и читать. Видя какой-то текст, мы не думаем: а это что за буква, а это что за знак? Мы просто складываем буквы в слова, а слова в предложения.
Сверхсознание. К сверхсознанию относится прежде всего душа человека.
Душа – это также нематериальный объект (ее нельзя ни увидеть, ни подержать в руках). Совсем недавно было заявлено, что ученые узнали, сколько весит душа. Некоторые ученые утверждают, что в момент смерти человека его вес немного уменьшается, т. е. отлетает душа человека. Но данное утверждение необоснованно, так как какой разумный врач положит умирающего на весы и будет сидеть и ждать, когда же больной умрет? В клятве Гиппократа, которую дает каждый начинающий врач, говорится о том, чтобы не навредить человеку. Врач будет не сидеть, а спасать человеческую жизнь. И вообще узнать вес души нереально, так как нематериальные объекты не имеют никакого веса.
Человеческая душа – это религиозная ценность. Все мировые религии направлены на то, чтобы дать людям возможность спасти свою душу после смерти (т. е. жить вечно после физической смерти бренной оболочки души – тела человека). Борьбу за душу всегда ведут Добро и Зло. Например, в христианстве это Бог и Сатана.
3. Мегамир
Если микромир – это мир тех объектов, которые не подходят под единицы измерения человека, макромир – это мир объектов, которые сопоставимы с единицами измерения человека, то мегамир – это мир объектов, которые несоизмеримо больше человека.
Проще говоря, вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.
Исследование мегамира тесно связано с космологией и космогонией.
Наука космология является очень молодой. Она родилась сравнительно недавно – в начале XX в. Можно выделить две главные причины рождения космологии. И, что интересно, обе причины связаны с развитием физики:
1) Альберт Эйнштейн создает свою релятивистскую физику;
2) М. Планк создает квантовую физику.
Квантовая физика изменила взгляды человечества на структуру пространства-времени и структуру физических взаимодействий.
Также очень важную роль сыграла теория А. А. Фридмана о расширяющейся Вселенной. Эта теория очень недолго оставалась недоказанной: только в 1929 г. ее доказал Э. Хаббл. Вернее, он не доказывал теорию, а обнаружил то, что Вселенная действительно расширяется. Причем следует отметить, что в то время причины расширения Вселенной установлены не были. Они были установлены гораздо позже, в наши дни. Они были установлены тогда, когда к ранней Вселенной применили результаты, полученные посредством изучения элементарных частиц в современной физике.
Космогония. Космогония – это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:
1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
2) звездная космогония.
Во 2-й половине XX в. в космогонии Солнечной системы утвердилась точка зрения, согласно которой Солнце и вся Солнечная система образовались из газо-пылевого состояния. Впервые такое мнение было высказано Иммануилом Кантом. В середине XVIII в. Кант написал научную статью, которая называлась: «Космогония, или попытка объяснить происхождение мироздания, образование небесных тел и причины их движения общими законами развития материи в соответствии с теорией Ньютона». Молодой ученый захотел написать эту работу, потому что он узнал: Прусская академия наук предложила конкурс на аналогичную тему. Но Кант не смог собраться с духом и издать свой труд. Спустя какое-то время он пишет вторую статью, которая называлась: «Вопрос о том, стареет ли Земля с физической точки зрения». Первая статья была написана в сложное время: Иммануил Кант уехал из родного Кенигсберга, пытаясь подработать домашним учителем. Не получив ничего ценного (кроме своих познаний), Кант возвращается домой и в 1754 г. издает эту статью. Обе работы позже были объединены в единый трактат, который был посвящен проблемам космологии.
Теорию Канта о происхождении Солнечной системы в дальнейшем стал развивать Лаплас. Француз подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности, учел основные характерные черты Солнечной системы.
.
Естествознание. 10 класс
Конспект урока
Естествознание, 10 класс
Урок 10. Масштабы Вселенной
Перечень вопросов, рассматриваемых в теме: Что понимают под Вселенной? Что такое макромир, наномир, микромир и мегамир и каковы их масштабы? С помощью каких средств изучаются различные объекты Вселенной? Чем ограничены наши возможности при изучении объектов Вселенной? Как знания о различных объектах Вселенной могут быть наглядно представлены?
Вселенная – весь существующий материальный мир, бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.
Структура (от лат. structura – строение, расположение, порядок) – совокупность устойчивых связей объекта, обеспечивающих сохранение его основных свойств при различных внешних и внутренних изменениях.
Масштаб – отношение двух линейных размеров. Отношение натуральной величины объекта к величине его изображения.
Мегамир (от греч. μέγας – большой) – структурная область Вселенной, объекты которой характеризуются огромными масштабами, измеряемыми десятками – миллиардами световых лет (звезды, черные дыры, звездные скопления, галактики, скопления галактик).
Макромир (от греч. μάκρος – большой) – структурная область Вселенной, объекты которой соизмеримы с масштабами жизни на Земле (доступны человеку для наблюдения с помощью органов чувств).
Световой год – расстояние, которое свет проходит за 1 год (9,46∙10 12 км).
Астрономическая единица (а.е.) – расстояние, равное среднему расстоянию Земли от Солнца (149,6 млн. км).
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
1. Естествознание. 10 класс: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017. – С. 44-49.
2. Энциклопедия для детей. Том 16. Физика. Ч. 1. Биография физики. Путешествие в глубь материи. Механическая картина мира / Глав. ред. В.А. Володин. – М.: Аванта+, 2000. – С. 102-103, 126, 212-216, 234-235, 274-279.
3. Энциклопедия для детей. Том 16. Физика. Ч. 2. Электричество и магнетизм. Термодинамика и квантовая механика. Физика ядра и элементарных частиц / Глав. ред. В.А. Володин. – М.: Аванта+, 2000. – С. 267-270.
4. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин. – М.: Аванта+, 2000. – С. 209-211.
Открытые электронные ресурсы по теме урока (при наличии)
Новая философская энциклопедия. Вселенная. URL:
Физический энциклопедический словарь. Космология. URL:
Химия и жизнь. – 2017. – №5. URL:
Теоретический материал для самостоятельного изучения
Наука изучает самые разные объекты материального мира: от звезд, удаленных от нас на десятки световых лет, до атомов, размеры которых составляют сто миллионные доли сантиметра. Как же можно систематизировать знания о столь разных объектах природы?
Окружающий нас материальный мир очень разный, его объекты могут очень сильно отличаться по своим пространственно-временным характеристикам. Доступные нашим органам чувств объекты принято называть макромиром, например, Земля и ее окрестности, человек, животные, растения. Звезды и их скопления, галактики, имеющие гигантские размеры и удаленные на огромные от нас расстояния, образуют мегамир. Мельчайшие объекты, такие как атомы и элементарные частицы, составляю микромир.
Все это многообразие существующих вокруг нас материальных объектов принято называть Вселенной. Разнообразные структуры Вселенной различаются не только своими пространственно-временным характеристикам, но и образующими их структурными элементами и закономерностями своего существования и развития. Используя различные средства и методы исследования, наука сначала получает знания об отдельных структурах Вселенной, а затем эти знания систематизирует.
Рассмотрение Вселенной как сложно организованной системы позволяет выделить в ней отдельные структурные области: мегамир, макромир и микромир. Сразу отметим, что границы между этими мирами достаточно условны.
Наглядное представление о размерах объектов макро-, мега и микромира можно получить, если мысленно увеличивать или уменьшать некоторую сферу во много раз.
Если для примера взять сферу радиусом 10 см, объекты такого размера относятся к макромиру, и увеличить ее в миллиард раз, то получим сферу радиусом 100 000 км. 100 000 км это приблизительно четверть того расстояния, на которое Луна удалена от Земли. Спутник нашей планеты – Луна (средний радиус около 1,7 тысяч км), и остальные небесные тела Солнечной системы (несмотря большую удаленность от Земли) достаточно хорошо изучены.
В сферу этих размеров попадает большое число объектов макромира. Так средний радиус планеты Земля около 6,4 тысяч км, ее газовая оболочка – атмосфера, простирается на расстояние 100 км от ее поверхности. Водная оболочка Земли – мировой океан, занимает площадь 361,1 миллионов квадратных километров, что составляет более 70% земной поверхности.
Нашу планету населяет огромное число живых организмов, многообразие которых представлено миллионами видов. Размеры их варьируются в больших пределах. Так синий кит может достигать в длину более 30 метров и иметь массу полторы сотни тонн. Размеры бактериальных клеток оцениваются микрометрами (тысячные доли миллиметра). Для того чтобы их увидеть необходимо воспользоваться микроскопом. Все живые структуры состоят из веществ, а их существование подчиняется биологическим законам.
Таким образом, макромир – это структурная область Вселенной, объекты которой соизмеримы с жизнью на Земле. Материя на этом структурном уровне Вселенной представлена полем и веществом и организована в различные неживые и живые структуры, существование и развитие которых определяется особенностями их организации.
Обратимся теперь к обсуждению космических размеров. Земля находится от Солнца в среднем на расстоянии 149,6 млн. км. Это расстояние в астрономии принимается за 1 астрономическую единицу (а.е.). Самая дальняя планета Солнечной системы – Нептун находится от Солнца на расстоянии около 30 а.е. Размеры Солнечной системы и расстояния, на которых находятся ближайшие к нам звезды, будут составлять уже сотни тысяч астрономических единиц.
Для таких больших расстояний используют световые единицы. Эти единицы показывают, сколько времени потребуется свету, чтобы пройти определенное расстояние. 1 световой год равен приблизительно 9,46∙10 12 км. Для сравнения: свет от Солнца до Земли доходит за 8 минут. Размер Солнечной системы оценивается примерно в 2 световых года. Ближайшая к Земле звезда – Проксима Центавра, расположена на расстоянии более 4 световых лет.
Космическое пространство в радиусе 10 14 км или 10 световых лет от Солнца содержит около десятка звезд. Расстояния до них, а также их возраст, массы, размеры, состав, температуры поверхностей, светимость ученые уже определили достаточно точно. Размеры в десятки световых лет – это масштабы мегамира. Так, размер нашей галактики Млечный путь составляет около 100 тысяч световых лет (диаметр). Большое Магелланово Облако и Малое Магелланово Облако – галактики, которые находятся от нашей галактики на расстоянии 160 тысяч световых лет. Расстояние до еще одной из близких к нам галактик – галактики Андромеды составляет около 2,5 миллионов световых лет. Размеры галактик измеряются десяткам – сотнями тысяч световых лет, массы составляют от 10 7 до 10 12 масс Солнца (масса Солнца равна около 2∙10 30 кг).
Граница наблюдаемого мегамира находится от нас на расстоянии порядка 10 миллиардов световых лет. Согласно общепринятой гипотезе возраст нашей Вселенной составляет около 14 миллиардов лет, поэтому свет от объектов, удаленных более чем на 14 миллиардов световых лет, ещё до нас не дошёл, и наблюдать такие объекты невозможно.
Таким образом, структурные уровни мегамира – звезды и звездные скопления, галактики, скопления галактик. Это структуры огромных размеров, масс и энергий, их движение определяется гравитационным взаимодействием и описывается законами общей теории относительности.
Все современные методы исследования объектов различного масштаба основываются на использовании сложнейших приборов. Современные электронные микроскопы, использующие вместо света пучок электронов, позволяют получить изображения, где различимы отдельные атомы. Для изучения объектов мегамира используются, например, различные телескопы (оптические, радиотелескопы, космические телескопы) и межпланетные станции. В современных оптических телескопах размер зеркала может достигать 10 м. Главное зеркало космического телескопа Хаббла имеет диаметр 2,4 м. А рефлекторное зеркало радиотелескопа РАТАН-600 составляет 576 м.
Примеры и разбор решения заданий тренировочного модуля:
1. Укажите верные утверждения:
Правильный ответ и пояснение
А. Вселенная – это все материальные объекты, окружающие нас.
Правильное утверждение. Вселенная – весь существующий материальный мир, бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.
Б. Мегамир, макромир и микромир резко разграничены между собой.
Неправильное утверждение. Во Вселенной можно выделить некоторые структурные области, объекты которой различаются масштабами и закономерностями своего существования: мегамир, макромир, микромир. Границы между этими мирами достаточно условны.
В. Особые структуры микромира, лежащие в основе нанотехнологий, можно назвать наномиром.
Г. С помощью современных приборов мы можем непосредственно увидеть строение атомов и молекул.
Неправильное утверждение. Непосредственно увидеть строение атомов и молекул невозможно. О структуре атомов и молекул судят по косвенным данным, на основании которых и создаются модельные образы.
Д. Масштабы мегамира настолько огромны, что для их описания вводят специальную величину – световой год.
Правильное утверждение. Мегамир – структурная область Вселенной, объекты которой характеризуются огромными масштабами, измеряемыми десятками – миллиардами световых лет. Световой год равен расстоянию, которое свет проходит за 1 год и соответствует 9,46∙10 12 км
2. Установление соответствие между элементами двух множеств. К каждой позиции первого столбца подберите соответствующую позицию второго. Правильный ответ:
Особенности структурной области Вселенной
Структурная область Вселенной
Преимущественным взаимодействием в этой структурной области Вселенной является гравитационное взаимодействие, описываемое законами общей теории относительности.
Основными фундаментальными взаимодействиями в данной структурной области Вселенной являются гравитационное и электромагнитное взаимодействия.
Ключевую роль в данной области Вселенной играют электромагнитное, сильное и слабое взаимодействия.