Что общего в химических свойствах спиртов и фенолов

Органическая химия
для студентов, обучающихся по направлению «Техносферная безопасность»

Спирты и фенолы

Фенолы – соединения ароматического ряда, в молекулах которых гидроксильные группы связаны с атомами углерода ароматического кольца.

Номенклатура и классификация

Строение и физические свойства

Строение спиртов отчасти схоже со строением воды. Как и в воде, между молекулами спирта образуются водородные связи, поэтому спирты имеют более высокие температуры плавления и кипения, чем можно было бы ожидать. Влияние гидроксильной группы на свойства вещества особенно велико в соединениях с короткой углеводородной цепочкой. Например, метанол и этанол неограниченно смешиваются с водой, имеют довольно высокие плотности и температуры кипения для своей молекулярной массы, а высшие спирты являются гидрофобными и мало отличаются по свойствам от аналогичных углеводородов без гидроксильной группы [9].

При рассмотрении фенолов необходимо выделить влияние гидроксильной группы –OH на ароматическое кольцо, которое повышает в бензольном кольце электронную плотность (особенно в орто- и пара-положениях) благодаря одной из неподелённых пар электронов кислорода, учавствующей в сопряжении с π-системой бензольного кольца. Смещение неподелённой электронной пары атома О в сторону бензольного кольца приводит к усилению полярности связи O–H. В итоге молекулы фенола распадаются в водных растворах с элиминированием протона, а значит фенол проявляет себя как слабая кислота. Это является основным отличием фенолов от спиртов, являющихся неэлектролитами. Основная часть одноатомных фенолов при нормальных условиях – бесцветные кристаллические вещества с низкой температурой плавления и специфическим запахом. Фенолы плохо растворяются в воде, но с легкостью – в органических растворителях. Они токсичны, а при хранении на воздухе постепенно окисляются и темнеют.

Химические свойства

Кислотно-основные реакции спиртов. Спирты способны проявлять как кислотные, так и основные свойства. Как кислоты, спирты с щелочными и щелочноземельными металлами, а также сильными основаниями (например, амидами или гидридами) реагируют с образованием алкоголятов:

Спирты также проявляют основные свойства – образуют соли с сильными кислотами (соли алкоксония) и дают донорно-акцепторные комплексы с кислотами Льюиса:

R–OH + AlCl3 ⇄ R–OH + AlCl – 3.

По связи О–Н → фенолы в большинстве реакциий активнее спиртов, так как эта связь полярнее из-за смещения электронной плотности от кислорода к бензольному кольцу (участие неподеленной электронной пары атома кислорода в системе π-сопряжения). Фенол с растворами щелочей дает соли – феноляты (например, фенолят калия – C6H5OК):

Превращение спиртов в галогеналканы. Одной из наиболее важных реакций с участием связи C–O является превращение спиртов в галогеноалканы. Гидроксильная группа в спиртах может быть замещена на атом галогена:

Что общего в химических свойствах спиртов и фенолов

Превращение спиртов в эфиры неорганических кислот. При действии концентрированной азотной кислоты могут быть получены органические нитраты:

Превращение спиртов в простые эфиры. Медленно нагревая спирты в присутствии серной кислоты обеспечивается межмолекулярная дегидратация спиртов с образованием простых эфиров:

2ROHЧто общего в химических свойствах спиртов и феноловROR + H2O.

Превращение спиртов в сложные эфиры. Сложные эфиры получаются из спиртов в реакциях с органическими кислотами при нагревании с участием кислотного катализатора (чаще всего, концентрированной серной кислоты). Этот процесс имеет название кислотно-каталитической реакции этерификации:

Что общего в химических свойствах спиртов и фенолов

Реакции окисления спиртов. Первичные спирты в зависимости от выбора агента окисляются до альдегидов или карбоновых кислот:

CH2═CH–CH2OHЧто общего в химических свойствах спиртов и феноловCH2═CH–CHO.

Вторичные – до соответствующих кетонов и кислот:

Третичные спирты устойчивы к окислению, однако под действием сильных окислителей могут быть расщеплены с разрывом углеродной цепи в различные карбонильные соединения.

Реакции восстановления спиртов. Неактивированные гидроксильные группы довольно устойчивы к гидрогенолизу и могут быть восстановлены в довольно жёстких условиях. Реакции гидрирования протекают при высоких температурах и давлении, в качестве катализаторов используются: никель, смешанные оксиды хрома-меди и т. д.

RCH2OH + H2Что общего в химических свойствах спиртов и феноловRCH3 + H2O.

Методы получения

Реакции окисления. Для получения первичных спиртов применяют окисление металлорганических соединений:

При окислении алкенов происходит образование двухатомных спиртов:

Что общего в химических свойствах спиртов и фенолов

Реакции восстановления. При мягком восстановлении карбонильных соединений: альдегидов, кетонов, карбоновых кислот и сложных эфиров также образуются спирты:

R–COOR ´ + 4[H] → R–CH2OH + R ´ OH.

Реакции присоединения – активно используется в промышленности при синтезе метанола:

CO + 2H2 Что общего в химических свойствах спиртов и феноловCH3OH.

Реакции замещения (гидролиза):

Биохимические методы производства. Известный с давних времён способ получения этанола – спиртовое брожение органических продуктов, содержащих углеводы (виноград, плоды и т. п.) под действием ферментов дрожжей и бактерий. Схематично реакцию можно выразить уравнением [10]:

Кумольный способ получения фенола: (1949 г., Р. Ю. Удрис, П. Г. Сергеев, Б. Д. Кружалов). Получают сразу два продукта – куол и ацетон из кумола. Технология считается практически безотходной (выход полезных продуктов более 99 %) и экономичной. Сейчас кумольный способ используют как основной в мировом производстве фенола:

Что общего в химических свойствах спиртов и фенолов

Применение

Одноатомные насыщенные спирты C3–C9, из которых главным компонентом является изоамиловый спирт, представляют основной компонент сивушного масла – побочного продукта спиртового брожения. Амиловый спирт используется для получения сложных эфиров, для целей парфюмерии и в производстве бездымного пороха. Пирокатехин и гидрохинон (парадигидроксибензол, бензол-1,4-диол) используют в фотографии как проявитель, в производстве красителей, лекарственных веществ. Фенол активно используется для производства фенолформальдегидных смол, поликарбона и эпоксидных смол, нейлона и капрона. Фенол и его производные также обуславливают консервирующие свойства коптильного дыма. Бутанол – компонент в топливных элементах и сырье для производства водорода. В 2007 г. в Великобритании начались продажи биобутанола в качестве добавки к бензину. Метанол используется для выпуска формальдегида, который используется для производства фенолформальдегидных смол и формалина, уксусной кислоты. Метанол используется для заправки гоночных мотоциклов и автомобилей. Этанол широко применяется как растворитель и антисептик: в пищевой промышленности; в качестве автомобильного топлива. Смесь этанола с бензином обозначается буквой Е. Цифрой и буквой Е обозначается процентное содержание этанола. Е85 – означает смесь из 85 % этанола и 15 % бензина. Биоэтанол как топливо нейтрален в качестве источника парниковых газов. Он обладает нулевым балансом диоксида углерода, поскольку при его производстве путём брожения и последующим сгоранием выделяется столько же CO2, сколько до этого было взято из атмосферы использованными для его производства растениями. Глицерин фармацевтическая и парфюмерная промышленность, смягчитель кожи и тканей, производство взрывчатых веществ.

Источник

3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.

Спиртами называют соединения, в которых гидроксильная группа соединена с углеводородным радикалом, но не присоединена непосредственно к ароматическому ядру, если таковой имеется в структуре радикала.

Что общего в химических свойствах спиртов и фенолов

Если в структуре углеводородного радикала содержится ароматическое ядро и гидроксильная группа, при том соединена непосредственно с ароматическим ядром, такие соединения называют фенолами.

Что общего в химических свойствах спиртов и фенолов

Почему же фенолы выделяют в отдельный от спиртов класс? Ведь, например, формулы

Что общего в химических свойствах спиртов и фенолов

очень похожи и создают впечатление веществ одного класса органических соединений.

Однако непосредственное соединение гидроксильной группы с ароматическим ядром существенно влияет на свойства соединения, поскольку сопряженная система π-связей ароматического ядра сопряжена также и с одной из неподеленных электронных пар атома кислорода. Из-за этого в фенолах связь О-Н более полярна по сравнению со спиртами, что существенно повышает подвижность атома водорода в гидроксильной группе. Другими словами, у фенолов значительно ярче, чем у спиртов выражены кислотные свойства.

Химические свойства спиртов

Одноатомные спирты

Реакции замещения

Замещение атома водорода в гидроксильной группе

1) Спирты реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от защитной пленки Al2O3), при этом образуются алкоголяты металлов и выделяется водород:

Что общего в химических свойствах спиртов и фенолов

Образование алкоголятов возможно только при использовании спиртов, не содержащих растворенной в них воды, так как в присутствии воды алкоголяты легко гидролизуются:

2) Реакция этерификации

Реакцией этерификации называют взаимодействие спиртов с органическими и кислородсодержащими неорганическими кислотами, приводящее к образованию сложных эфиров.

Такого типа реакции являются обратимыми, поэтому для смещения равновесия в сторону образования сложного эфира, реакцию желательно проводить при нагревании, а также в присутствии концентрированной серной кислоты как водоотнимающего агента:

Что общего в химических свойствах спиртов и фенолов

Замещение гидроксильной группы

1) При действии на спирты галогеноводородных кислот происходит замещение гидроксильной группы на атом галогена. В результате такой реакции образуются галогеналканы и вода:

Что общего в химических свойствах спиртов и фенолов

2) При пропускании смеси паров спирта с аммиаком через нагретые оксиды некоторых металлов (чаще всего Al2O3) могут быть получены первичные, вторичные или третичные амины:

Что общего в химических свойствах спиртов и фенолов

Тип амина (первичный, вторичный, третичный) будет в некоторой степени зависеть от соотношения исходного спирта и аммиака.

Реакции элиминирования (отщепления)

Дегидратация

Дегидратация, фактически подразумевающая отщепление молекул воды, в случае спиртов различается на межмолекулярную дегидратацию и внутримолекулярную дегидратацию.

При межмолекулярной дегидратации спиртов одна молекула воды образуется в результате отщепления атома водорода от одной молекулы спирта и гидроксильной группы — от другой молекулы.

В результате этой реакции образуются соединения, относящиеся к классу простых эфиров (R-O-R):

Что общего в химических свойствах спиртов и фенолов

Внутримолекулярная дегидратация спиртов протекает таким образом, что одна молекула воды отщепляется от одной молекулы спирта. Данный тип дегидратации требует несколько более жестких условий проведения, заключающихся в необходимости использования заметно более сильного нагревания по сравнению с межмолекулярной дегидратацией. При этом из одной молекулы спирта образуется одна молекула алкена и одна молекула воды:

Что общего в химических свойствах спиртов и фенолов

Поскольку молекула метанола содержит только один атом углерода, для него невозможна внутримолекулярная дегидратация. При дегидратации метанола возможно образование только простого эфира (CH3-O-CH3).

Нужно четко усвоить тот факт, что в случае дегидратации несимметричных спиртов внутримолекулярное отщепление воды будет протекать в соответствии с правилом Зайцева, т.е. водород будет отщепляться от наименее гидрированного атома углерода:

Что общего в химических свойствах спиртов и фенолов

Дегидрирование спиртов

а) Дегидрирование первичных спиртов при нагревании в присутствии металлической меди приводит к образованию альдегидов:

Что общего в химических свойствах спиртов и фенолов

б) В случае вторичных спиртов аналогичные условия приведут у образованию кетонов:

Что общего в химических свойствах спиртов и фенолов

в) Третичные спирты в аналогичную реакцию не вступают, т.е. дегидрированию не подвергаются.

Реакции окисления

Горение

Спирты легко вступают в реакцию горения. При этом образуется большое количество тепла:

Неполное окисление

Неполное окисление первичных спиртов может приводить к образованию альдегидов и карбоновых кислот.

В случае неполного окисления вторичных спиртов возможно образование только кетонов.

Неполное окисление спиртов возможно при действии на них различных окислителей, например, таких, как кислород воздуха в присутствии катализаторов (металлическая медь), перманганат калия, дихромат калия и т.д.

При этом из первичных спиртов могут быть получены альдегиды. Как можно заметить, окисление спиртов до альдегидов, по сути, приводит к тем же органическим продуктам, что и дегидрирование:

Что общего в химических свойствах спиртов и фенолов

Следует отметить, что при использовании таких окислителей, как перманганат калия и дихромат калия в кислой среде возможно более глубокое окисление спиртов, а именно до карбоновых кислот. В частности, это проявляется при использовании избытка окислителя при нагревании. Вторичные спирты могут в этих условиях окислиться только до кетонов.

ПРЕДЕЛЬНЫЕ МНОГОАТОМНЫЕ СПИРТЫ

Замещение атомов водорода гидроксильных групп

Многоатомные спирты так же, как и одноатомные реагируют со щелочными, щелочноземельными металлами и алюминием (очищенным от пленки Al2O3); при этом может заместиться разное число атомов водорода гидроксильных групп в молекуле спирта:

Что общего в химических свойствах спиртов и фенолов

2. Поскольку в молекулах многоатомных спиртов содержится несколько гидроксильных групп, они оказывают влияние друг на друга за счет отрицательного индуктивного эффекта. В частности, это приводит к ослаблению связи О-Н и повышению кислотных свойств гидроксильных групп.

Большая кислотность многоатомных спиртов проявляется в том, что многоатомные спирты, в отличие от одноатомных, реагируют с некоторым гидроксидами тяжелых металлов. Например, нужно запомнить тот факт, что свежеосажденный гидроксид меди реагирует с многоатомными спиртами с образованием ярко-синего раствора комплексного соединения.

Так, взаимодействие глицерина со свежеосажденными гидроксидом меди приводит к образованию ярко-синего раствора глицерата меди:

Что общего в химических свойствах спиртов и фенолов

Данная реакция является качественной на многоатомные спирты. Для сдачи ЕГЭ достаточно знать признаки этой реакции, а само уравнение взаимодействия уметь записывать необязательно.

3. Так же, как и одноатомные спирты, многоатомные могут вступать в реакцию этерификации, т.е. реагируют с органическими и кислородсодержащими неорганическими кислотами с образованием сложных эфиров. Данная реакция катализируется сильными неорганическими кислотами и является обратимой. В связи с этим при осуществлении реакции этерификации образующийся сложный эфир отгоняют из реакционной смеси, чтобы сместить равновесие вправо по принципу Ле Шателье:

Что общего в химических свойствах спиртов и фенолов

Если в реакцию с глицерином вступают карбоновые кислоты с большим числом атомов углерода в углеводородном радикале, получающиеся в результате такой реакции, сложные эфиры называют жирами.

В случае этерификации спиртов азотной кислотой используют так называемую нитрующую смесь, представляющую собой смесь концентрированных азотной и серной кислот. Реакцию проводят при постоянном охлаждении:

Что общего в химических свойствах спиртов и фенолов

Сложный эфир глицерина и азотной кислоты, называемый тринитроглицерином, является взрывчатым веществом. Кроме того, 1%-ный раствор данного вещества в спирте обладает мощным сосудорасширяющим действием, что используется при медицинских показаниях для предотвращения приступа инсульта или инфаркта.

Замещение гидроксильных групп

Реакции данного типа протекают по механизму нуклеофильного замещения. К взаимодействиям такого рода относится реакция гликолей с галогеноводородами.

Так, например, реакция этиленгликоля с бромоводородом протекает с последовательным замещением гидроксильных групп на атомы галогена:

Что общего в химических свойствах спиртов и фенолов

Химические свойства фенолов

Как уже было сказано в самом начале данной главы, химические свойства фенолов заметно отличаются от химических свойств спиртов. Связано это с тем, что одна из неподеленных электронных пар атома кислорода в гидроксильной группе сопряжена с π-системой сопряженных связей ароматического кольца.

Реакции с участием гидроксильной группы

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, и в водном растворе в очень небольшой степени диссоциированы:

Что общего в химических свойствах спиртов и фенолов

Большая кислотность фенолов по сравнению со спиртами в плане химических свойств выражается в том, что фенолы, в отличие от спиртов, способны реагировать со щелочами:

Что общего в химических свойствах спиртов и фенолов

Однако, кислотные свойства фенола выражены слабее, чем даже у одной из самых слабых неорганических кислот – угольной. Так, в частности, углекислый газ, при пропускании его через водный раствор фенолятов щелочных металлов, вытесняет из последних свободный фенол как еще более слабую, чем угольная, кислоту:

Что общего в химических свойствах спиртов и фенолов

Очевидно, что любой другой более сильной кислотой фенол также будет вытесняться из фенолятов:

Что общего в химических свойствах спиртов и фенолов

3) Фенолы являются более сильными кислотами, чем спирты, а спирты при этом реагируют с щелочными и щелочноземельными металлами. В связи с этим очевидно, что и фенолы будут реагировать с указанными металлами. Единственное, что в отличие от спиртов, реакция фенолов с активными металлами требует нагревания, так как и фенолы, и металлы являются твердыми веществами:

Что общего в химических свойствах спиртов и фенолов

Реакции замещения в ароматическом ядре

Гидроксильная группа является заместителем первого рода, и это значит, что она облегчает протекание реакций замещения в орто- и пара-положениях по отношению к себе. Реакции с фенолом протекают в намного более мягких условиях по сравнению с бензолом.

Галогенирование

Реакция с бромом не требует каких-либо особых условий. При смешении бромной воды с раствором фенола мгновенно образуется белый осадок 2,4,6-трибромфенола:

Что общего в химических свойствах спиртов и фенолов

Нитрование

При действии на фенол смеси концентрированных азотной и серной кислот (нитрующей смеси) образуется 2,4,6-тринитрофенол – кристаллическое взрывчатое вещество желтого цвета:

Что общего в химических свойствах спиртов и фенолов

Реакции присоединения

Поскольку фенолы являются ненасыщенными соединениями, возможно их гидрирование в присутствии катализаторов до соответствующих спиртов:

Источник

Спирты и фенолы

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Что общего в химических свойствах спиртов и фенолов

Спирты это гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где m n.

Классификация спиртов

По числу гидроксильных групп:

Что общего в химических свойствах спиртов и фенолов

Двухатомные спирты с двумя и тремя гидроксогруппами у одного атома углерода R‒CH(OH)2 или R-C(OH)3 неустойчивы, от них легко отрывается вода и образуется карбонильное соединение.

Классификация по числу углеводородных радикалов у атома углерода при гидроксильной группе

Что общего в химических свойствах спиртов и фенолов

Классификация по строению углеводородного радикала

Непредельные спирты, в которых гидроксильная группа соединена с атомом углерода при двойной связи (алкенолы), неустойчивы и изомеризуются в соответствующие карбонильные соединения.

Что общего в химических свойствах спиртов и фенолов

Строение спиртов и фенолов

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Что общего в химических свойствах спиртов и фенолов

Что общего в химических свойствах спиртов и фенолов

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Что общего в химических свойствах спиртов и фенолов

Поэтому спирты – жидкости с относительно высокой температурой кипения (температура кипения метанола +64,5 о С). Температуры кипения многоатомных спиртов и фенолов значительно выше.

Таблица. Температуры кипения некоторых спиртов и фенола.

Название веществаТемпература кипения
Метанол64
Этанол78
Пропанол-192
Бутанол-1118
Этиленгликоль196
Фенол181,8

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Что общего в химических свойствах спиртов и фенолов

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Низшие спирты (метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин) смешиваются с водой в любых соотношениях.

Номенклатура спиртов

Нумерация ведется от ближайшего к ОН-группе конца цепи.

Что общего в химических свойствах спиртов и фенолов

Например: СН3ОН – метиловый спирт, С2Н5ОН – этиловый спирт и т.д.

Например, пропандиол-1,2 (пропиленгликоль):

Что общего в химических свойствах спиртов и фенолов

Изомерия спиртов

Структурная изомерия

Для спиртов характерна структурная изомерия – изомерия углеродного скелета, изомерия положения гидроксильной группы и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета характерна для спиртов, которые содержат не менее четырех атомов углерода.

Например. Ф ормуле С4Н9ОН соответствуют четыре структурных изомера, из них два различаются строением углеродного скелета
Бутанол-12-Метилпропанол-1
Что общего в химических свойствах спиртов и феноловЧто общего в химических свойствах спиртов и фенолов

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3
Этиловый спиртДиметиловый эфир
СН3–CH2–OH CH3–O–CH3

Изомеры с различным положением группы ОН отличаются положением гидроксильной группы в молекуле. Такая изомерия характерна для спиртов, которые содержат три или больше атомов углерода.

Например. Пропанол-1 и пропанол-2
Пропанол-1Пропанол-2
Что общего в химических свойствах спиртов и феноловЧто общего в химических свойствах спиртов и фенолов

Химические свойства спиртов

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н + соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Что общего в химических свойствах спиртов и фенолов

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Что общего в химических свойствах спиртов и фенолов

Что общего в химических свойствах спиртов и фенолов

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Что общего в химических свойствах спиртов и фенолов

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Что общего в химических свойствах спиртов и фенолов

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, п ри взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется ярко-синий раствор гликолята меди:

Что общего в химических свойствах спиртов и фенолов

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Что общего в химических свойствах спиртов и фенолов

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

Что общего в химических свойствах спиртов и фенолов

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

Что общего в химических свойствах спиртов и фенолов

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Что общего в химических свойствах спиртов и фенолов

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Что общего в химических свойствах спиртов и фенолов

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

Что общего в химических свойствах спиртов и фенолов

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат :

Что общего в химических свойствах спиртов и фенолов

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Что общего в химических свойствах спиртов и фенолов

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140 о С) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

Что общего в химических свойствах спиртов и фенолов

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.
Например, в присутствии концентрированной серной кислоты при нагревании выше 140 о С из бутанола-2 в основном образуется бутен-2:

Что общего в химических свойствах спиртов и фенолов

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140 о С образуется диэтиловый эфир:

Что общего в химических свойствах спиртов и фенолов

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: в торичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Что общего в химических свойствах спиртов и фенолов

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Что общего в химических свойствах спиртов и фенолов

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Что общего в химических свойствах спиртов и фенолов

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метанол СН3-ОН CO2 K2CO3
Первичный спирт R-СН2-ОН R-COOH/ R-CHO R-COOK/ R-CHO
Вторичный спирт R1-СНОН-R2 R1-СО-R2 R1-СО-R2
Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Что общего в химических свойствах спиртов и фенолов

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Что общего в химических свойствах спиртов и фенолов

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

Что общего в химических свойствах спиртов и фенолов

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метанола:

5. Дегидрирование спиртов

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны.

Например, при дегидрировании этанола образуется этаналь

Что общего в химических свойствах спиртов и фенолов

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Что общего в химических свойствах спиртов и фенолов

Получение спиртов

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорметана с водным раствором гидроксида натрия образуется метанол

Что общего в химических свойствах спиртов и фенолов

Например, глицерин можно получить щелочным гидролизом 1,2,3-трихлорпропана:

Что общего в химических свойствах спиртов и фенолов

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Что общего в химических свойствах спиртов и фенолов

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

Что общего в химических свойствах спиртов и фенолов

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании этаналя образуется этанол

Что общего в химических свойствах спиртов и фенолов

Например: при гидрировании ацетона образуется изопропанол

Что общего в химических свойствах спиртов и фенолов

Например, гидрирование диальдегида – один из способов получения этиленгликоля

Что общего в химических свойствах спиртов и фенолов

4. Окисление алкенов холодным водным раствором перманганата калия

Алкены реагируют с водным раствором перманганата калия без нагревания. При этом образуются двухатомные спирты (гликоли).

Что общего в химических свойствах спиртов и фенолов

5. Промышленное получение метанола из «синтез-газа»

Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.

Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:

6. Получение этанола спиртовым брожением глюкозы

Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.

Что общего в химических свойствах спиртов и фенолов

7. Гидролиз жиров – способ получения многоатомных спиртов

Под действием кислоты жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.

Например: при гидролизе тристеарата глицерина образуется глицерин и стеариновая кислота

Что общего в химических свойствах спиртов и фенолов

При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *