Что означает е в обратную сторону в математике
Число е
Играет важную роль в дифференциальном и интегральном исчислении, а также многих других разделах математики.
2,718 281 828 459 045 235 360 287 471 352 662 497 757… [1]
Содержание
Способы определения
Число e может быть определено несколькими способами.
Свойства
История
Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 год). Однако это название не совсем корректно, так как у него логарифм числа x был равен .
Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Негласно, потому что там содержится только таблица натуральных логарифмов, определённых из кинематических соображений, сама же константа не присутствует (см.: Непер).
Предполагается, что автором таблицы был английский математик Отред.
Саму же константу впервые вычислил швейцарский математик Бернулли при анализе следующего предела:
Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690—1691 годы.
Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Хотя впоследствии некоторые учёные использовали букву c, буква e применялась чаще и в наши дни является стандартным обозначением.
Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ).
Способы запоминания
Доказательство иррациональности
Пускай рационально. Тогда
, где
и
целые положительные, откуда
Умножая обе части уравнения на , получаем
Переносим в левую часть:
Все слагаемые правой части целые, следовательно:
— целое
Но с другой стороны
Интересные факты
Примечания
См. также
Ссылки
Числа с собственными именами
Полезное
Смотреть что такое «Число е» в других словарях:
число — Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации
число — сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева
ЧИСЛО — ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова
ЧИСЛО — абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия
Число — Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь
ЧИСЛО e — Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера
число — а; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь
ЧИСЛО — ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля
ЧИСЛО — ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова
ЧИСЛО Е — ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590. является пределом выражения (1/ ) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь
ЧИСЛО Е
Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции
График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера
где i 2 = –1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению e i p + 1 = 0, связывающему 5 наиболее известных в математике чисел.
При вычислении значения e могут быть использованы и некоторые другие формулы (чаще всего пользуются первой из них):
Значение e с 15 десятичными знаками равно 2,718281828459045. В 1953 было вычислено значение e с 3333 десятичными знаками. Символ e для обозначения этого числа был введен в 1731 Л.Эйлером (1707–1783).
Экспонента и число е: просто и понятно.
Число e всегда волновало меня — не как буква, а как математическая константа. Что число е означает на самом деле?
Разные математические книги и даже моя горячо любимая Википедия описывает эту величественную константу совершенно бестолковым научным жаргоном:
Математическая константа е является основанием натурального логарифма.
Если заинтересуетесь, что такое натуральный логарифм, найдете такое определение:
Натуральный логарифм, ранее известный как гиперболический логарифм, является логарифмом с основанием е, где е – иррациональная константа, приблизительно равная 2.718281828459.
Определения, конечно, правильные. Но понять их крайне сложно. Конечно, Википедия в этом не виновата: обычно математические пояснения сухи и формальны, составляются по всей строгости науки. Из-за этого новичкам сложно осваивать предмет (а когда-то каждый был новичком).
С меня хватит! Сегодня я делюсь своими высокоинтеллектуальными соображениями о том, что такое число е, и чем оно так круто! Отложите свои толстые, наводящие страх математические книжки в сторону!
Число е – это не просто число
Описывать е как «константу, приблизительно равную 2,71828…» — это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.
Число пи — это соотношение длины окружности к диаметру, одинаковое для всех окружностей. Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).
Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.
Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.
Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).
Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.
Понятие экспоненциального роста
Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:
И выглядит это примерно так:
Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.
Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:
Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:
Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?
Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:
Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.
Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.
Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:
Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.
Эта информация как-то изменит наше уравнение?
Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.
Но деньги меняют все
С деньгами дела обстоят по-другому. Как только мы зарабатываем пару монет прибыли, эти монетки начинают приносить свои микро-прибыли. Нет необходимости ждать, пока набежит целый рубль — свежим денежкам совсем не нужно дозревать, чтобы начать плодоносить.
Основываясь на нашей старой формуле, прирост процента выглядит примерно так:
Но опять же, это не совсем правильно: вся сумма процента появляется в последний день. Давайте посмотрим поближе и разделим год на два промежутка. Мы зарабатываем 100% прибыль каждый год, или по 50% каждые 6 месяцев. Таким образом, мы заработаем 50 копеек в первые полгода, и другие 50 копеек во вторую половину года:
И все равно, это неверно! Конечно, наш рубль-родитель (Синий кружок) зарабатывает рубль в течение года. Но после 6 месяцев мы получим 50-копеечный кусочек прибыли – готовые деньги, которыми мы пренебрегаем! Эти 50 копеек уже могли бы зарабатывать свои собственные деньги:
Поскольку наш коэффициент равен 50% каждые полгода, эти 50 копеек могли бы заработать еще 25 копеек (50% от 50 копеек). В конце года мы бы получили:
Если все сложить, получится 2,25 рублей. Мы заработали 1,25 рубля всего на одном исходном рубле, и это даже лучше, чем удвоение!
Вернемся к формуле. Рост за два полу-периода по 50% составит:
Переходим на составной рост
Идем дальше. Давайте поделим рост не на два периода по 50%, а на 3 сегмента по 33% каждый. Кто сказал, что надо ждать целых 6 месяцев до начала получения прибыли? Давайте детализируем наши вычисления.
Вот так выглядит наш рост, расписанный на 3 составных периода:
Фуух! Спустя 12 месяцев у нас получается: 1 + 1 + 0.33 + 0.04 или примерно 2.37 рубля.
Потратим еще чуть времени, чтобы понять, что на самом деле происходит с таким ростом:
Теперь понятнее? Поначалу это сложно — я и сам запутался, пока рисовал все эти графики. Главное понять, что каждый «рубль» создает маленьких помощников, а те, в свою очередь, создают помощников себе, и так далее.
Если рассматривать год как 3 равных периода, формула роста будет такой:
рост = (1 + 100%/3) 3 = 2.37037.
Мы заработали 1.37 рубля, а это даже лучше, чем те 1.25, что получились у нас в предыдущий раз!
Можно ли преумножать деньги бесконечно?
А почему бы не разбить год на более короткие периоды? Как насчет месяца, дня, часа или даже наносекунды? Наша прибыль взлетит до небес?
Прибыль увеличится, но уже не намного. Попробуем подставить в нашу волшебную формулу разные значения n, и получим следующее:
Число е в математике и его применение с примерами решения
Возникновение числа е:
в котором n — натуральное число.
Изучение этого выражения необходимо для решения очень многих крайне важных задач (см., например, следующий параграф и главу «Производная, дифференциал, интеграл и их простейшие применения»).
Если мы станем натуральное число n неограниченно увеличивать, то величина выражения
станет величиной переменной. Эта переменная не стремится к единице, как это может показаться на первый взгляд. Действительно, мы сейчас убедимся в том, что при возрастании натурального числа n значение выражения
будет монотонно* возрастать, начиная со значения, равного двум. Например,
Чтобы доказать, что переменная
монотонно возрастает при возрастании n, применим формулу бинома Ньютона:
Перепишем эту формулу в следующем виде:
Все слагаемые в правой части этого равенства положительны.
При возрастании числа n правая часть этого равенства будет монотонно возрастать, так как будет возрастать число слагаемых и каждое слагаемое, начиная со второго.
Значит, доказано, что переменная будет монотонно возрастать при возрастании числа n.
Теперь докажем, что, несмотря на то что переменная монотонно возрастает, тем не менее она будет оставаться всегда меньшей, чем число 2,75.
Из формулы (В) видно, что
Тем более будет верным неравенство
К сумме, написанной в квадратных скобках, применим формулу суммы членов конечной геометрической прогрессии. Тогда получим:
и тем более будет верным неравенство
Кроме этого, из формулы (А) видно, что всегда
Теперь перейдем к самому важному выводу.
Мы доказали, что переменная монотонно возрастает при возрастании n и при этом всегда остается меньше, чем 2,75. По признаку Вейерштрасса (см. стр. 408) эта переменная имеет предел. Этим пределом будет определенное число, большее двух и не большее 2,75. Это число является иррациональным и обозначается, как это принято во всей математической литературе, буквой е. Значит,
Иррациональность числа е доказывается в курсах высшей математики.
Число е выражается бесконечной непериодической десятичной дробью. Первые цифры этой дроби идут в таком порядке:
Напомним, что логарифмы по основанию е называются натуральными и обозначаются символом так что
Применения числа е
Исходя из полученного равенства
можно доказать, что
где — любая бесконечно малая величина, могущая принимать и положительные и отрицательные значения.
Последнее равенство можно сформулировать так:
Степень, основанием которой служит единица плюс бесконечно малое слагаемое 7, а показателем величина, обратная этому слагаемому, стремится к числу е, как к своему, пределу (доказательство опускается).
Обратим внимание на то, что основание этой степени стремится к единице, но, несмотря на это, сама степень не стремится к единице.
Рассмотрим пределы степеней, в которых основанием служит единица плюс бесконечно малое слагаемое, а показатель есть величина, обратная этому слагаемому.
Примеры:
1. Найти
Решение:
Полагая получим
При
Следовательно,
2. Найти
Полагая получим
Следовательно,
3. Найти
Полагая получим
Следовательно,
4. Найти
Представим в виде суммы, у которой первое слагаемое было бы единицей, а второе — величиной бесконечно малой. Это легко сделать.
Здесь первое слагаемое есть единица, а второе, стоящее в скобках, есть величина бесконечно малая при
Таким образом, получим:
В квадратных скобках мы имеем степень, основанием которой является единица плюс бесконечно малое слагаемое, а показатель степени есть величина, обратная этому бесконечно малому слагаемому. Предел такой степени, как мы знаем, равен числу е.
Теперь найдем предел показателя степени, в который возводится выражение, стоящее в квадратных скобках:
Задачи:
1. Пусть банк принял вклад в a руб. и обязался присоединять процентные деньги к вкладу через каждую часть года из расчета р годовых процентов. Спрашивается, в какую сумму обратится первоначальный вклад через t лет?
Одну n-ю часть года назовем установленным промежутком времени. Тогда один год будет содержать n, a t лет nt таких промежутков.
К концу первого промежутка времени вклад обратится в
Действительно, за первый промежуток времени процентные деньги, подлежащие присоединению к вкладу, будут равны Следовательно, вклад окажется равным
т. е.
Обратим внимание на то, что для получения возросшей суммы за один промежуток времени достаточно вклад, имевшийся в начале промежутка, умножить на Этот множитель называется множителем процентного наращения за промежуток времени, равный
части года.
Значит, чтобы получить возросшую сумму к концу второго промежутка времени, достаточно вклад, образовавшийся к началу второго промежутка времени, умножить на множитель процентного наращения и т. д.
Итак, первоначальный вклад в а руб. обратится через t лет в
Теперь вообразим, что т. е. что рост вклада происходит, как выражаются, органически. Тогда вклад в а руб. обратится через t лет в сумму А, определяемую равенством
Полагая найдем, что
Итак, для органического роста вклада получилась следующая формула:
Например, при а = 1, р = 5 и f = 100
т. е. один рубль превращается через 100 лет приблизительно в 143 руб., если органический рост происходит по 5 годовых процентов.
2. Лесная делянка содержит в данный момент а куб. м древесины. Сколько окажется на этой делянке древесины через t лет, если органический рост древесины происходит по р годовых процентов.
Oтв. куб. м.
3. Численность населения города увеличивается ежегодно на р% (по отношению к началу года). Через сколько лет численность населения удвоится?
Отв.
Формула Эйлера
Формула Эйлера
В заключение этой главы приведем еще одно важное соотношение, найденное гениальным Эйлером, устанавливающее связь между тригонометрическими функциями и показательной функцией. Было доказано, что
где b — любое действительное число.
Обобщая этот результат, примем по определению, что
где b — любое действительное число, a i — мнимая единица. Теперь вычислим предел правой части последнего равенства.
Комплексное число представим в тригонометрической форме. Как известно (см. стр. 580),
Пользуясь формулой Муавра, найдем, что
Вычислим каждый из пределов, входящих в правую часть последней формулы. Обозначив получим, что
и что при
будет
Следовательно,
Далее, обозначим тогда
и при
будет
Следовательно,
Эта формула и носит название формулы Эйлера.
Следствия из формулы Эйлера
1. Полагая в формуле Эйлера вместо b число 2, получим, что
или
т. е.установим связь между действительными числами е и
и мнимой единицей I.
2. Полагая в формуле Эйлера вместо b число — b, получим, что
3. Пользуясь формулой Эйлера, можно представить любое комплексное число еще в одной новой форме.
Действительно, обозначив модуль комплексного числа х + iy буквой r, а главное значение аргумента буквой получим:
Но по формуле Эйлера
Выражение называется показательной формой комплексного числа.
Справедливой будет и следующая запись:
4. Исходя из формулы Эйлера, мы можем находить тригонометрические функции от комплексного числа.
Действительно, обобщая формулу примем по определению, что
Полагая в последней формуле, например, х = 0 и у = 1, получим:
т. е. получим, что косинус мнимой единицы представляет собой действительное число.
5.Опираясь на формулу Эйлера, можно показать, что логарифм любого действительного или мнимого числа имеет в области комплексных чисел бесконечное множество различных значений. Представим комплексное число х + iy в показательной форме
где k — любое целое число.
Под выражением In r здесь понимается лишь действительное значение логарифма положительного числа r, которое легко вычисляется по таблицам логарифмов.
Примеры:
1. Модуль числа— 1 равен 1, а главное значение аргумента равно . Поэтому
2. Модуль числа 1 есть 1, а главное значение аргумента 0. Поэтому
Под выражением In 1, написанным в левой части последнего равенства, подразумеваются все возможные комплексные значения логарифма единицы.
Под таким же выражением In 1, написанным в правой части, подразумевается лишь одно действительное значение логарифма единицы, т. е. нуль.
Числа е и являются мировыми постоянными (константы природы).
С помощью этих чисел выражаются многие законы, по которым происходят процессы в природе. Числа е и , как мы уже видели, играют необычайно важную роль как в математике, так и в ее разнообразных приложениях.
Дополнение к числу е
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института