Что означает понятие математическое развитие ребенка дошкольного возраста
Статья « Математическое развитие детей дошкольного возраста».
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Статья « Математическое развитие детей дошкольного возраста».
Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи.
Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.
Счёт необходим как один из процессов изучения чисел. Это видно из того, что его не отвергают и сторонники непосредственного восприятия чисел.
Что касается взгляда на число как результат измерения, то это тоже правильный взгляд, но он не исключает собою понятия о числе, как результате счёта, а лишь расширяет и углубляет понятие числа. Но как более трудный вид для понимания детей, чем предыдущий, он должен не предшествовать ему, а следовать за ним.
Вопрос о числовых фигурах считается одним из спорных вопросов в методике арифметики.
Картинки должны быть одним из наглядных пособий, хотя и важным, но не главным при обучении арифметике. Главным наглядным пособием должны быть действительные, вещественные предметы, ибо они, как подлежащие осязанию, а не указыванию только как картинки, могут быть действительно отнимаемы и прибавляемы по одному и по группам, чего нельзя сказать про картинки, где подобные действия можно производить только мысленно, в воображении.
Почему необходимо знакомить детей с сравнением величины предметов? Существует мнение, что дети приходят в школу с готовыми понятиями о величине предметов. На практике получается совсем другая картина. Прежде чем научить детей сравнивать величину предметов, их надо научить эти предметы видеть и рассматривать.
Ф.Н. Блехер предложила общие пути работы по формированию математических представлений. Она выделила два основных пути в работе с детьми:
1. Использование всех многочисленных поводов, которые в изобилии доставляет повседневная жизнь детей в коллективе и различные виды детской деятельности.
Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук. Как система педагогических знаний она имеет и свою собственную теорию, и свои источники. К последним относятся:
— научные исследования и публикации, в которых отражены основные результаты научных поисков (статьи, монографии, сборники научных трудов и т.д.);
— программно-инструктивные документы («Программа воспитания и обучения в детском саду», методические указания и т.д.);
— методическая литература (статьи в специализированных журналах, например, в «Дошкольном воспитании», пособия для воспитателей детского сада и родителей, сборники игр и упражнения, методические рекомендации и т.д.);
— передовой коллективный и индивидуальный педагогический опыт по формированию элементарных математических представлений у детей в детском саду и семье, опыт и идеи педагогов-новаторов.
Методика формирования элементарных математических представлений у детей постоянно развивается, совершенствуется и обогащается результатами научных исследований и передового педагогического опыта.
Ведущим и определяющим среди них является цель, так как она ведёт к выполнению социального заказа общества детским садом, подготавливая детей к изучению основ наук (в том числе и математики) в школе.
Дети четырёх лет активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.
Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно.
Упор в методике работы с детьми данного возраста делается на образном начале, а также сделан шаг в направлении» реабилитации» в глазах педагогов ассоциативного мышления, которое, как известно, является одним из механизмов творческого процесса. Однако, увлеченные идеалами научности, строгости, логичности, мы нередко забываем, что мышлению для того, чтобы быть по-настоящему продуктивным, необходимы такие качества, как подвижность и гибкость, способность устанавливать неожиданные связи, находить неожиданные аналогии и таким путём двигаться по пути познания нового.
Говоря о развитии творческого мышления, мы часто забываем о таком важном его факторе, как умение образовывать ассоциации. Эта способность (в разумных пределах) развивается у детей данного возраста в процессе занятий по программе «Радуга». Л.А.Венгер, О.М.Дьяченко предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре.
В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени.
Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер).
Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры. Должное внимание уделено развитию речи. В ходе игры воспитатель не только задаёт заранее подготовленные вопросы, но и непринуждённо разговаривает с детьми по теме и сюжету игры, содействует вхождению ребёнка в игровую ситуацию. Педагог использует потешки, загадки, считалки, фрагменты сказок. Игровые познавательные задачи решаются с помощью наглядных пособий. Необходимым условием, обеспечивающим успех в работе, является творческое отношение воспитателя к математическим играм: варьирование игровых действий и вопросов, индивидуализация требований к детям, повторение игр в том же виде или с усложнением. Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет.
Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи. Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.
Методика формирования элементарных математических представлений в системе педагогических наук призвана оказать помощь в математике- одного из важнейших учебных предметов в школе, способствовать воспитанию всесторонне развитой личности.
Обучение ведёт за собой развитие. В условиях рационально построенного обучения, учитывая возрастные возможности дошкольников, можно сформировать у них полноценные представления об отдельных математических понятиях. Обучение при этом рассматривается как непременное условие развития, которое в свою очередь становится управляемым процессом, связанным с активным формированием математических представлений и логических операций. При таком подходе не игнорируется стихийный опыт и его влияние на развитие ребёнка, но ведущая роль отводится целенаправленному обучению.
Современные требования к математическому развитию детей дошкольного возраста
1. Цель- развитие познавательных и творческих способностей детей (личностное развитие).
2. Содержание классическое: доматематические математические виды деятельности: виды деятельности:
Математическое развитие и его значение в развитии детей дошкольного возраста
Марина Зверькова
Математическое развитие и его значение в развитии детей дошкольного возраста
Ещё в раннем детстве малыши сталкиваются с предметами, различающимися по форме, цвету и количеству. В этом возрасте начинают формироваться основные элементарные представления и способности ребенка.Первые игрушки напоминают геометрические фигуры: кубики, конструкторы, пирамидки. Счёт начинается с вопросов мамы: «Скажи, сколько тебе годиков?». Родители детей учат называть формы игрушек их величину, количество.
Через игровую деятельность формируются способности различать разные свойства и особенности предметов. У малыша формируется первое понятие о математике, хотя он об этом пока ещё не знает и не осознает. Сознание ребёнка в раннем детстве хаотичное. Родители учат детей сопоставлять, группировать предметы, называть их своими именами.
Занимаясь с предметами через игровую деятельность ребёнок сравнивает их. С этого и начинается первое знакомство с математикой.
К четырём годам дети с лёгкостью считают до пяти, а чуть постарше до десяти, но они могут и ошибаться в счёте.
К шестилетнему возрасту, дети уже начинают понимать, когда цифры увеличиваются, а когда уменьшаются. Вот почему важно с детского сада нужно начинать систематические занятия, чтобы повысить умственное восприятие ребёнка.
В нынешнем современном обществе одним из требований к дошкольному воспитанию является получение детьми математических знаний и элементарных представлений в детском саду.
Дошкольники в ходе своего развития получают первые элементарные представления о математике. Имеющиеся методики и средства формирования элементарных математических представлений разработаны специально по возрастным категориям с учётом постепенного развития у дошкольников навыков и способностей в данном направлении.
Математика является самостоятельным образовательным предметом и рассчитана на развитие интеллектуальных способностей в зависимости от природного потенциала дошкольников. Ее роль в развитии элементарных представлений у дошкольников очень велика. В ходе такого рода занятий у ребёнка развиваются и формируются познавательные и личностные способности.
В процессе обучения, через средства математических занятий ребёнок получает первые представления о математических понятиях.
Математика одна из немногих дисциплин, которая охватывает разные стороны личности детей. В процессе формирования элементарных математических представлений и обучения у дошкольников активно развиваютсявсе познавательные процессы: речь, мышление, память, восприятие, представление. Это становится действенным, если при постановке занятий, учитывается периодичность и последовательность развития познавательных процессов у ребёнка, в зависимости от психофизического развития каждого ребёнка.
Если ребёнок не достиг того возраста, в котором он способен понять математические процессы, то занятия не будут играть ни какой роли для его сознания. Возможности ребёнка определяются его психологией. В современный мир всё чаще входят в программы обучения дошкольников инновационные методы и средства.
Способности каждого ребёнка зависят от его индивидуально-психологических особенностей. Математические способности не могут быть врождёнными, так как врождённые бывают только анатомически-физиологические особенности человека. Математические – это специальный вид способностей, они зависят от интегрального качества ума и развиваются в процессе математической деятельности.
Способности человека могут проявляться в различных областях, и здесь, как и все, математические способности выявляются в процессе деятельности дошкольника. Наиболее благоприятным периодом для развития способностей считается дошкольный возраст.
Анализ научных исследований (А. М. Леушина, Н. И. Непомнящая, А. А. Столяр и др., педагогического опыта убеждает в том, что рационально организованное обучение дошкольников математике обеспечивает общее умственное развитие детей. (Рационально организованное – это своевременное, соответствующее возрасту и интересам детей обучение.) При этом, важное значение имеет педагогическое руководство со стороны взрослого. Дети приобретают элементарные знания о множестве, числе, величине и форме предметов, учатся ориентироваться во времени и пространстве. Они овладевают счетом и измерениями линейных и объемных объектов с помощью условных и общепринятых мер, устанавливают количественные отношения между величинами, целым и частями.
В последние годы в практику введено такое понятие как предматематическая подготовка. Подготовка ребёнка и его познавательного мира к математическому образу мышления. Разнообразные способы формирования познавательной сферы позволяют подготовить ребёнка к изучению предмета – математики. При организации занятий происходит воздействие на наглядное и логическое мышление, память, творческое воображение, восприятие, произвольное внимание дошкольника.
Дети в дошкольном возрасте наблюдают и подражают взрослым, они наблюдают за каждым действием и внимательно слушают, что говорит воспитатель и это важное свойство. Детей надо учить самостоятельно действовать, показывать и рассказывать о своих действиях. Дошкольников надо побуждать к тому, чтобы они повторяли за воспитателем о свойствах и качествах предметов. Игры с детьми должны содержать в себе математические действия.
На занятиях по математике в детском саду формируются простейшие виды практической и умственной деятельности детей. Под видами деятельности – в этом случае способами обследования, счета, измерения – понимают объективные последовательные действия,которые должен выполнять ребенок для усвоения знаний: поэлементное сравнение двух множеств, накладывание меры и др. Овладевая этими действиями, ребенок усваивает цель и способы деятельности, а также правила, обеспечивающие формирование знаний.
Как правило, учебные задачи на занятиях решаются в сочетании с воспитательными. Так, воспитатель учит детей быть организованными, самостоятельными, внимательно слушать, выполнять работу качественно и в срок. Это дисциплинирует детей, способствует формированию у них целенаправленности, организованности, ответственности. Таким образом, обучение детей математике с раннего возраста обеспечивает их всестороннее развитие.
Естественно, что основой познания является сенсорное развитие, приобретаемое посредством опыта и наблюдений. В процессе чувственного познания формируются представления – образы предметов, их свойств, отношений. Так, оперируя разнообразными множествами (предметами, игрушками, картинками, геометрическими фигурами, дети учатся устанавливать равенство и неравенство множеств,называть количество словами: «больше», «меньше», «поровну». Сравнение конкретных множеств подготавливает детей к усвоению в последующем понятия числа. Именно операции с множествами являются той основой, к которой обращаются дети не только в детском саду, но и на протяжении последующих лет обучения в школе. Представление о множестве формирует у детей основы понимания абстрактного числа, закономерностей натурального ряда чисел. Хотя понятия натурального числа, а также геометрической фигуры, величины, части и целого абстрактны, все-таки они отображают связи и отношения предметов окружающей действительности.
Так, во второй младшей группе детского сада (четвертый год жизни) основное внимание уделяется формированию знаний о множестве. Понятие о множестве является одним из основных и наиболее общих, оно проходит через всю математику. Понятие множества настолько широко, что не определяется даже на современном уровне развития науки, а вводится как изначальное и поясняется на конкретных примерах. В средней группе в процессе изучения основных свойств множества формируется понятие о числе, а в старшей – первые представления о натуральном ряде чисел. В дошкольном возрасте понимание основных свойств множества ограничено. Однако осознание отдельных его свойств (равенство и неравенство, независимость мощности множества от качественных его признаков) возможно уже в младшем дошкольном возрасте.
В старших группах стоит учить детей множеству, разбивать множество на группы и объяснять им разницу между меньше и большей группой, а так же равенство частей. Наглядно учить дошкольников последовательности счёта до десяти и в обратном порядке. Учить детей счёту на ощупь и на слух в пределах десяти. Учить сравнивать количество предметов в разных группах, добавлять и убирать предметы до заданного количества.
Одновременно дошкольников учат сравнивать предметы по величине (размеру) и результаты сравнения обозначать соответствующими словами-понятиями («больше – меньше», «узкий – широкий» и др., строить ряды предметов по их размеру в порядке возрастания или уменьшения (большой, маленький, еще меньше, самый маленький). Однако, для того чтобы ребенок усвоил эти понятая, необходимо сформировать у него конкретные представления, научить его сравнивать предметы между собой сначала непосредственно – накладыванием, а потом опосредованно – с помощью измерения.
Центральной задачей математического развития детей в детском саду является обучение счету. Основными способами при этом являются накладывание и прикладывание, овладение которыми предвосхищает обучение счету с помощью слов-числительных.
Дети в дошкольном возрасте способны делить предметы и называть их части, например делить яблоко на дольки или пирог. Дошкольники должны понимать, что целое яблоко больше, чем долька или половина яблока. Старшегруппники должны освоить и понимать, что цифра 7 больше чем шесть, но меньше, чем восемь. К окончанию обучающего периода дошкольники должны уметь производить простые математические действия.
В математической подготовке детей, развитии элементарных математических представлений важную роль играет обучение измерению, как начальному способу познания количественной характеристики окружающего. Это дает возможность дошкольникам прежде всего пользоваться не общепринятыми, а условными мерами при измерении сыпучих, жидких веществ и протяженностей. Одновременно у детей развивается глазомер, что весьма важно для их сенсорного развития.
Программа по математике в детском саду предусматривает развитие глазомера детей при определении размера предметов. Для этого их обучают оценивать размер (величину предметов) в целом или по отдельным параметрам, сопоставляя с размером известных предметов. Обращается внимание на формирование умения проверять правильность оценки в своей практической деятельности, используя добавления, уменьшения и др. Каждое практическое действие пополняет знание детей новым содержанием. Доказано, что формирование элементарных математических знаний происходит одновременно с выработкой у них практических умений и навыков
Практические действия, выполняя определенную роль в математическом развитии детей, сами не остаются неизменными. Так, осуществляется изменение деятельности, связанной со счетом. Сначала она опирается на практическое поэлементное сравнение двух конкретных множеств, а позднее особое значение приобретает число как показатель мощности множества и натуральный ряд чисел, что впоследствии заменяет одно из конкретных множеств.
Сначала дети берут предметы руками, перекладывают их, а потом считают предметы, не дотрагиваясь до них, или воспринимают только на ощупь.
На основе практических действий у детей формируются такие мыслительные операции, как анализ, синтез, сравнение, обобщение. Воспитатель должен ориентироваться в оценке результатов своей работы, прежде всего на эти показатели, на то, как дети умеют сравнивать, анализировать, обобщать, делать выводы.
В процессе систематического обучения математике дети овладевают специальной терминологией – названиями чисел, геометрических фигур (круг, квадрат, треугольник, ромб и др., элементов фигур (сторона, вершина, основание) и т. п. Однако не рекомендуется в работе с детьми использовать такие слова-термины, как «натуральный рад», «совокупность», «структура», «элементы множества» и др.Так же дети должны осваивать и мерные величины: метр, сантиметр, килограмм, грамм и т. д. При этом работа не ограничивается только занятиями. Учат находить и сопоставлять предметы в быту, на улице и в природе.Например: три берёзы под окном.
Следует иметь в виду использование всего дидактического пространства в условиях образовательной ситуации.
Математика, не обязательно скучные занятия, как может представиться на первый взгляд. Для обучения воспитатели играют с детьми, придумывают различные считалочки, пословицы, поговорки, загадки. Ребёнок осваивает первые числовые понятия и формы.
Существуют и дидактические формы и средства воспитания, в которой применяются наглядные пособия иллюстрации, игры.
Для достижения результатов используют различные материалы: счётные палочки, природные материалы, учат считать и распознавать деньги.
Щербакова Е. И. среди задач по формированию элементарных математических знаний и последующего математического развития детей выделяет главные:
-приобретение знаний о множестве, числе, величине, форме, пространстве и времени как основах математического развития;
-формирование широкой начальной ориентации в количественных, пространственных и временных отношениях окружающей действительности;
-формирование навыков и умений в счете, вычислениях, измерении, моделировании, общеучебных умений;
-овладение математической терминологией;
-развитие познавательных интересов и способностей, логического мышления, общее интеллектуальное развитие ребенка.
Эти задачи чаще всего решаются воспитателем одновременно на каждом занятии по математике, а также в процессе организации разных видов самостоятельной детской деятельности. Многочисленные психолого-педагогические исследования и передовой педагогический опыт работы в дошкольных учреждениях показывают, что только правильно организованная детская деятельность и систематическое обучение обеспечивают своевременное математическое развитие дошкольника.
Конструкторская деятельность и ее значение в развитии детей раннего возраста Конструкторская деятельность и ее значение в развитии детей раннего возраста Термин «конструирование» означает приведение в определенное.
Консультация для педагогов и родителей «Кубики, их многообразие и значение в развитии ребенка дошкольного возраста» Кубики – незаменимая во все времена игрушка, позволяющая развивать моторику и воображение ребенка, знакомить его с цветом и формой. Бывают.
Математическое пособие для детей дошкольного возраста Многофункциональное пособие по ФЭМП изготовленное своими руками может быть использовано на занятиях, в индивидуально работе с ребёнком.
Математическое пособие для детей старшего дошкольного возраста «Профессор Плюс» Математика – наука сложная. В старшем дошкольном возрасте содержание знаний усложняется, и нам, воспитателям, приходится думать, как преподнести.
Творческий отчет «Значение дидактических игр в развитии речи у детей дошкольного возраста» Дошкольный возраст важный этап в жизни ребенка. В этот период осуществляется развитие образных форм познания действительности, это восприятие.
Значение дидактической игры в развитии речи детей дошкольного возраста «Ребенок играет и словом и в слове. Именно на игре словом ребенок учится тонкостям родного языка, усваивает музыку его и то, что филологи.
Значение и использование здоровьесберегающих технологий при развитии певческих навыков детей младшего возраста Муниципальное бюджетное дошкольное образовательное учреждение «Детский сад № 194» Методическая разработка по теме «Значение и использование.
Значение конструктивной деятельности в развитии детей младшего возраста. Консультация для родителей Конструктивная деятельность тесно связана с игрой и является деятельностью, отвечающей интересам детей, а также средством всестороннего.
Значение рисования в развитии детей дошкольного возраста Рисование является одним из интересных и важных видов творческой деятельности детей дошкольного возраста. Рисуя, ребенок развивает себя.