Что означает преобразовать в многочлен стандартного вида
Учимся приводить многочлены к стандартному виду.
Изучая начальные сведения о многочленах, мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду. В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.
Навигация по странице.
Что значит привести многочлен к стандартному виду?
Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.
Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям. В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.
Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.
Как привести многочлен к стандартному виду?
Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.
По определению каждый член многочлена стандартного вида является одночленом стандартного вида, и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду:
В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.
Примеры, решения
Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.
Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.
Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.
Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как
. В нем есть подобные члены, поэтому нужно провести приведение подобных членов:
Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.
Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.
Сначала приводим все члены многочлена к стандартному виду: .
Теперь приводим подобные члены:
Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена, которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.
Многочлен, его стандартный вид, степень и коэффициенты членов
После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.
Многочлен и его члены – определения и примеры
Определение многочлена было дано еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.
Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.
Рассмотрим еще определения.
Членами многочлена называются его составляющие одночлены.
Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.
Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.
Многочлен стандартного вида
У всех одночленов и многочленов имеются свои определенные названия.
Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.
Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.
Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.
Степень многочлена – как ее найти?
Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.
Следует выяснить, каким образом находится сама степень.
Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.
Для начала представим многочлен в стандартном виде. Получим выражение вида:
3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = ( 3 · a 12 − 2 · a 12 − a 12 ) − 2 · ( a · a ) · ( b · b ) · ( c · c ) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2
Коэффициенты членов многочлена
Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.
Многочлен стандартного вида
Что такое многочлен стандартного вида? Как привести многочлен к стандартному виду?
Многочлен стандартного вида — это многочлен, в котором каждый член — одночлен стандартного вида и многочлен не содержит подобных членов.
Любой многочлен можно привести к стандартному виду.
Чтобы привести многочлен к стандартному виду, нужно:
1) Каждый член многочлена представить в стандартном виде;
2) Привести подобные члены многочлена.
Представить многочлен в стандартном виде:
Удобно подчеркнуть подобные члены многочлена вместе со знаком.
Чтобы привести подобные члены многочлена, складываем их коэффициенты и результат умножаем на буквенную часть.
Сначала входящие в данный многочлен одночлены приводим к стандартному виду:
Теперь приводим подобные члены многочлена:
В алгебре принято многочлены всегда приводить к стандартному виду.
Стандартный вид многочлена
Калькулятор отображает многочлен нескольких переменных в стандартном виде. Есть возможность выбрать порядок одночленов.
Калькулятор далее представляет входной многочлен нескольких переменных в стандартном виде (раскрывает скобки, возводит в степень и приводит подобные члены). Переменные многочлена можно задать строчными английскими буквами или в виде мультииндекса (массива степеней переменных). Например, записи 3a^2bd +c и 3[2 1 0 1] + [0 0 1] эквивалентны. Вывод результата возможен в виде буквенной и индексной записях, либо в также в виде мультииндекса. Также выводится степень многочлена и вектор степеней одночленов. Коэффициенты результирующего многочлена рассчитываются в поле рациональных или вещественных чисел.
Стандартный вид многочлена
Одночлен
Пример: мультииндекс одночлена x 2 y 3 z = (2,3,1)
Степенью одночлена называется сумма всех показателей степеней переменных этого одночлена:
Например, степень одночлена: x 2 y 3 z равна 2+3+1 = 6
Многочлен
Многочлен в стандартном виде это конечная сумма одночленов помноженных на коэффициенты:
Степенью многочлена deg(f) называется максимальная степень |a| всех одночленов многочлена, с ненулевыми коэффициентами.
В отличие от многочленов одной переменной, многочлены многих переменных могут иметь несколько одночленов с одинаковой степенью.
В связи с этим возникает вопрос определения порядка на множестве членов многочлена.
Порядок членов многочлена 1
Известно несколько способов задания порядка членов многочлена.
Лексикографический порядок
Градуированный лексикографический порядок
Градуированный обратный лексикографический порядок
Д. Кокс, О. Литл, Д. О’Ши Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. Пер. с английского. М.: Мир 2000 ↩
Преобразование целого выражения в многочлен
Урок 37. Алгебра 7 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Преобразование целого выражения в многочлен»
· ввести понятие «целое выражение»;
· показать, что любое целое выражение можно представить в виде многочлена;
· показать способ определения целого выражения;
· показать способ преобразования целого выражения в многочлен стандартного вида.
В первую очередь необходимо выяснить, какие же выражения называют целыми.
Посмотрите внимательно на следующие выражения
Они составлены из чисел и переменных с помощью действий сложения, вычитания и умножения. Также некоторые из выражений содержат степени.
Такие выражения называют целыми. Причём если выражение содержит, кроме действий сложения, вычитания и умножения, действие деление на число, не равное нулю, то оно также является целым, так как действие деление можно заменить умножением на число обратное делителю.
Следующее же выражение не является целым, так содержит деление на выражение с переменной.
Обратите внимание, что среди целых выражений есть многочлены и одночлены.
Нам с вами известно, что сумму, разность и произведение многочленов можно преобразовать в многочлен. Поэтому любое целое выражение можно представить в виде многочлена.
Прежде, чем рассмотреть примеры преобразования целого выражения в многочлен, вспомним, что если перед скобками стоит знак плюс, то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки.
Если же перед скобками стоит знак минус, то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки, на противоположный.
Также вспомним, что при умножении одночлена на многочлен надо умножить одночлен на каждый член многочлена.
А при умножении многочлена на многочлен надо каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.
Ну а теперь давайте рассмотрим примеры.
Итак, чтобы преобразовать целое выражение в многочлен, надо:
1. раскрыть скобки, если они есть;
2. применить формулы сокращённого умножения, если возможно;
3. при необходимости привести подобные слагаемые, чтобы получить многочлен стандартного вида.
Помним, что многочленом стандартного вида называется многочлен, все члены которого имеют стандартный вид и среди них нет подобных.