Что показывает ошибка аппроксимации
Средняя ошибка аппроксимации
По семи территориям Уральского района за 199Х г. известны значения двух признаков.
Район | Расходы на покупку продовольственных товаров в общих расходах, %, у | Среднедневная заработная плата одного работающего, руб., х |
Удмуртская респ. | 68,8 | 45,1 |
Свердловская обл. | 61,2 | 59,0 |
Башкортостан | 59,9 | 57,2 |
Челябинская обл. | 56,7 | 61,8 |
Пермская обл. | 55,0 | 58,8 |
Курганская обл. | 54,3 | 47,2 |
Оренбургская обл. | 49,3 | 55,2 |
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации Аср и F-критерий Фишера.
Для наших данных система уравнений имеет вид
F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F b
в) показательная регрессия;
г) модель равносторонней гиперболы.
Система нормальных уравнений.
Для наших данных система уравнений имеет вид
7a + 0.1291b = 405.2
0.1291a + 0.0024b = 7.51
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 1054.67, a = 38.44
Уравнение регрессии:
y = 1054.67 / x + 38.44
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.
Средняя ошибка аппроксимации
Фактические значения результативного признака отличаются от теоретических, рассчитанных по уравнению регрессии. Чем меньше эти отличия, тем ближе теоретические значения к эмпирическим данным, тем лучше качество модели. Величина отклонений фактических и расчетных значений результативного признака каждому наблюдению представляет собой ошибку аппроксимации. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.
Поскольку может быть величиной как положительной, так и отрицательной, ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Такие ошибки являются относительными, а отклонения можно рассматривать как абсолютные ошибки аппроксимации.
Для того, чтобы иметь общее суждение о качестве модели из относительных отклонений, находят среднюю ошибку аппроксимации как
Ошибка аппроксимации в пределах 5-7 % свидетельствует о хорошем подборе модели к исходным данным.
Возможно и другое определение средней ошибки аппроксимации:
Для расчета средней ошибки аппроксимации в стандартных программах чаще используется вторая формула.
Средняя ошибка аппроксимации
Фактические значения результативного признака отличаются от теоретических, рассчитанных по уравнению регрессии. Чем меньше эти отличия, тем ближе теоретические значения к эмпирическим данным, тем лучше качество модели. Величина отклонений фактических и расчетных значений результативного признака каждому наблюдению представляет собой ошибку аппроксимации. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Отклонения (y – ) несравнимы между собой, исключая величину, равную нулю. Так, если для одного наблюдения y –
= 5, а для другого – 10, то это не означает, что во втором случае модель дает вдвое худший результат. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям. Например, если для первого наблюдения y = 20, а для второго y = 50, ошибка аппроксимации составит 25 % для первого наблюдения и 20 % – для второго.
Поскольку (y – ) может быть величиной как положительной, так и отрицательной, ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Отклонения (y – ) можно рассматривать как абсолютную ошибку аппроксимации, а
– как относительную ошибку аппроксимации. Для того, чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, находят среднюю ошибку аппроксимации как среднюю арифметическую простую
. (2.38)
По нашим данным представим расчет средней ошибки аппроксимации для уравнения Y = 6,136 × Х 0,474 в следующей таблице.
Таблица. Расчет средней ошибки аппроксимации
y | yx | y – | |
6 | 6,135947 | -0,135946847 | 0,022658 |
9 | 8,524199 | 0,475801308 | 0,052867 |
10 | 10,33165 | -0,331653106 | 0,033165 |
12 | 11,84201 | 0,157986835 | 0,013166 |
13 | 13,164 | -0,163999272 | 0,012615 |
Итого | 0,134471 |
A = (0,1345 / 5) × 100 = 2,69 %, что говорит о хорошем качестве уравнения регрессии, ибо ошибка аппроксимации в пределах 5-7 % свидетельствует о хорошем подборе модели к исходным данным.
Возможно и другое определение средней ошибки аппроксимации:
(2.39)
Для нашего примера эта величина составит:
.
Для расчета средней ошибки аппроксимации в стандартных программах чаще используется формула (2.39).
Аналогично определяется средняя ошибка аппроксимации и для уравнения параболы.
Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
1) быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то нужно придать ему количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости учитывается место нахождения недвижимости: районы могут быть проранжированы);
2) не должны быть коррелированны между собой и тем более находиться в точной функциональной связи.
Включение в модель факторов с высокой интеркорреляцией, когда ryx1
По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы всегда будут действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.
Если рассматривается регрессия y = a + b × x + c × z + d × v + e, то для расчета параметров с применением МНК предполагается равенство
где S 2 y – общая сумма квадратов отклонений ; S 2 факт – факторная (объясненная) сумма квадратов отклонений
; S 2 e – остаточная сумма квадратов отклонений
.
В свою очередь, при независимости факторов друг от друга выполнимо равенство
где S 2 x, S 2 z, S 2 v – суммы квадратов отклонений, обусловленные влиянием соответствующих факторов.
Если же факторы интеркоррелированы, то данное равенство нарушается.
Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам:
– затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
– оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величина, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
Для оценки факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.
Если бы факторы не коррелировали между собой, то матрицы парных коэффициентов корреляции между ними была бы единичной, поскольку все недиагональные элементы rxixj (xi ¹ xj) были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных,
матрица коэффициентов корреляции между факторами имела бы определитель, равный единице
,
Если же между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю
.
Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.
Оценка значимости мультиколлинеарности факторов может быть проведена методом испытания гипотезы о независимости переменных H0: DetïRï = 1. Доказано, что величина имеет приближенное распределение c 2 с df = m × (m – 1)/2 степенями свободы. Если фактическое значение c 2 превосходит табличное (критическое): c 2 факт > c 2 табл(df,a) то гипотеза H0 отклоняется. Это означает, что DetïRï ¹ 1, недиагональные ненулевые коэффициенты корреляции указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.
Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение коэффициента множественной детерминации к единице, тем сильна проявляется мультиколлинеарность факторов. Сравнивая между собой коэффициенты множественной детерминации факторов R 2 x1ïx2x3…xp; R 2 x2ïx1x3…xp и т.п., можно выделить переменные, ответственные за мультиколлинеарность, следовательно, можно решать проблему отбора факторов, оставляя в уравнении факторы с минимальной величиной коэффициента множественной детерминации.
Имеется ряд подходов преодоления сильной межфакторной корреляции. Самый простой из них состоит в исключении из модели одного или нескольких факторов. Другой путь связан с преобразованием факторов, при котором уменьшается корреляция между ними. Например, при построении модели на основе рядов динамики переходят от первоначальных данных к первым разностям уровней Dy = yt – yt–1, чтобы исключить влияние тенденции, или используются такие методы, которые сводят к нулю межфакторную корреляцию, т.е. переходят от исходных переменных к их линейным комбинациям, не коррелированным друг с другом (метод главных компонент).
Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если y = f(x1, x2, x3). то можно построить следующее совмещенное уравнение:
Рассматриваемое уравнение включает эффект взаимодействия первого порядка. Можно включать в модель и взаимодействие более высоких порядков, если будет доказана его статистическая значимость, например включение взаимодействия второго порядка b123 × x1× x2 × x3 и т.д. Как правила, взаимодействие третьего и более высоких порядков оказывается статистически незначимым; совмещенные уравнения регрессии ограничиваются взаимодействием первого и второго порядков. Но и оно может оказаться несущественным. Тогда нецелесообразно включать в модель взаимодействие всех факторов и всех порядков. Так, если анализ совмещенного уравнения показал значимость только взаимодействия факторов x1×и x3, то уравнение будет иметь вид:
Взаимодействие факторов x1×и x3 означает, что на разных уровнях фактора x3 влияние фактора x1×на y будет неодинаково, т.е. оно зависит от значений фактора x3. На рис. 3.1 взаимодействие факторов представляется непараллельными линиями связи x1×с результатом y. И, наоборот, параллельные линии влияния фактора x1×на y при разных уровнях фактора x3 означают отсутствие взаимодействия факторов x1×и x3.
Рис. 3.1. Графическая иллюстрация взаимодействия факторов
Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинаций азота и фосфора).
Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к уравнениям приведенной формы. С этой целью в уравнение регрессии подставляют рассматриваемый фактор, выраженный из другого уравнения.
Пусть, например, рассматривается двухфакторная регрессия вида yx = a + b1 × x1 + b2 × x2, для которой факторы x1×и x2 обнаруживают высокую корреляцию. Если исключить один из факторов, то мы придем к уравнению парной регрессии. Вместе с тем можно оставить факторы в модели, но исследовать данное двухфакторное уравнение регрессии совместно с другим уравнением, в котором фактор (например, x2) рассматривается как зависимая переменная. Предположим, что x2 = A + B ×y + C × x3. Подставив это уравнение в искомое вместо x2, получим:
Если (1 – b2 × B) ¹ 0, то, разделив обе части равенства на (1 – b2 × B), получим уравнение вида
,
которое принято называть приведенной формой уравнения для определения результативного признака y. Это уравнение может быть представлено в виде
К нему для оценки параметров может быть применен метод наименьших квадратов.
Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм её решения на компьютере.
Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:
– шаговый регрессионный анализ.
Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).
На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедуре отсева факторов. Отсев факторов можно проводить и по t-критерию Стьюдента для коэффициентов регрессии: из уравнения исключаются факторы с величиной t-критерия меньше табличного. Так, например, уравнение регрессии составило:
В скобках приведены фактические значения t-критерия для соответствующих коэффициентов регрессии, как правило, при t
Что показывает ошибка аппроксимации
Оценка этой формы связи по коэффициенту множественной корреляции и средней ошибке аппроксимации показывает, что адекватность данной модели не подтверждается. Действительно, хотя значение коэффициента достаточно высокое (0,92), средняя ошибка аппроксимации составляет более 10% (I = 14,5%). Поэтому данная форма должна быть исключена из перебора известных уравнений регрессии. [c.29]
Анализ полученной формы связи по той же причине, что и в первом случае, позволяет сделать вывод о непригодности и этой модели. Коэффициент множественной корреляции хотя и имеет более высокое значение, чем в линейной зависимости (0,93), но по величине средней ошибки аппроксимации (б = 12,4%) это уравнение регрессии подлежит исключению из дальнейшего перебора. [c.29]
Последняя модель себестоимости добычи нефти, как показывает оценка ее по известным критериям, удовлетворяет условиям адекватности. Коэффициент множественной корреляции R составляет 0,98, что свидетельствует о том, что колеблемость исследуемого показателя более чем на 96 % определяется факторами, включенными в эту модель. При оценке по f-критерию (t R = 30,5) можно утверждать, что с вероятностью 0,99 факторы, включенные в модель, имеют существенную связь с исследуемым показателем (t a n = 2,58). Средняя ошибка аппроксимации составляет всего лишь 2,9 %, а F-критерий, характеризующий уровень остаточной дисперсии, превышает критическое (табличное) значение в четыре раза. К этому следует добавить, что полученная модель себестоимости добычи нефти представляет собой достаточно простую форму связи, легко решается и поддается экономической интерпретации. [c.30]
Оценка полученной модели по статистическим характеристикам показывает, что колеблемость затрат исследуемой подсистемы на 85 % обусловлена колеблемостью факторов, включенных в модель, коэффициент множественной корреляции высокий (/ = 0,92) и существенный (f = = 39,8), модель является адекватной, средняя ошибка аппроксимации (ё = 5,7%) меньше 10%. [c.39]
Чем продолжительнее период, по данным которого построены модели, тем меньше темп роста ошибки аппроксимации при прочих равных условиях. Следовательно, чем короче период упреждения, тем короче следует брать и период анализа, и, наоборот, при долгосрочном планировании необходимо использовать максимально возможную продолжитель- [c.64]
Статистический анализ показывает, что уравнение значимо Рф = 5,054 при /»табл = 3,01, корреляционное отношение равно 0,9959, ее»стандартная ошибка равна 0,0015. Среднее квадратическое отклонение расчетной себестоимости от фактической равно 0,018. Средняя ошибка аппроксимации 1,1%. [c.90]
Средняя ошибка аппроксимации [c.94]
Средняя ошибка аппроксимации. [c.95]
В случаях, когда трудно обосновать форму зависимости, решение задачи можно провести по разным моделям и сравнить полученные результаты. Адекватность разных моделей фактическим зависимостям проверяется по критерию Фишера, показателю средней ошибки аппроксимации и величине множественного коэффициента детерминации, о которых речь пойдет несколько позже (см. 7.4). [c.144]
Для того чтобы убедиться в надежности уравнения связи и правомерности его использования для практической цели, необходимо дать статистическую оценку надежности показателей связи. Для этого используются критерий Фишера (F-отношение), средняя ошибка аппроксимации ( ), коэффициенты множественной корреляции (/ ) и детерминации (D). [c.151]
Для статистической оценки точности уравнения связи используется также средняя ошибка аппроксимации [c.152]
Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической (эмпиричной), тем меньше средняя ошибка аппроксимации. В нашем примере она составляет 0,0364, или 3,64 %. Учитывая, что в экономических расчетах допускается погрешность 5-8 %, можно сделать вывод, что исследуемое уравнение связи довольно точно описывает изучаемые зависимости. [c.152]
После построения уравнения регрессии необходимо сделать проверку его значимости с помощью специальных критериев установить, не является ли полученная зависимость, выраженная уравнением регрессии, случайной, т.е. можно ли ее использовать в прогнозных целях и для факторного анализа. В статистике разработаны методики строгой проверки значимости коэффициентов регрессии с помощью дисперсионного анализа и расчета специальных критериев (например, F-критерия). Нестрогая проверка может быть выполнена путем расчета среднего относительного линейного отклонения (ё), называемого средней ошибкой аппроксимации [c.123]
Модель считается адекватной, т.е. пригодной для практического использования, если средняя ошибка аппроксимации не превосходит 15%. [c.123]
Подобное обоснование является приблизительным и нуждается в дальнейшем уточнении с помощью ошибки аппроксимации. [c.50]
Наибольшее значение ошибки аппроксимации свидетельствует о том, что оцениваемая модель дает наиболее адекватное описание формы взаимосвязи. Причем ошибка аппроксимации не должна превышать 0,2, или 20%. [c.52]
Подставляя последовательно значения времени /, получим теоретические уровни товарооборота. Ошибка аппроксимации для прямолинейной формы тренда составит [c.184]
Далее рассчитывается ошибка аппроксимации для функции тренда в виде параболы второго порядка по формуле [c.187]
Для повышения надежности прогноза потребности в нефтепродуктах по управлению в целом и определения границ его достоверности на всех этапах прогнозирования предусматривается проведение верификации. При верификации принимаются в расчет не все частные прогнозы, а только те из них, которые удовлетворяют требованиям статистической надежности, дают наименьшую ошибку аппроксимации, подтверждаются проверкой ретроспективным методом и дают результаты, близкие к фактическим значениям за последний год ретроспективного периода. Для облегчения проведения расчетов по алгоритму (рис. 7) на каждом этапе прогнозирования (кратко-, средне- и долгосрочный прогнозы) составляются подсобные таблицы по форме 010107 (табл. 6). [c.63]
Очевидно, что ошибки аппроксимации носят непериодический характер. В противном случае нужно было бы повторить всю процедуру, используя в качестве исходной выборки эти ошибки, и повторять ее до тех пор, пока не будут выделены все значимые гармоники. [c.137]
Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации. [c.6]
А = 8,0%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах. Показательная функция чуть хуже, чем степенная, она описывает изучаемую зависимость. [c.15]
Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации. [c.16]
Оцените качество модели, определив ошибку аппроксимации, индекс корреляции и F-критерий Фишера. [c.32]
Оцените качество модели. Для этого а) определите ошибку аппроксимации t б) найдите показатель тесноты связи прибыли с исследуемым в мо- [c.33]
Оцените с помощью средней ошибки аппроксимации качество уравнений. [c.38]
Оцените качество уравнений с помощью средней ошибки аппроксимации. [c.42]
Оцените качество уравнения через среднюю ошибку аппроксимации. [c.92]
Оцените качество каждого тренда через среднюю ошибку аппроксимации, линейный коэффициент автокорреляции отклонений. [c.166]
СРЕДНЯЯ ОШИБКА АППРОКСИМАЦИИ [c.87]
Параметры моделей и выбор формы связи, определяющие уровень затрат в зависимости от значений отобранных факторов, вычисляются по методике, изложенной в работе [51]. Затем исследуется характер изменения случайных отклонений (ошибки аппроксимации) по каждому НГДУ отдельно. Если обнаружится определенная закономерность их изменений, то вычисляется функция их изменения во времени, и далее плановый [c.68]
Такого рода характеристика явлений, влияющих на уровень и динамику валютного курса, является непременным этапом, предшествующим самостоятельному статистическому анализу факторов на основе конкретного цифрового материала. Дальнейший анализ выглядит чаще как моделирование взаимосвязей и оценка тесноты взаимозависимости (корреляционно-регрессионный анализ). Напомним, что выбор функции осуществляется исходя из показателей значимости уравнения и ошибок аппроксимации. Это относительная ошибка аппроксимации, средняя квадратическая ошибка аппроксимации (6ОСТ) (чем они меньше, тем лучше уравнение) и коэффициент множественной детерминации (R2) или коэффициент множественной корреляции (R) (чем ближе он к 1, тем более вероятность, что уравнение регрессии носит совершенно случайный характер). Для проверки значимости используют F-критерий с распределением Фишера. [c.670]