Что принято за основу классификации титановых сплавов
Классификация титановых сплавов
Титановые сплавы делят на пять групп.
1. α-сплавы: ВТ1-00, ВТ1-0, ВТ5, ВТ5-1.
2. Псевдо-α-сплавы: ОТ4-0, ОТ4-1, ВТ4, ОТ4-2, ВТ18, ВТ20.
Сплавы этих двух групп не упрочняются при термической обработке, поэтому их применяют в отожженном состоянии.
3. (α + β)-сплавы: ВТ6, ВТ3-1, ВТ8, ВТ9, ВТ14, ВТ16, ВТ23, ВТ25, ВТ33. Это мартенситные сплавы, упрочняющиеся при термической обработке. Сплав ВТ25 относят к (α + β)-сплавам с преобладанием α-фазы.
4. (α + β)-сплавы переходного класса: ВТ22, ВТ30. В стабильном состоянии эти сплавы содержат от 25 до 50 % β-фазы, обладают высокой дисперсностью α- и β-фаз, отличаются максимальным эффектом упрочнения при обработке и высокой прокаливаемостью.
5. β-сплавы: ВТ15, ВТ32, 4201. Сплавы с β-структурой находят ограниченное применение. Например, сплав ВТ15 после закалки и старения имеет σв = 1500 МПа при δ = 6 %, однако такую высокую прочность не удается реализовать в сварных соединениях из-за неудовлетворительной свариваемости этого сплава.
По способу производства заготовок сплавы бывают деформируемые и литейные.
В авиационной технике в основном применяют деформируемые сплавы. Литейные сплавы используют для получения фасонных отливок. По составу они практически не отличаются от аналогичных деформируемых, но содержат повышенную концентрацию примесей, которые вносятся дополнительно в сплавы при вакуумном литье. Для фасонного литья применяют сплавы ВТ5Л, ВТ6Л, ВТ14Л, ВТ9Л, ВТ3-1Л. Эти сплавы обладают высокими литейными свойствами.
Деформируемые титановые сплавы дополнительно подразделяют в зависимости от уровня механических свойств на следующие группы:
сплавы повышенной пластичности – ВТ1, ОТ4, ОТ4-1 (δ > 20 %, σв = 600 МПа);
сплавы средней прочности – ВТ5-1, ВТ4, ВТ16, ВТ20 (σв = 600. 1000МПа);
высокопрочные сплавы – ВТ14, ВТ22, ВТ23, ВТ15 (σв = 1000. 1500 МПа);
жаропрочные сплавы – ВТ3-1, ВТ9, ВТ18, ВТ25 (σв = 1000. 1500МПа).
Титановые сплавы применяют до температур 400. 600 °С.
4.2. Титановые α- и псевдо-α сплавы
Титановые α- и псевдо-α сплавы широко применяют для изготовления сварных конструкций силовых узлов крыла, фюзеляжа, обшивки самолета, корпусов компрессоров, дисков, лопаток, колец, опор, деталей второго контура газотурбинных двигателей. Титановые сплавы успешно заменяют стали в ряде нагруженных узлов самолетов и авиационных двигателей, обеспечивая уменьшение массы конструкции летательного аппарата до 20…25 %.
Сплавы с α-структурой лучше, чем (α + β)- и β-сплавы, свариваются, штампуются, обладают наиболее высокой термической стабильностью. В авиастроении успешно применяют α-сплавы ВТ5-1, ОТ4-1, ВТ20, ВТ18У.
Сплав ОТ4-1 относится к первым отечественным α-сплавам. Он обладает удовлетворительной технологической пластичностью при листовой штамповке, хорошо сваривается всеми применяемыми для титана видами сварки, обладает высокой термической стабильностью при длительных нагревах под напряжением, имеет умеренные характеристики прочности и жаропрочности. При комнатной температуре его структура состоит в основном из α-фазы. Сплав применяют для изготовления листов, лент, плит, прутков, поковок, труб, профилей и деталей из них.
Сплав ВТ5-1 является однофазным. Применяют его в виде листов, прутков, поковок, штамповок. После отжига в нем образуется наиболее равновесная и стабильная мелкозернистая структура, обладающая повышенной пластичностью при умеренной прочности. Максимальную прочность сплав приобретает при охлаждении от 800 °С на воздухе, а наиболее высокое сопротивление усталости достигается при равновесной полиэдрической зеренной структуре.
Сплав ВТ20 относится к псевдо-α сплавам, содержит в отожженном состоянии 5. 7 % β-фазы и является сплавом общего назначения. Его структура зависит от температуры и степени горячей деформации, которые определяют текстуру, размеры и морфологию α-фазы. Отжиг сплава при 750 °С снижает наклеп после горячей или холодной деформации и стабилизирует структуру. Легирующие элементы обеспечивают достаточно высокую прочность и пластичность сплава, сохранение высокой работоспособности изготовленных из него деталей при температурах до 450 °С. Сплав ВТ20 применяют для изготовления листов, профилей, штамповок для нагруженных узлов самолета и авиационных двигателей.
Сплав ВТ 18 является одним из наиболее жаропрочных титановых α-сплавов, длительно сохраняющих высокую работоспособность до 550. 600 °С. Его успешно применяют для изготовления лопаток и дисков компрессоров авиационных двигателей. Высокая жаропрочность сплава ВТ18 обеспечивается большим содержанием алюминия и циркония. Оптимальное сочетание прочности и пластичности достигается после отжига при 900. 950 °С в течение 1. 4 ч и охлаждения на воздухе. Структура состоит из α-фазы и небольшого количества β-фазы.
Недостатком сплава BT18 являются плохая свариваемость и сравнительно невысокая технологическая пластичность. Сплав склонен к образованию областей, обогащенных алюминием, содержание которого соответствует стехиометрическому составу фазы Ti3Al. Выделение Ti3Al происходит при содержании алюминия выше 7 % при рабочих температурах 500. 600 °С и сопровождается повышением прочности и жаропрочности при одновременном падении пластичности и ударной вязкости.
Для повышения однородности структуры и уменьшения вероятности получения областей, обогащенных алюминием, разработан сплав ВТ18У, содержащий меньшее количество алюминия и циркония и дополнительно легированный оловом. Сплав ВТ18У применяют для тех же целей, что и сплав ВТ18 (в осевых компрессорах для изготовления дисков).
4.3. Деформируемые титановые (α + β)-сплавы
Для изготовления нагруженных деталей и узлов авиационных конструкций успешно применяют двухфазные титановые (α + β)-сплавы ВТ3-1, ВТ8, ВТ9, ВТ25У, а также ВТ22, который относят к (α + β)-сплавам мартенситного класса с преобладанием α-фазы. Высокое содержание алюминия, а также введение в сплавы олова, циркония, молибдена, хрома, вольфрама и ванадия обеспечивают повышение прочности и жаропрочности сплавов. Преимуществом сплавов с преобладанием α-фазы является способность сохранять прочностные свойства до более высоких температур (рис. 4.1).
Рис. 4.1. Влияние температуры на временное сопротивление псевдо-α (1), отожженных (α + β)- (2) и упрочненных термической обработкой (α + β)-сплавов (3)
В конструкциях, работающих при высоких нагрузках и умеренно высоких температурах, выгоднее использовать (α + β)-сплавы, тогда как при высоких температурах лучше ведут себя детали из жаропрочных α-сплавов.
(α + β)-сплавы упрочняют путем легирования твердых α- и β-растворов, а также в результате дисперсионного твердения при термической обработке. Для жаропрочных (α + β)-сплавов режимы термической обработки назначают из условий повышения и прочности, и жаропрочности, а также термической стабильности сплава в интервале рабочих температур. Кроме того, жаропрочные (α + β)-сплавы должны обладать хорошей вязкостью разрушения, высоким сопротивлением усталости и стойкостью к окислению. Их используют для изготовления дисков и лопаток компрессоров ГТД.
Сплав ВТ22 переходного класса и в стабильном состоянии содержит (25. 50) % (об.) β-фазы. Его структура отличается высокой дисперсностью смеси частиц α- и β-фаз. Обе фазы сильно упрочнены алюминием, молибденом, ванадием, хромом и железом. Сплав ВТ22 характеризуется максимальным эффектом упрочнения при термической обработке и высокой прокаливаемостью.
Температурные ограничения для титановых сплавов обусловлены процессами, связанными с окислением и диффузией элементов, которые приводят к разупрочнению сплавов, потере ими пластичности, увеличению твердости поверхностного слоя.
После упрочняющей термической обработки титановым сплавам устанавливают меньший ресурс. Так, для сплава ВТ3-1 при температуре 400 °С он составляет 1000 ч, а при 450 °С уменьшается до 500 ч. Для сплава ВТ9 при 450 °С ресурс составляет 1000 ч, а при 500 °С – всего 100 ч. Поэтому для деталей, работающих при температурах выше 600 °С, применяют жаропрочные и жаростойкие стали и никелевые сплавы.
Резюме. Титановые сплавы – основной материал компрессорной части ГТД. В настоящее время широкое применение нашли α- и α+β сплавы. Дальнейшие направления развития титановых сплавов может быть связано с обеспечением хорошей вязкости разрушения, высокого сопротивлением усталости и стойкости к окислению. Немаловажное внимание уделяется и совершенствованию технологических процессов обработки титановых сплавов, разработке ресурсосберегающих технологий, таких как сверхпластическая деформация, точная изотермическая штамповка и др.
Дата добавления: 2014-12-23 ; просмотров: 156 ; Нарушение авторских прав
Титановые сплавы
Одним из самых распространенных элементов, который находится в земле, можно назвать титан. Согласно результатам проведенных исследований, он занимает 4-е место по степени распространенности, уступая лидирующие позиции алюминию, железу и магнию. Несмотря на столь большое распространение, титан стал использоваться в промышленности лишь в 20 веке. Титановые сплавы во многом повлияли на развитие ракетостроения и авиации, что связано с сочетанием малой плотности с высокой удельной прочностью, а также коррозионной стойкостью. Рассмотрим все особенности данного материала подробнее.
Общая характеристика титана и его сплавов
Именно основные механические свойства титановых сплавов определяют их большое распространение. Если не уделять внимание химическому составу, то все титановые сплавы можно охарактеризовать следующим образом:
Эти основные преимущества титановых сплавов определили их достаточно большое распространение. Однако, как ранее было отмечено, многое зависит от конкретного химического состава. Примером можно назвать то, что твердость изменяется в зависимости от того, какие именно вещества применяются при легировании.
Важно, что температура плавления может достигать 1700 градусов Цельсия. За счет этого существенно повышается устойчивость состава к нагреву, но также усложняется процесс обработки.
Виды титановых сплавов
Классификация титановых сплавов ведется по достаточно большому количеству признаков. Все сплавы можно разделить на несколько основных групп:
Маркировка титановых сплавов проводится по определенным правилам, которые позволяют определить концентрацию всех элементов. Рассмотрим некоторые из наиболее распространенных разновидностей титановых сплавов подробнее.
Сферы из титанового сплава
Рассматривая наиболее распространенные марки титановых сплавов, следует обратить внимание ВТ1-00 и ВТ1-0. Они относятся к классу технических титанов. В состав данного титанового сплава входит достаточно большое количество различных примесей, которые определяют снижение прочности. Однако за счет снижения прочности существенно повышается пластичность. Высокая технологическая пластичность определяет то, что технический титан можно получить даже при производстве фольги.
Очень часто рассматриваемый состав сплава подвергается нагартовке. За счет этого повышается прочность, но существенно снижается пластичность. Многие специалисты считают, что рассматриваемый метод обработки нельзя назвать лучшим, так как он не оказывает комплексного благоприятного воздействия на основные свойства материала.
Сплав ВТ5 довольно распространен, характеризуется применением в качестве легирующего элемента исключительно алюминия. Важно отметить, что именно алюминий считается самым распространенным легирующим элементом в титановых сплавах. Это связано с нижеприведенными моментами:
В горячем состоянии ВТ5 хорошо куется, прокатывается и штампуется. Именно поэтому его довольно часто применяют для получения поковки, проката или штамповки. Подобная структура может выдержать воздействие не более 400 градусов Цельсия.
Титановый сплав ВТ22 может иметь самую различную структуру, что зависит от химического состава. К эксплуатационным особенностям материала можно отнести следующие моменты:
Существенно повысить эксплуатационные качества титанового сплава ВТ22 можно путем применения сложной технологии отжига. Она предусматривает нагрев до высокой температуры и выдержки в течение нескольких часов, после чего проводится поэтапное охлаждение в печи также с выдержкой в течение длительного периода. После качественного проведения отжига сплав подойдет для изготовления высоконагруженных деталей и конструкций, которые могут нагреваться до температуры более 350 градусов Цельсия. Примером можно назвать элементы фюзеляжа, крыла, детали системы управления или крепления.
Титановый сплав ВТ6 сегодня получил самое широкое распространение за рубежом. Назначение подобного титанового сплава заключается в изготовлении баллонов, которые могут работать под большим давлением. Кроме этого, согласно результатам проведенных исследований, в 50% случаев в авиакосмической промышленности применяется титановый сплав, который по своим эксплуатационным качествам и составу соответствует ВТ6. Стандарт ГОСТ сегодня практически не применяется за рубежом для обозначения титановых и многих других сплавов, что следует учитывать. Для обозначения применяется своя уникальная маркировка.
ВТ6 обладает исключительными эксплуатационными качествами по причине того, что в состав добавляется также ванадий. Этот легирующий элемент характеризуется тем, что повышает не только прочность, но и пластичность.
Данный сплав хорошо деформируется в горячем состоянии, что также можно назвать положительным качеством. При его применении получают трубы, различные профили, плиты, листы, штамповки и многие другие заготовки. Для сваривания можно применять все современные методы, что также существенно расширяет область применения рассматриваемого титанового сплава. Для повышения эксплуатационных качеств также проводится термическая обработка, к примеру, отжиг или закалка. На протяжении длительного времени отжиг проводился при температуре не выше 800 градусов Цельсия, однако результаты проведенных исследований указывают на то, что есть смысл в повышении показателя до 950 градусов Цельсия. Двойной отжиг зачастую проводится для повышения сопротивления коррозионному воздействию.
Внешний вид титановых сплавов
Также большое распространение получил сплав ВТ8. В сравнении с предыдущим он обладает более высокими прочностными и жаропрочными качествами. Достигнуть уникальных эксплуатационных качеств смогли за счет добавления в состав большого количества алюминия и кремния. Стоит учитывать, что максимальная температура, при которой может эксплуатироваться данный титановый сплав около 480 градусов Цельсия. Разновидностью этого состава можно назвать ВТ8-1. Его основными эксплуатационными качествами назовем нижеприведенные моменты:
Для существенно повышения эксплуатационных качеств довольно часто проводится двойной изотермический отжиг. В большинстве случаев данный титановый сплав применяется при производстве поковок, прудков, различных плит, штамповок и других заготовок. Однако стоит учитывать, что особенности состава не позволяют проводить сварочные работы.
Применение титановых сплавов
Рассматривая области применения титановых сплавов отметим, что большая часть разновидностей применяется в авиационной и ракетостроительной сферах, а также в сфере изготовления морских судов. Для изготовления деталей авиадвигателей другие металлы не подходят по причине того, что при нагреве до относительно невысоких температур начинают плавиться, за счет чего происходит деформация конструкции. Также увеличения веса элементов становится причиной потери КПД.
Применим материал при производстве:
В целом можно сказать, что область применения титановых сплавов весьма обширна. При этом проводится легирование, за счет чего существенно повышаются основные эксплуатационные качества материала.
Трубы из титановых сплавов
Термообработка титановых сплавов
Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.
Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.
Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.
Титан и его сплавы
Титан по распространенности в земной коре занимает среди конструкционных металлов четвертое место, уступая лишь алюминию, железу и магнию (рис. 1). Титан обладает удельным весом порядка 4500 кг/м 3 и довольно высокой температурой плавления,
1665± 5 о С. Титан – парамагнитный металл.
Рис. 1. Титанит – потенциальный источник титана (а), брусок кристаллического титана (б)
Титан – твердый металл: он в 12 раз твёрже алюминия, в 4 раза — железа и меди. Титан химически стоек. На поверхности титана легко образуется стойкая оксидная пленка TiO2, вследствие чего он обладает высокой сопротивляемостью коррозии в пресной и морской воде и в некоторых кислотах, устойчив против коррозии под напряжением. Во влажном воздухе, в морской воде и азотной кислоте он противостоит коррозии не хуже нержавеющей стали, а в соляной кислоте во много раз лучше ее. При температурах выше 500°С титан и его сплавы легко окисляются и поглощают водород, который вызывает охрупчивание (водородная хрупкость).
Титан имеет две полиморфные модификации (рис. 2):
Рис. 2. Две полиморфные модификации титана: а – αТi (гексагональная плотноупакованная решётка), б – β-Тi (объёмноцентрированная кристаллическая решётка)
Механические свойства титана.
Примечание. В отличие от мартенсита углеродистых сталей, являющегося раствором внедрения и характеризующегося высокой прочностью и хрупкостью, титановый мартенсит является раствором замещения, и закалка титановых сплавов на мартенсит приводит к небольшому упрочнению и не сопровождается резким снижением пластичности.
Значительное влияние на механические свойства титана оказывают примеси кислорода, водорода, углерода и азота, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, гидриды, карбиды и нитриды, повышая его характеристики прочности при одновременном снижении пластичности. Поэтому содержание этих примесей в титане ограничено сотыми и даже тысячными долями процента. Опасность водородной хрупкости, особенно в напряженных сварных конструкциях ограничивает содержание водорода. В техническом титане оно находится в пределах 0,008 — 0,012%.
Титан обладает высокой прочностью и удельной прочностью и в условиях глубокого холода, сохраняя при этом достаточную пластичность.
Т о С | +20 | -70 | -196 |
δ, % | 20-30 | 10-5 | 3-10 |
σв, МПа | 600-700 | 800…900 | 1000…1200 |
Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ— решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования (рис. 3) благодаря малому соотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов.
Рис. 3. Схемы систем скольжения и двойникования
Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок: ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл.1).
Цифры означают твердость по Бринеллю НВ, ТВ — твердый.
Таблица 1. Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)
Марка | Ti, не менее | Не более | Твердость НВ, 10/1500/30, не более | ||||||
Fe | Si | Ni | C | Cl | N | O | |||
ТГ-90 | 99,74 | 0,05 | 0,01 | 0,04 | 0,02 | 0,08 | 0,02 | 0,04 | 90 |
ТГ-100 | 99,72 | 0,06 | 0,01 | 0,04 | 0,03 | 0,08 | 0,02 | 0,04 | 100 |
ТГ110 | 99,67 | 0,09 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,05 | 110 |
ТГ-120 | 99,64 | 0,11 | 0,02 | 0,04 | 0,03 | 0,08 | 0,02 | 0,06 | 120 |
ТГ-130 | 99,56 | 0,13 | 0,03 | 0,04 | 0,03 | 0,10 | 0,03 | 0,08 | 130 |
ТГ-150 | 99,45 | 0,2 | 0,03 | 0,04 | 0,03 | 0,12 | 0,03 | 0,10 | 150 |
ТГ-Тв | 99,75 | 1,9 | – | – | 0,10 | 0,15 | 0,10 | – | – |
Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.
Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: σв = 375–540 МПа, σ0,2 = 295–410 МПа, δ = 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.
Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется (рис. 4). Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения (рис. 5). Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.
Рис. 4. Заготовка титанового шпангоута истребителя до и после прессования на штамповочном прессе
Рис. 5. Аргонная сварка титана
Примечание. При сварке титана и его сплавов требуется уделить особое внимание чистоте рабочего места. Для сварочных цехов, где производятся работы с различными металлами, необходимо выделить специальную область, которая будет использоваться специально для сварки титана. Место, отведенное для этого, должно быть защищено от потоков воздуха, влаги, пыли, жира и других загрязнений, которые могут препятствовать качественной сварке. Это место должно быть защищено от воздействия таких процессов, как зачистка, резка и окраска. Кроме того, должна быть под контролем и влажность воздуха.
Фазовые превращения в титановых сплавах
На формирование структуры и, следовательно, свойств титановых сплавов решающее влияние оказывают фазовые превращения, связанные с полиморфизмом титана. В табл.2 представлены схемы диаграмм состояния «титан – легирующий элемент», отражающие подразделение легирующих элементов по характеру влияния на полиморфные превращения титана на четыре группы.
Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.
Для титановых сплавов применяют следующие виды термообработки: отжиг, закалка и старение, а также химико-термическая обработка (азотирование, силицирование, оксидирование и др.).
Отжиг проводится для всех титановых сплавов с целью завершения формирования структуры, выравнивания структурной и концентрационной неоднородности, а также механических свойств. Температура отжига должна быть выше температуры рекристаллизации, но ниже температуры перехода в β – состояние во избежание роста зерна. Применяют обычный отжиг, двойной или изотермический (для стабилизации структуры и свойств), неполный (для снятия внутренних напряжений).
Закалка и старение (упрочняющая термообработка) применима к титановым сплавам с (α + β) – структурой. Принцип упрочняющей термообработки заключается в получении при закалке метастабильных фаз β и α с последующем их распаде с выделением дисперсных частиц α и β – фаз при искусственном старении. При этом эффект упрочнения зависит от типа, количества и состава метастабильных фаз, а также дисперсности образовавшихся после старения частиц α и β – фаз.
Химико-термическая обработка проводится для повышения твердости и износостойкости, стойкости к «схватыванию» при работе в условиях трения, усталостной прочности, а также улучшения коррозионной стойкости, жаростойкости и жаропрочности. Практическое применение имеют азотирование, силицирование и некоторые виды диффузионной металлизации.
Промышленные титановые сплавы.
Титановые сплавы по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.
По технологии изготовления титановые сплавы подразделяются на деформируемые и литейные; по уровню механических свойств — на сплавы невысокой прочности и повышенной пластичности, средней прочности, высокопрочные; по условиям применения — на хладостойкие, жаропрочные, коррозионностойкие. По способности упрочняться термообработкой они делятся на упрочняемые и не упрочняемые, по структуре в отожженном состоянии — на α, псевдо-α, (α + β), псевдо-β и β –сплавы (табл.3).
Дефармируемые титановые сплавы
Титановые сплавы невысокой прочности и повышенной пластичности
К этой группе относятся сплавы с пределом прочности σ ≥ 700 МПа, а именно: α – сплавы марок ВТ1-00, ВТ1-0 (технический титан) и сплавы ОТ4- 0, ОТ4-1 (система Ti—Al—Mn), АТ3 (система Ti—Al c небольшими добавками Cr, Fe, Si, B), относящиеся к псевдо – α-сплавам с небольшим количеством β-фазы. Характеристики прочности этих сплавов выше, чем чистого титана благодаря примесям в сплавах ВТ1-00 и ВТ1-0 и незначительному легированию α – и β – стабилизаторами в сплавах ОТ4-0, ОТ4-1, АТ3.
Эти сплавы отличаются высокой пластичностью как в горячем, так и в холодном состоянии, что позволяет получать все виды полуфабрикатов: фольгу, ленту, листы, плиты, поковки, штамповки, профили, трубы и т. п. (рис. 6).
Рис. 6. Изделия из титановых сплавов
Ковка, объемная и листовая штамповка, прокатка, прессование производятся в горячем состоянии. Окончательная прокатка, листовая штамповка, волочение и другие операции производятся в холодном состоянии.
Для снятия внутренних напряжений, образовавшихся в результате механической обработки, листовой штамповки, сварки и др., применяется неполный отжиг.
Указанные сплавы хорошо свариваются сваркой плавлением (аргонодуговая, под флюсом, электрошлаковая) и контактной (точечная, роликовая). При сварке плавлением прочность и пластичность сварного соединения практически аналогичные основному металлу.
Коррозионная стойкость данных сплавов высокая во многих средах (морская вода, хлориды, щелочи, органические кислоты и т. п.), кроме растворов HF, H2SO4, HCl и некоторых других.
Применение. Эти сплавы широко применяются как конструкционные материалы для изготовления практически всех видов полуфабрикатов, деталей и конструкций, включая сварные. Наиболее эффективно их применение в
авиационно-космической технике (рис. 7), в химическом машиностроении, криогенной технике (высокая ударная вязкость сохраняется до –253 o С), (табл. 4), а также в узлах и конструкциях, работающих при температурах до 300–350 ° С.
Рис. 7. Применение титановых сплавов в авиационно-космической технике
Таблица 4 Механические характеристики титановых сплавов при низких температурах
Сплав | σв (МПа) при температуре, ° С | δ (%) при температуре, ° С | КСU, Дж/см 2 при температуре, ° С | |||||
–196 | –253 | –269 | –196 | –253 | –269 | –196 | –253 | |
ВТ1-0 | 920 | 1310 | – | 48 | 24 | – | 220 | 130 |
ВТ5-1 | 1200– 1600 | 1710 | 15 | 8–10 | 9,3 | 40 | 30 | |
ОТ4 | 1430 | 1560 | – | 13 | 16 | – | 50 | 40 |
ОТ4-1 | 1080 | 1390 | – | 19,4 | 17,5 | – | 23 | 30 |
ВТ3-1 | 1650 | 2060 | 2020 | 6,5 | 7,5 | 3 | 30 | 60 |
ВТ6 | 1640 | 1820 | – | 17,8 | 3,5 | – | 39 | 40 |
ВТ6С | 1310 | 1580 | – | 7–10 | 3–6 | – | 40 | 25 |
ВТ14 | 1650 | – | – | 10 | – | – | 40 | – |
Титановые сплавы средней прочности
К этой группе относятся сплавы с пределом прочности σв = 750–1000 МПа, а именно: α – сплавы марок ВТ5 и ВТ5-1; псевдо – α – сплавы марок ОТ4, ВТ20; (α + β) – сплавы марок ПТ3В, а также ВТ6, ВТ6С, ВТ14 в отожженном состоянии. Классификация и химический состав этих сплавов смотри табл. 5.
Сплавы ВТ5, ВТ5-1, ОТ4, ВТ20, ПТ3В, ВТ6С, содержащие небольшое количество β – фазы (2–7 % β – фазы в равновесном состоянии), упрочняющей термообработке не подвергаются и используются в отожженном состоянии. Сплав ВТ6С иногда применяют в термически упрочненном состоянии. Сплавы ВТ6 и ВТ14 используют как в отожженном, так и в термически упрочненном состоянии. В последнем случае их прочность становится выше 1000 МПа, и они будут рассмотрены в разделе, посвященном высокопрочным сплавам.
Рассматриваемые сплавы, наряду с повышенной прочностью, сохраняют удовлетворительную пластичность в холодном состоянии и хорошую пластичность в горячем состоянии, что позволяет получать из них все виды полуфабрикатов: листы, ленту, профили, поковки, штамповки, трубы и др. Исключение составляет сплав ВТ5, из которого листы и плиты не изготавливают из-за невысокой технологической пластичности.
На эту категорию сплавов приходится основной объем производства полуфабрикатов, применяемых в машиностроении.
Все среднепрочные сплавы хорошо свариваются всеми видами сварки, применяемыми для титана. Прочность и пластичность сварного соединения, выполненного сваркой плавлением, близка к прочности и пластичности основного металла (для сплавов ВТ20 и ВТ6С это соотношение составляет 0,9– 0,95). После сварки рекомендован неполный отжиг для снятия внутренних сварочных напряжений.
Обрабатываемость резанием этих сплавов хорошая. Коррозионная стойкость в большинстве агрессивных сред аналогична техническому титану ВТ1-0.
Применение. Данные сплавы рекомендуется применять для изготовления изделий листовой штамповкой (ОТ4, ВТ20), для сварных деталей и узлов, для штампосварных деталей (ВТ5, ВТ5-1, ВТ6С, ВТ20) и др. Сплав ВТ6С широко применяется для изготовления сосудов и ёмкостей высокого давления (рис. 8). Детали и узлы из сплавов ОТ4, ВТ5 могут длительно работать при температурах до 400 ° С и кратковременно — до 750 ° С; из сплавов ВТ5-1, ВТ20 — длительно при температурах до 450–500 ° С и кратковременно — до 800–850 ° С. Сплавы ВТ5-1, ОТ4, ВТ6С также рекомендуются для применения в холодильной и криогенной технике.
Рис. 8. Изделия из титановых сплавов ВТ6С Высокопрочные титановые сплавы
К этой группе относятся сплавы с пределом прочности σв ≥ 1000 МПа, а именно (α + β) – сплавы марок ВТ6, ВТ14, ВТ3-1, ВТ22. Высокая прочность в этих сплавах достигается упрочняющей термообработкой (закалка + старение). Исключение составляет высоколегированный сплав ВТ22, который даже в отожженном состоянии имеет σв > 1000 МПа.
Указанные сплавы наряду с высокой прочностью сохраняют хорошую (ВТ6) и удовлетворительную (ВТ14, ВТ3-1, ВТ22) технологическую пластичность в горячем состоянии, что позволяет получать из них различные полуфабрикаты: листы (кроме ВТ3-1), прутки, плиты, поковки, штамповки, профили и др. Сплавы ВТ6 и ВТ14 в отожженном состоянии (σв ≥ 850 МПа) могут подвергаться холодной листовой штамповке с малыми деформациями.
Несмотря на гетерофазность структуры, рассматриваемые сплавы обладают удовлетворительной свариваемостью всеми видами сварки, применяемыми для титана. Для обеспечения требуемого уровня прочности и пластичности обязательно проводят полный отжиг, а для сплава ВТ14 (при толщине свариваемых деталей 10–18 мм) рекомендуется проводить закалку с последующим старением. При этом прочность сварного соединения (сварка плавлением) составляет не менее 0,9 от прочности основного металла. Пластичность сварного соединения близка к пластичности основного металла.
Обрабатываемость резанием удовлетворительная. Обработку резанием сплавов можно проводить как в отожженном, так и в термически упрочненном состоянии.
Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах, как и технический титан.
Термическая обработка. Сплавы ВТ3-1, ВТ6, ВТ6С, ВТ14, ВТ22 подвергаются закалке и старению. Рекомендуемые режимы нагрева под закалку и старение для монолитных изделий, полуфабрикатов и сварных деталей приведены в табл. 6.6.
Охлаждение при закалке производится в воде, а после старения — на воздухе. Полная прокаливаемость обеспечивается для деталей из сплавов ВТ6, ВТ6С с максимальным сечением до 40 – 45 мм, а из сплавов ВТ3-1, ВТ14, ВТ22 — до 60 мм.
Для обеспечения удовлетворительного сочетания прочности и пластичности сплавов с (α + β) – структурой после закалки и старения необходимо, чтобы их структура перед упрочняющей термической обработкой была равноосной или «корзиночного плетения». Примеры исходных микроструктур, обеспечивающие удовлетворительные свойства, приведены на рис. 9.
Таблица 6. Режимы упрочняющей термической обработки титановых сплавов
Марка сплава | Температура полиморфного превращения Тпп, ° С | Температура нагрева под закалку, ° С | Температура старения, ° С | Продолжительность старения, ч |
ВТ3-1 | 960–1000 | 860–900 | 500–620 | 1–6 |
ВТ6 | 980–1010 | 900–950 | 450–550 | 2–4 |
ВТ6С | 950–990 | 880–930 | 450–500 | 2–4 |
ВТ8, ВТ9 | 980–1020 | 920–940 | 500–600 | 1–6 |
ВТ14 | 920–960 | 870–910 | 480–560 | 8–16 |
ВТ22 | 840–880 | 690–750 | 480–540 | 8–16 |
Рис. 9. Структура ВТ14 сплава перед упрочняющей термообработки
Применение. Высокопрочные титановые сплавы применяются для изготовления деталей и узлов ответственного назначения: сварные конструкции (ВТ6, ВТ14) рис. 10, турбины (ВТ3-1), штампосварные узлы (ВТ14), высоконагруженные детали и штампованные конструкции (ВТ22). Эти сплавы могут длительно работать при температурах до 400 ° С и кратковременно до 750 ° С.
Особенность высокопрочных титановых сплавов как конструкционного материала — их повышенная чувствительность к концентраторам напряжения. Поэтому при конструировании деталей из этих сплавов необходимо учитывать ряд требований (повышенное качество поверхности, увеличение радиусов перехода от одних сечений к другим и т. п.), аналогичных тем, которые существуют при применении высокопрочных сталей.
Рис. 10. Сварная конструкция из ВТ14 сплава
Литейные титановые сплавы
Титановые литейные сплавы подразделяется на 5 групп в зависимости от микроструктуры (α – сплавы, псевдо α – сплавы, α + β сплавы, псевдо β – сплавы, β – сплавы).
В состав титановых сплавов входят алюминий, ванадий, молибден, кремний, хром, цирконий и др. Эти сплавы обладают свойствами, выгодно выделяющих их из остальных сплавов: по прочности они не уступают сталям, имеют достаточно низкую плотность (
4,5 г/мм 3 ), высокую химическую стойкость при температуре до 500 °С, высокую коррозионную стойкость во влажном воздухе, морской воде, азотной и соляной кислоте. Благодаря этим свойствам титановые сплавы интенсивно внедряются в авиа-, ракета- и кораблестроении.
В справочной литературе приводятся химический состав и механические свойства восьми литейных титановых сплавов – ВТ1Л, ВТ5Л, ВТ20Л, ВТ3-1Л, ВТ6Л, ВТ9Л, ВТ14Л, ВТ22Л, где буква В означает наименование организации-разработчика (ВИАМ), Т – титановый сплав, Л – литейный, цифра – номер сплава. Упоминается и новый сплав ВТ35Л.
Титановые сплавы обладают хорошей жидкотекучестью (460–520 мм), небольшой линейной (0,8–1,2 %) и объемной (2,4–3,2%) усадкой.
Сплав ВТ3-1Л относится к числу наиболее освоенных в производстве (рис. 11).
Главный недостаток титановых литейных сплавов – высокая температура плавления (до 1665 °С) и активное взаимодействие (при плавке) со всеми газами и огнеупорными материалами. Отсюда – проблема плавки (вакуумная, в атмосфере нейтральных газов) и материалов для литейных форм, что резко удорожает технологические процессы литья.