Чем измеряют индуктивность прибор
Практически каждый, кто увлекается электроникой, будь то начинающий, или опытный радиолюбитель, просто обязан иметь в своём арсенале приборы для измерений. Наиболее часто приходится измерять, конечно же, напряжение, ток и сопротивление. Чуть реже, в зависимости от специфики работы, — параметры транзисторов, частоту, температуру, ёмкость, индуктивность.
Сейчас в продаже имеется множество недорогих универсальных цифровых измерительных приборов, так называемых мультиметров. С их помощью можно измерять практически все вышеназванные величины. За исключением, пожалуй, индуктивности, которая очень редко встречается в составе комбинированных приборов. В основном, измеритель индуктивности — это отдельный прибор, также его можно встретить совместно с измерителем ёмкости (LC — метр).
Содержание / Contents
Обычно, измерять индуктивность приходится нечасто. В отношении себя я бы даже сказал — очень редко. Выпаял, например, с какой-нибудь платы катушку, а она без маркировки. Интересно же узнать, какая у неё индуктивность, чтобы потом где-нибудь применить.
Или сам намотал катушку, а проверить нечем. Для таких эпизодических измерений я посчитал нерациональным приобретение отдельного прибора. И вот я начал искать какую-нибудь очень простую схему измерителя индуктивности. Особых требований по точности я не предъявлял, — для любительских самоделок это не столь важно.
↑ Схема измерителя индуктивности
В качестве средства измерения и индикации в схеме, описанной в статье, применяется цифровой вольтметр с чувствительностью 200 мВ, который продаётся в виде готового модуля. Я же решил использовать для этой цели обычный цифровой мультиметр UNI-T M838 на пределе измерения 200 мВ постоянного напряжения. Соответственно, схема упрощается, и в итоге приобретает вид приставки к мультиметру.
Я не буду повторять описание работы схемы, всё вы можете прочитать в оригинальной статье (архив внизу). Скажу только немного о калибровке.
↑ Калибровка измерителя индуктивности
В статье рекомендуется следующий способ калибровки (для примера первого диапазона).
Подключаем катушку с индуктивностью 100 мкГ, движком подстроечного резистора P1 устанавливаем на дисплее число 100,0. Затем подключаем катушку с индуктивностью 15 мкГ и тем же подстроечником добиваемся индикации числа 15 с точностью 5%.
Аналогично — в остальных диапазонах. Естественно, что для калибровки нужны точные индуктивности, либо образцовый прибор, которым необходимо измерить имеющиеся у вас индуктивности. У меня, к сожалению, с этим были проблемы, так что нормально откалибровать не получилось. В наличии у меня есть десятка два катушек, выпаянных из разных плат, большинство из них без какой-либо маркировки.
Их я измерил на работе прибором (совсем не образцовым) и записал на кусочках бумажного скотча, которые прилепил к катушкам. Но тут ещё проблема и в том, что у любого прибора тоже есть какая-то своя погрешность.
↑ Плата и сборка
Провода к «бананам» и «крокодилам» берём покороче, чтобы уменьшить вклад их индуктивности при измерениях. Концы проводов припаиваем непосредственно к плате (без разъёмов), и в этом месте фиксируем каплей термоклея.
↑ Корпус
Корпус можно изготовить из любого подходящего материала. Я применил для корпуса кусок пластикового монтажного короба 40×40 из отходов. Подогнал под размеры платы длину и высоту короба, получились габариты 67×40×20.
Сгибы в нужных местах делаем так. Нагреваем феном место сгиба до такой температуры, чтобы пластик размягчился, но ещё не плавился. Затем быстро прикладываем к заранее подготовленной поверхности прямоугольной формы, сгибаем под прямым углом и так держим до тех пор, пока пластик не остынет. Для быстрого остывания лучше прикладывать к металлической поверхности.
Чтобы не получить ожогов, используйте рукавицы или перчатки. Сначала рекомендую потренироваться на небольшом отдельном куске короба.
Затем в нужных местах делаем отверстия. Пластик очень легко обрабатывается, так что на изготовление корпуса уходит мало времени. Крышку я зафиксировал маленькими шурупами.
На принтере распечатал наклейку, сверху заламинировал скотчем и приклеил к крышке двусторонней «самоклейкой».
↑ Примеры измерений
Измерения производятся просто и быстро. Для этого подключаем мультиметр, устанавливаем на нём переключателем DC 200 mV, подаём питание около 15 Вольт на измеритель (можно нестабилизированное — стабилизатор есть на плате), крокодилами цепляемся за выводы катушки. Переключателем диапазонов L-метра выбираем нужный предел измерений.
LC-метр
Прибор LC-метр образуется от сокращенных названий измеряемых единиц. Как вы помните, в электронике индуктивность обозначается буквой L, а емкость буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр — это прибор для измерения значений индуктивности и емкости.
Описание LC-метра
На фото он выглядит примерно вот так:
LC-метр на вид напоминает мультиметр. Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Выводы конденсаторов можно пихать либо в отверстия для конденсаторов, там где написано Cx, а можно и напрямую к щупам. Проще и быстрее все-таки подсоединять к щупам. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра. Как говорится, даже маленький ребенок без труда освоит эту «игрушку».
Как измерить емкость LC-метром
Вот у нас четыре испытуемых конденсатора. Трое из них — неполярные, а один — полярный (черный с серой полосой)
Давайте разберемся с обозначениями на конденсаторе. 0,022 мкФ — это его емкость, то есть 0,022 микрофарад. Далее +-5% — это его погрешность. То есть измеряемое значение может быть на плюс или минус 5% больше или меньше. Если больше или меньше 5 % — значит конденсатор у нас плохой, и его желательно не использовать. Пять процентов от 0,022 — это 0,001. Следовательно, конденсатор можно считать вполне рабочим, если его измеряемая емкость будет находится в диапазоне от 0,021 до 0,023. У нас значение 0,025. Если даже учесть погрешность измерения прибора — это не есть хорошо. Выкидываем его куда подальше. Ах да, обратите внимание на вольты, которые пишутся после процентов. Там написано 200 Вольт — это значит, что он рассчитан на напряжение до 200 Вольт. Если у него в схеме будет на выводах напряжение больше 200 Вольт, то он, скорее всего, выйдет из строя.
Если, например, на конденсаторе указано 220 В, то это — максимальное значение напряжения. С учётом того, что в сетях переменного тока указываются действующие значения, то такой конденсатор не подойдёт для применения при напряжении сети 220 В, так как максимальное значение напряжения в этой сети = 220 В х 1,4 (то есть корень из 2) = 310 В. Конденсатор надо выбрать такой, чтобы он был рассчитан на напряжение намного превышающее 310 Вольт.
Следующий советский конденсатор
0,47 микрофарад. Погрешность +-10 %. Это значит 0,047 в ту и другую сторону. Его можно считать нормальным в диапазоне 0,423-0,517микроФарад. На LC-метре 0,489 — следовательно, он вполне работоспособный.
Следующий импортный конденсатор
И следующий электролитический или, как его называют радиолюбители, электролит. 2,2 микрофарада на 50 Вольт.
Как измерить индуктивность LC-метром
Давайте замеряем индуктивность катушки индуктивности. Берем катушку и цепляемся к ее выводам. 0,029 миллигенри или 29 микрогенри.
Таким же образом можно проверить другие катушки индуктивности.
Где купить LC-метр
В настоящее время прогресс дошел до того, что можно купить универсальный R/L/C/Transistor-metr, который умеет замерять почти все параметры радиоэлектронных компонентов
Ну для эстетов все таки есть нормальные LC-метры, которые в один клик можно приобрести с Китая в интернет-магазине Алиэкспресс 😉
Вот страничка на LC-метры.
Вывод
Катушки индуктивности и конденсаторы — незаменимая вещь в электронике и электротехнике. Очень важно знать их параметры, потому как малейшее отклонение параметра от значения написанного на них может сильно изменить работу схемы, особенно это касается приемопередающей аппаратуры. Измеряйте, измеряйте и еще раз измеряйте!
Как выбрать RLC измеритель
На практике часто нужно определить тип или параметры резисторов, конденсаторов, катушек индуктивности. Радиодетали несовершенны, как всё в нашем мире, зачастую из-за отсутствия или повреждения маркировки, износа или старения радиокомпонентов, определение номинала становится сложной задачей.
Чтобы определить сопротивление, емкость или индуктивность применяют измерители RLC, ESR. В статье разберем на примерах как провести замеры и подскажем, как выбрать оптимальное техническое решение для ваших прикладных задач.
Время чтения: 20 минут |
Что такое измеритель импеданса и тестер полупроводников
Так уж сложилось, что чаще всего радиолюбители пользуются тремя основными приборами — вольтметром, амперметром, омметром, но иногда возникают ситуации, когда для работы необходим более сложный, редкий прибор — измеритель RLC иммитанса или LCR-метр.
При этом конечно подобные измерительные устройства также бывают как профессиональные, так и «любительские», но для начала о том, что это вообще такое.
Как уже следует из названия, прибор позволяет измерять три основных величины:
- L — Индуктивность;
- C — Ёмкость;
- R — Сопротивление;
Конечно емкость и сопротивление могут замерять большинство современных мультиметров, но LCR-метры это делают обычно точнее, в большем диапазоне. Также RLC метры позволяют проводить дополнительные измерения, например добротности, коэффициента потерь, ESR (эквивалентного последовательного сопротивления, сокращенно ЭПС) и делать это на разных частотах.
Подобный функционал необходим там, где уже не хватает обычных мультиметров, например при диагностике неисправностей импульсных блоков питания, преобразователей напряжения, радиочастотных цепей.
Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей
Резисторы – самый распространенный вид радиокомпонентов
Проволочные резисторы отличающиеся по номинальной мощности
Если с распространенными номиналами проблем не возникает, то измерение низкоомных резисторов может добавить сложностей. Обычный мультиметр часто может измерить нормально сопротивление порядка 1-2 Ома и выше, если ниже, то начинает сильно влиять сопротивление проводов, щупов и низкое разрешение. Даже довольно точный UNI-T UT61E имеет дискретность измерения в таком режиме всего 10 мОм, при том что даже у недорого LCR-метра минимальная дискрета 0,1 мОм. высокой точности с возможностью подключения к ПК для снятия логов Соответственно если при помощи мультиметра можно относительно точно измерить резисторы с сопротивлением от 0,05-0,1 Ома, то при измерении 10 мОм он фактически ничего уже измерять не будет, для сравнения ниже измерение двух резисторов номиналом 1 и 2,2 мОм. Часто измерение малых сопротивлений необходимо при проверке, подборе или изготовлении токоизмерительных шунтов. Альтернативный вариант измерения по падению напряжения, но необходим регулируемый блок питания, амперметр, вольтметр. Возможность измерения малых сопротивлений также полезна для выявления таких проблем как неправильная маркировка, особенно низкоомных резисторов. Слева резистор промаркированный как 0,1 Ома, справа как 0,22 Ома, но реально у них почти одно и то же сопротивление. Такие ошибки могут стоить иногда очень дорого. ТранзисторыИзмерение малых сопротивлений поможет в оценке оригинальности полевых транзисторов. Сейчас на рынок все чаще поступают поддельные, перемаркированные транзисторы. Хотя простое измерение сопротивления в открытом состоянии не дает полной информации, оно позволяет быстро понять что перед вами. Для теста кроме измерителя надо иметь только батарейку на 9 вольт. Зачастую данные в даташитах приводятся к напряжению на затворе в 10 вольт, но в данном случае это не существенно. Кроме того корректно измерять сопротивление сток-исток под током, обычно он указан в документации, но это требует наличия как минимум лабораторного блока питания. Чтобы проверить транзистор: подключаем тестовые щупы к выводам сток и исток (обычно средний и правый), подаем 9 вольт на крайние выводы. Постоянно подавать напряжение не требуется, достаточно зарядить затворную емкость, но надо быть внимательным, не подключите случайно батарейку к щупам тестера. Можно даже сначала «зарядить» транзистор, а только потом подключить щупы. КонденсаторыКонденсаторы используются немного реже, но имеют свои особенности. Например в отличие от резисторов они гораздо больше подвержены старению, особенно если речь идет об электролитических конденсаторах установленных в импульсных блоках питания, преобразователях материнских плат, т.п. Особое значение имеет ESR конденсаторов. Когда конденсатор высыхает почти не теряя при этом емкость, у него значительно увеличивается внутреннее сопротивление. Обычным мультиметром такое не диагностируется, можно менять всё подряд, но это не всегда удобно, часто сложно или дорого. Кроме того часто RLC измерители позволяет проводить измерения без выпаивания компонента, хотя, конечно это зависит от схемы включения. Для примера сравнение двух конденсаторов, дешевого китайского и фирменного. Хоть точный, но обычный мультиметр считает их почти одинаковыми, показывая только небольшую разницу в емкости. Но если подключить конденсаторы к LCR-метру, то видно что отличие во внутреннем сопротивлении у них почти в 5 раз! Если планируете применять конденсаторы в импульсных блоках питания, то именно эта разница в сопротивлении скажется на нагреве, а соответственно и на сроке службы, характеристиках блока питания. Конденсаторы с большим внутренним сопротивлением не могут эффективно гасить выбросы. Дроссели и катушки индуктивностиДроссели, трансформаторы и вообще моточные узлы, в отличие от конденсаторов и резисторов проверяются еще сложнее, и редко какой мультиметр вообще способен измерять индуктивность. Измеритель иммитанса облегчает производство моточных узлов, а также поиск межвиткового КЗ. Путем сравнения с исправным компонентом или известным значением можно понять, что трансформатор или дроссель неисправен, так как у него сильно изменится индуктивность. Вообще для поиска короткозамкнутых витков существуют индикаторы, но измеритель иммитанса также определит эту проблему. Например слева исправный трансформатор, справа он же, но с одним накоротко замкнутым витком. Видно, что индуктивность обмотки стала существенно меньше, также виток повлиял и на результат измерения активного сопротивления обмотки. Как итог, несколько рекомендаций перед выбором RLC измерителя:Обзор особенностей, основных технических характеристик и возможностей измерителей LCR-параметровСравним несколько измерителей разной цены, оценим их преимущества, недостатки. Транзистор тестер Маркуса с AVR микроконтроллеромДля начала конечно знаменитый транзистор тестер Маркуса. Он существует в различных вариантах: в корпусе и без, со встроенным частотомером, с проверкой стабилитронов, самодельный или фабричный. Иногда его ошибочно называют ESR-метром – это не совсем корректно, так как изначально это именно тестер транзисторов, а замер ESR – только одна из его функций, которая была добавлена значительно позже. Кроме того, устройство имеет очень большое комьюнити на известном сайте vrtp.ru, где можно узнать как прошить транзистор тестер. | |
Популярные транзистор тестеры EZM Electronics MK-168 и M8
Пожалуй, для новичка – это действительно выход: такой тестер умеет измерять очень много различных компонентов. Особенно удобно проверять транзисторы, например облегчить такую задачу как найти базу эмиттер коллектор транзистора. Он также вполне нормально проверяет конденсаторы с резисторами.
Но более важно то, что этот тестер умеет измерять емкость и индуктивность, причем проводить комплексное измерение. То есть, например, у дросселя показать не только индуктивность, а активное сопротивление обмотки, также у конденсаторов, не только емкость, но и внутреннее сопротивление.
Есть конечно недостатки, из-за простой схемотехники и двухпроводного подключения компонента ему сложно работать с малыми сопротивлениями.
LC метры
Следующим шагом идут устройства на шаг выше – LCR-метры. Они не умеют проверять параметры транзисторов, но индуктивность или малое сопротивление измерят лучше чем универсальный тестер. Типичный представитель — LC100-A компании Juntek.
В отличие от предыдущего прибора прошивка ESR тестера закрыта, потому возможность обновления отсутствует.
У таких измерителей, остался недостаток универсального прибора — двухпроводное подключение. Поэтому на результат измерений может сильно влиять качество контакта с компонентом и длина проводов. Калибровка ESR тестера, конечно решает проблему длины проводов, но лучше использовать провода минимальной длины и большого сечения.
LCR+ESR метры
Для более опытных есть прибор, который относят если не к профессиональным, то уж точно близким к ним — это XJW01. Кроме стандартных замеров, он позволяет проводить комплексные, а также измерять добротность, диэлектрические потери. Тестер имеет четырехпроводное подключение.
XJW01 позволяет проводить измерения на трех частотах: 100 Гц, 1 и 7.8кГц. Продается XJW01 в виде конструктора для сборки, или собранным устройством.
Тестер может работать как в автоматическом режиме выбора измеряемой величины, так и в ручном. Лучше использовать с ручным режимом, так как автоматика иногда неверно определяет тип компонента.
Наличие четырехпроводного подключения сразу ставит XJW01 на голову выше многих других любительских приборов: такое подключение позволяет разделить цепи генератора тока и измерительной части, за счет чего длина проводов и сопротивление контакта перестает влиять на результаты замеров.
Такой тип подключения применяется в профессиональных приборах: даже там где компонент подключается прямо в клеммы прибора, также используется специальная контактная группа, состоящая из четырех контактов.
Для подключения радиодеталей используются зажимы, пинцеты или выносные контактные группы, а так как они также используют разъемы BNC для подключения, то даже фирменные устройства совместимы с показанным выше XJW01.
Фактически все то же самое есть у фирменных, но относительно бюджетных LCR-метров от фирм UNI-T и Hantek. Они также имеют четырехпроводное подключение, измерение емкости, индуктивности и сопротивления включая ESR и комплексные измерения.
Особенно выделяется новая модель измерителя Hantek 1832C, с которой можно проводить измерения на семи вариантах частоты с верхним пределом в 40 кГц. Базовая погрешность до 0,3%, есть автоматический режим измерения, режимы комплексных измерений.
В этой серии есть старшая модель – Hantek 1833C, отличающаяся расширенным диапазоном частот, но имеющая большую цену.
Hantek 1832C имеет большой экран, на который выводится одновременно все результаты тестирования. Подключение тестируемого компонента двух и четырех проводное (трех и пяти с учетом защитного контакта).
Размах тестового сигнала составляет 0,6 вольта, из-за чего можно проводить замеры многих пассивных радиокомпонентов без выпаивания из платы.
Заявленные диапазоны измеряемых параметров:
При этом часто современные устройства могут измерять на частотах до 100 кГц (например Hantek 1833C), что позволяет тестировать компоненты на более высоком уровне. Особенно это помогает при отборе конденсаторов для работы в импульсных блоках питания, частота работы которых находится на сопоставимом значении.
Но нужно быть внимательным: у многих измерителей LCR часто декларируется диапазон частот до 100 кГц. Однако если внимательно прочитать инструкцию, то станет ясно, что в режиме измерения на такой частоте максимальная измеряемая емкость существенно ниже.
Сравнение и рейтинг измерителей импеданса: лучшие измерители RLC 2020 года — основные достоинства и недостатки
Чтобы выбрать оптимальный с точки зрения мастера по ремонту формат или тип прибора для измерения ESR проведем сравнение 3-х основных категорий:
Лучшие LCR-метры профессионального уровня | Цифровой измеритель LCR Hantek 1832C | Основные плюсы: точность измерения, частота до 40 кГц, прибор уже готов к использованию. Минусы: цена |
Высокоточный RLC метр XJW01 | Основные плюсы: точность измерения, измерение индуктивности до 1000 Гн, цена. Минусы: только три тестовые частоты с максимальной в 7,8 кГц, упрощенная индикация, необходимость доработки для автономного питания. | |
Лучший LCR-метр среднего класса | Измеритель LC100-A с щупами для SMD | Основные плюсы: простая конструкция, компактность, большой диапазон измерения, низкая цена. Минусы: невысокая точность измерения, двухпроводная схема подключения компонента. |
Лучшие бюджетные транзистор тестеры базового уровня | Тестер компонентов LCR-T4 | Основные плюсы: очень высокая функциональность, кроме измерения LCR можно тестировать транзисторы, диоды, тиристоры и пр., возможность обновления прошивки, цена. Минусы: не очень высокая точность измерение малых сопротивлений и ESR, двухпроводное подключение компонента, измерение на низкой частоте, невозможность измерения без выпаивания компонента. |
Многофункциональный тестер элементов GM328 ESR |
Из особенностей — измерение на частотах до 200 кГц, до 12 измерений в секунду, напряжение смещения внешнего конденсатора до 40 В.
Резюмируя все вышесказанное подчеркнем, что для начинающего радиолюбителя более чем достаточно обычного транзистор тестера, который перекроет 90% его задач. Опытным скорее всего потребуется измеритель посложнее, и здесь можно смотреть либо на готовые приборы от брендов среднего уровня, либо на конструкторы типа XJW01.
Тем, кто работает в организациях на которые распространяется сфера государственного регулирования обеспечения единства измерений, будут нужны приборы, числящиеся в госреестре, к которым можно заказать метрологическую поверку. Это также отличие профессиональных приборов от любительских, хотя и качественных.