Чем измеряют скорость движения воздуха
Приборы для измерения скорости движения воздуха
Измерение скорости движения воздуха может производиться в разных местах рабочего помещения в зависимости от целей исследования.
Для измерения скорости движения воздуха используют анемометры различных конструкций. Выбор типа анемометра определяется величиной измеряемой скорости движения воздуха.
Замер скорости движения воздуха проводят различными видами анемометров: крыльчатыми (скорость потока от 0,3 до 0,5 м/с), чашечными и индукционными (скорость в пределах 1–30 м/с), термоанемометрами и кататермометрами (скорость не больше 0,5 м/с). Термоанемометры позволяют измерять незначительные колебания потоков воздуха и температуры по объему помещения. Анемометры представлены на рисунке 2.4.
Для измерения интенсивности теплового излучения используют актинометры и радиометры.
Чашечный анемометр воспринимает движение воздуха четырьмя полыми алюминиевыми полушариями, крыльчатый – колесом с пластинками, вращающимися под давлением потока воздуха. Это движение системой зубчатых колёс передаётся стрелкам, движущимся по градуированным циферблатам, по которым производится отсчёт. Измерение скорости движения воздуха производится следующим образом. Записав исходное положение стрелок на циферблатах (стрелки на нуль не ставятся), на маленьких циферблатах учитывают только целые деления, помещают прибор в поток воздуха. На приборе расположен: слева циферблат, показывающий сотни делений, справа – тысячи делений; полный оборот стрелки большого циферблата даёт 100 делений. Анемометр необходимо поместить в поток воздуха таким образом, чтобы ось вращения колеса была для крыльчатого анемометра параллельна, а для чашечного – перпендикулярна направлению потока воздуха. После преодоления чашечками или крылышками анемометра инерции прибора и приобретении ими максимальной скорости, поворотом рычажка, находящегося на боковой стороне прибора, включают стрелки, одновременно включая секундомер для отсчёта времени замера. Через 1 мин, не отводя прибор с места исследования, отключают стрелки прибора, одновременно отмечая время проведения замера (в секундах).
Пересчёт полученного числа оборотов в 1 с на скорость воздушного потока в м/с производится с помощью графиков, представленных на рисунках 2.5а и 2.5б, где по вертикальной оси отложено число оборотов 1 с, а по горизонтали – скорость воздушного потока в м/с.
Рис. 2.5. Графики определения скорости движения воздуха по анемометру:
а – чашечному; б – крыльчатому
Анемометры обладают большой инерцией и начинают работать при движении воздуха со скоростью около 0,5 м/с; давление, создаваемое потоком воздуха меньшей скорости, не в состоянии преодолеть сопротивление оси колеса с крылышками или чашек, поэтому для измерения малых скоростей движения воздуха в помещениях используются кататермометры и термоанемометры. Для определения суммарной охлаждающей способности воздушной среды, для замера малых скоростей движения воздуха (до 2 м/с) пользуются прибором, называемым кататермометром.
Шаровой кататермометр, показанный на рисунке 2.6, представляет собой спиртовой термометр с двумя резервуарами – шаровым внизу и цилиндрическим вверху со шкалой деления от 31 до 41 °С.
Количество теплоты, теряемой кататермометром, при его охлаждении от 38 до 35 °С постоянно при всех условиях среды, а продолжительность охлаждения различна и зависит от взаимного действия всех метеорологических факторов.
Количество теплоты в милликалориях, теряемой с 1 см 2 резервуара кататермометра, называется его фактором F, величина которого указывается на приборе.
Разделив фактор на время (в секундах), в течение которого произошло охлаждение кататермометра от температуры 38 до 36 °С, получаем охлаждающую силу воздуха:
Скорость движения воздуха определяется по формулам, выбираемым в зависимости от величины f/Δt. Величина Δt – это разность между средней температурой кататермометра (36,5 °С) и температурой окружающего воздуха.
Если , то
(2.3)
Если , то
(2.4)
Определение суммарной охлаждающей силы воздушной среды с помощью кататермометра производится следующим образом. Прибор погружают в воду, нагретую до 60–70 °С (но не более 80 °С во избежание закипания спирта в приборе и разрыва резервуара), держат его в воде до заполнения спиртом на 1/3 или 1/4 объёма верхнего расширения капилляра. Затем кататермометр вынимается из воды, тщательно вытирается и подвешивается в точке замера. Прибор охлаждается окружающим воздухом. При достижении столбиком спирта 38 °С включают секундомер и замеряют время охлаждения прибора (Т, с) на 3° (от 38 °С до 35 °С). Далее производятся расчёты.
Скорость движения воздуха менее 1 м/с также измеряется термоанемометрами. В основу работы термоанемометра положен принцип охлаждения датчика, находящегося в воздушном потоке и нагреваемого электрическим током.
Датчик представляет собой полупроводниковое микросопротивление. Питание прибора осуществляется либо от сети напряжением 220 В, либо от малогабаритных батареек напряжением 1,5 В.
Термоанемометром измеряют скорости движения воздуха от 0,03 до 5 м/с при температуре от 1 до 60 °С. С помощью термоанемометра можно измерить и температуру воздуха помещения, для чего производят соответствующее переключение прибора.
Изучение барометрического давления при исследовании метеорологических условий позволяет, с одной стороны, полнее учесть зависимость температуры и относительной влажности воздуха от барометрического давления (при повышении давления температура повышается), а с другой стороны, существенно влияние этого показателя на характерные эндотермические (испарение влаги) и экзотермические (конденсация пара) процессы, оказывающие большое влияние на метеорологический комфорт.
Барометр-анероид (рис. 2.7), предназначен для измерений атмосферного давления в пределах от 600–800 мм рт. ст.
Рис. 2.7. Барометр-анероид:
1 – корпус; 2 – анероид; 3 – стекло; 4 – шкала;
5 – металлическая пластина; 6 – стрелка; 7 – ось
Главная часть барометра-анероида – лёгкая, упругая, полая внутри металлическая коробка (анероид) 2 с гофрированной (волнистой) поверхностью. Воздух из коробочки откачан. Её стенки растягивает пружинящая металлическая пластина 5. К ней при помощи специального механизма прикреплена стрелка 6, которая насажена на ось 7. Конец стрелки передвигается по шкале 4, размеченной в мм рт. ст. Все детали барометра помещены внутрь корпуса 1, закрытого спереди стеклом 3.
Значение давления определяется как алгебраическая сумма отсчёта по шкале и поправок, которые указаны в паспорте прибора.
Интенсивность теплового излучения измеряют актинометрами различных конструкций, действие которых основано на поглощении лучистой энергии и превращении её втепловую, количество которой регистрируется различными способами.
Обеспечение требуемых нормами метеорологических условий и чистоты воздуха в рабочей и обслуживаемой зонах помещений устраивается системами вентиляции, кондиционированием воздуха и отоплением.
Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязнённого воздуха и подачу на место удалённого свежего чистого воздуха.
Промышленную вентиляцию применяют для технических и санитарно-гигиенических целей. Для технических целей её используют в различных технологических процессах, в санитарно-гигиенических целях вентиляцию применяют для создания нормальных условий труда путём правильного воздухообмена в производственных помещениях. Воздухообмен осуществляется путём удаления из помещения воздуха, не отвечающего требованиям санитарных норм, и подачи чистого свежего воздуха. В этом процессе количество удаляемого и подаваемого воздуха должно быть равно.
По способу перемещения воздуха различают два основных вида вентиляции: естественную и механическую.
Выбор системы вентиляции зависит от особенностей производственного процесса, типа здания, характера выделяющихся вредностей и необходимой кратности воздухообмена.
Вентиляцию называют естественной, если воздухообмен осуществляется путём использования естественного движения воздуха в результате теплового или ветрового напора. Тепловой напор создаётся в результате наличия разности температур или разности удельных весов внутреннего и наружного воздуха, а ветровой – движением наружного воздуха.
Естественную вентиляцию называют аэрацией, когда естественный воздухообмен организован, т.е. осуществляется путём регулирования притока и вытяжки, за счёт открытия форточек, стенных клапанов, фонарей.
На практике имеет место и неорганизованный способ естественной вентиляции (инфильтрация), т.е. когда воздухообмен осуществляется за счёт случайных отверстий и щелей в оконных и дверных проёмах, в стенах и перекрытиях зданий и возможен в помещениях, где необходим не более, чем однократный обмен воздуха в час.
При механической вентиляции воздухообмен достигается за счёт разности давлений, создаваемой вентилятором, который приводится в движение электромотором. Механическая вентиляция применяется в случаях, когда тепловыделения в цехе недостаточны для систематического использования аэрации, а также, если количество или токсичность выделяющихся в помещение вредных веществ требует поддержания постоянного воздухообмена независимо от внешних метеорологических условий.
При механической вентиляции воздух почти всегда подвергается предварительной обработке. В зимнее время приточный воздух подогревается, а в летнее – охлаждается. В необходимых случаях воздух увлажняется или осушается. Если удаляемый (подаваемый) механической вентиляцией воздух запылён или содержит в большом количестве вредные газы и пары, он подвергается очистке.
Вентиляционные системы по их назначению подразделяются на вентиляцию приточную, вытяжную и приточно-вытяжную, а также рабочую и аварийную.
В зависимости от места применения различают вентиляцию: общеобменную, предназначенную для обмена воздуха всего помещения, и местную, обеспечивающую приток или вытяжку воздуха непосредственно на рабочем месте, т.е. у мест выделения вредностей.
В тех помещениях, где возможно внезапное поступление токсических или взрывоопасных веществ, устраивается аварийная вытяжная вентиляция, включение которой производится автоматически от показаний газоанализаторов, настроенных на допустимую по санитарным и противопожарным требованиям концентрацию газов или паров.
Независимо от наличия искусственной вентиляции во всех помещениях необходимо предусматривать также устройство проёмов в ограждениях (форточки, фрамуги) для проветривания.
Механическая вентиляция может быть устроена таким образом, что в вентилируемом помещении поддерживаются постоянные, заранее заданные условия температуры, влажности, чистоты воздуха независимо от наружных условий и колебаний режима технологического процесса. Такая вентиляция называется кондиционированием воздуха.
Обычно кондиционированный воздух до поступления в помещение проходит тепловлажную обработку в установках, называемых кондиционерами, которые состоят из устройств нагрева воздуха – калориферов, устройств охлаждения воздуха – поверхностных или контактных воздухоохладителей, устройств осушения воздуха.
Воздух в калориферах получает тепло от оребрённых или гладких поверхностей трубок, по которым протекает теплоноситель – вода или пар.
В поверхностных воздухоохладителях воздух отдаёт тепло поверхностям трубок, по которым пропускается холодная вода или другой холодоноситель. В контактных охладителях происходит непосредственный контакт охлаждаемого воздуха с водой, обычно воздух проходит через дождевое пространство камеры орошения, в которой форсунками разбрызгивается охлаждённая вода. Осушение воздуха производится влагопоглощающими веществами: твёрдыми (силикатель), жидкими (растворы хлористого лития, хлористого кальция).
Количественно любой способ воздухообмена можно охарактеризовать кратностью воздухообмена, т.е. величиной, показывающей, сколько раз в единицу времени (в минуту, час) происходит полная смена всего объёма воздуха в помещении.
Требования безопасности, предъявляемые к системе вентиляции, изложены в ССБТ ГОСТ 12.4.021–75:
— вентиляторы вытяжных систем, обслуживающих помещения с производствами категорий А, Б должны быть выполнены из материалов, не вызывающих искрообразования;
— взрывоопасность и пожароопасность производственных помещений не должна увеличиваться применением вентиляционных систем;
— вентиляционные системы, обслуживающие помещения с производствами категорий А, Б, где возможно появление статического электричества, должны обеспечивать электростатическую безопасность и иметь заземление.
В помещениях с постоянным или длительным (более 24 часов) пребыванием людей следует предусматривать в холодный период года поддержание требуемых температур внутреннего воздуха путём подачи тепла системами отопления.
Системы отопления зданий должны удовлетворять следующим требованиям, т.е. обеспечивать:
— равномерный нагрев воздуха помещения в течение отопительного периода;
— безопасность в отношении пожара и взрывов;
— увязку с системами вентиляции;
— уровни звуковых давлений в пределах нормы;
— наименьшее загрязнение атмосферного воздуха.
Системы отопления разделяются на местные и центральные. В местных системах отопления теплогенератор (котёл), теплопроводы (трубы) и нагревательные приборы (батареи) объединены и находятся в отапливаемом помещении. В центральных системах отопления выработка тепла происходит в каком-либо центре (в котельной), а теплоноситель к нагревательным приборам, находящимся в отапливаемом помещении, подаётся по трубопроводам.
В зависимости от вида используемого теплоносителя отопление бывает водяное, паровое и воздушное.
Системы водяного отопления подразделяются:
— по принципу подводки теплоносителя к нагревательным приборам – на двухтрубные и однотрубные;
— на системы с естественным побуждением (циркуляцией) и искусственным побуждением – с применением циркуляционного насоса;
— на системы с верхней разводкой и системы с нижней разводкой.
Водяное отопление более безопасно (по отношению к паровому), т.к. температура нагревательных приборов не превышает 80–90 °С.
Системы парового отопления подразделяются на системы с верхней разводкой и системы с нижней разводкой. В паровых системах отопления водяной пар, конденсируясь в нагревательных приборах, выделяет скрытую теплоту парообразования. Это тепло передаётся в помещение через стенки нагревательного прибора, а конденсат по конденсатопроводу стекает снова в котел для повторного использования. Недостатки парового отопления: высокая температура нагревательных приборов, которая может привести к возгоранию легковоспламеняющихся веществ и пыли, и как следствие, к ожогам обслуживающего персонала.
Системы воздушного отопления могут быть отопительными, в которых осуществляется полная рециркуляция воздуха, и отопительно-вентиляционными – используемые свежий воздух. Воздушное отопление обладает следующими преимуществами: гигиеничностью, безопасностью, быстрым повышением температуры воздуха в помещении, исключением множества местных нагревательных приборов. Воздушное отопление целесообразно применять для отопления крупных производственных помещений.
Основой аттестации рабочих мест по условиям труда является соответствие параметров воздуха данным, приведённым в таблицах 2.6, 2.7, 2.8 и 2.9, характеризующим класс условий труда по показателям микроклимата для производственных помещений и открытых территорий в различные периоды года.
Приборы для измерения скорости в воздуховоде
Система вентиляции — очень сложная система, которая состоит из многих функциональных составляющих, от воздуховодов до вентиляционных агрегатов. Учитывая то, что для правильной работы такой системы берут во внимание множество показателей, выполнение любого более-менее серьезного проекта системы вентиляции и кондиционирования не обойдется без применения измерительных приборов. А измерение скорости в воздуховодах играет одну из важнейших ролей, для правильного функционирования системы.
Зачем измеряют скорость воздуха
Для систем вентиляции и кондиционирования одним из важнейших факторов является состояние подаваемого воздуха. То есть, его характеристики.
К основным параметрам воздушного потока относятся:
В СНиПах и ГОСТах описаны нормированные показатели для каждого из параметров. В зависимости от проекта величина этих показателей может изменятся в рамках допустимых норм.
Например, для гражданских зданий рекомендуемая скорость движения воздуха по магистральным каналам вентиляции лежит в пределах 5-6 м/с. Правильно выполненный аэродинамический расчет решит задачу подачи воздуха с необходимой скоростью.
Но для того чтобы постоянно соблюдать этот режим скорости, нужно время от времени контролировать скорость перемещения воздуха. Почему? Через некоторое время воздуховоды, каналы вентиляции загрязняются, оборудование может давать сбои, соединения воздуховодов разгерметизируются. Так же, измерения необходимо проводить при плановых проверках, чистках, ремонтах, в общем, при обслуживании вентиляции. Помимо этого, измеряют также скорость движения дымовых газов и др.
Каким прибором измеряют скорость движения воздуха
Все устройства такого типа компактны и несложны в использовании, хотя и тут есть свои тонкости.
Прибор для измерения скорости воздуха называется анемометром
Приборы для измерения скорости воздуха:
Крыльчатые анемометры одни из самых простых по конструкции устройств. Скорость потока определяется скоростью вращения крыльчатки прибора.
Температурные анемометры имеют датчик температуры. В нагретом состоянии он помещается в воздуховод и по мере его остывания определяют скорость воздушного потока.
Ультразвуковыми анемометрами в основном измеряют скорость ветра. Они работают по принципу определения разницы частоты звука в выбранных контрольных точках воздушного потока.
Анемометры с трубкой Пито оснащены специальной трубкой малого диаметра. Ее помещают в середину воздуховода, тем самым измеряя разницу полного и статического давления. Это одни из самых популярных устройств для измерения воздуха в воздуховоде, но при этом у них есть недостаток — невозможность использования, при высокой концентрации пыли.
Дифманометры могут измерять не только скорость, а и расход воздуха. В комплекте из трубкой Пито, этим устройством можно измерять потоки воздуха до 100 м/с.
Балометры наиболее эффективны при измерениях скорости воздуха на выходе из вентиляционных решеток и диффузоров. Они имеют раструб, который захватывает весь воздух, выходящий из вент-решетки, тем самым сводя погрешность измерения к минимуму.
Особенности измерений скорости воздуха
Существуют некоторые нюансы работы с анемометрами разных видов. Как уже упоминалось, анемометры с трубкой Пито нельзя использовать при высоких концентрациях твердых частичек, иначе трубка быстро засоряется, а прибор выходит из строя. Термоанемометры не работают в условиях измерения высоких скоростей воздушного потока — свыше 20 м/с. При измерения скорости в нагретых воздушных потоках (например в газоходах) рекомендуется использовать трубку не из пластика, а из нержавеющей стали.
Как проводят измерения
Измерения скорости воздуха можно проводить в воздуховодах, на выходе из воздуховодов, в вентиляционных решетках или диффузорах.
Когда измерение скорости проводят непосредственно в воздуховоде, то место измерения должно находится после прохождения потока через фильтры. На воздуховоде следует найти специальное отверстие, которое предназначено для контрольно-измерительных операций (такие отверстия часто закрывают питометражной заглушкой). Также можно использовать очистной лючок.
При произведении замеров трубкой Пито, ее вставляют в воздуховод, направляя против потока воздуха.
Заключение
С помощью современных приборов для измерения скорости воздуха можно точно и быстро определить характеристики воздушного потока с минимальной погрешностью, что позволит легко произвести техническое обслуживание системы вентиляции.
Измерение воздушного потока
Приборы для измерения параметров воздушного потока в вентсистемах и газоходах.
При контроле работы отопительного оборудования и наладке систем вентиляции возникает вопрос: какой прибор использовать для измерения в воздуховодах (газоходах) таких параметров воздушного потока, как скорость и объемный расход?
На рынке представлено большое количество приборов: крыльчатые анемометры с различными диаметрами крыльчаток, термоанемометры, дифференциальные манометры с различными пневмометрическими (напорными) трубками, комбинированные приборы и так далее. Выбор прибора зависит от того, где проводятся измерения – на вентиляционной решетке или непосредственно в воздуховоде (газоходе), каков диапазон скоростей, температура, запыленность. В этой статье приводятся принципиальные различия между приборами, а также даны советы по выбору приборов в зависимости от задачи наладчика. Технические характеристики приведенных в статье приборов указаны приблизительно, так как существует множество моделей с различными параметрами.
Конструктивные особенности приборов
На рис. 1 показана линейка приборов для измерения параметров воздушного потока на примере одной из фирм-производителей, в порядке перечисления: термоанемометр, крыльчатый анемометр, дифференциальный манометр, пневмометрические трубки, комбинированный прибор со сменными зондами, воронки для определения объемного расхода.
Дифференциальный манометр (дифманометр) с напорной трубкой
При прохождении через струну потока воздуха она охлажда-ется, и меняется ее сопротивление, кото-рое пропорционально скорости воздуха.
Скорость определяется по числу оборотов вращающейся под действием потока воздуха крыльчатки.
Напорные трубки (Пито, НИИОГАЗ и др.) имеют два канала, соединяемые шлангами со штуцерами дифманометра. Они воспринимают полное и статическое давление в воздуховоде, по которым прибор измеряет динамический напор, на основе которого вычисляются скорость потока и объемный расход.
Воздуховоды, решетки, аттестация рабочих мест. Приме-няется в основном для измерения малых скоростей
Приблизи-тельный диапазон измерения
от 0,2 … 0,6 м/с
до 15 … 40 м/с
2-4 … 20-100 м/с
Скорость потока в соответствии с ГОСТ 17.2.4.06-90 должна быть не менее 4 м/с.
На практике минимальная скорость может быть от 2 до 10 м/с в зависимости от диапазона измерения давления.
Максимальная скорость ограничивается конструктивными особенностями трубки и техническими средствами проведения поверки.
Относительная погрешность по скорости
Средняя рабочая температура зонда (трубки)
Примечание. Функция усреднения, расчета объемного расхода, а в случае с дифманометром и функция расчета скорости могут быть заложены в прибор или отсутствовать.
Примечание. Дифференциальный манометр чаще всего более надежный и доступный прибор, нежели анемометры.
| | | | | |
---|---|---|---|---|---|
Рис. 1. Приборы измерения воздушного потока |
Комбинированный (многофункциональный) прибор – совокупность перечисленных в таблице выше приборов. Представляет собой измерительный блок с возможностью подключения различных зондов: пневмометрических трубок, зондов-крыльчаток, термоанемометров, зондов скорости вращения, зондов температуры и влажности и др.
Воронки используются совместно с анемометрами для измерения объемного расхода на вентиляционных решетках и диффузорах. С воронками процесс измерения становится проще и точнее, т.к. проводится один замер, а не несколько в случае работы только с анемометром с последующим усреднением результатов. Необходимо, чтобы воронка полностью накрывала решетку (диффузор), то есть размер и форма воронки должны соответствовать размеру и форме решетки (диффузора). При использовании воронки в прибор вносится ее коэффициент, поэтому чаще всего анемометр можно использовать только той фирмы, которая производит и воронки к нему.
Примечание. Когда задача наладчика состоит из измерения нескольких параметров (например, давление, скорость, влажность, температура), удобнее всего воспользоваться комбинированным прибором, но это далеко не всегда дешевле, чем приобрести по отдельности дифманометр, анемометр, гигрометр и т.п.
Ограничения по использованию приборов.
Не рекомендуется использовать термоанемометры и трубки Пито для измерения в потоках воздуха с большой запыленностью, а термоанемометры также и в высокоскоростных потоках (более 20 м/с). В трубках Пито отверстие, воспринимающее полное давление, небольшого диаметра, и оно может засориться. А в термоанемометре может порваться чувствительный элемент – «обогреваемая струна». Большая запыленность может быть, например, при производстве цемента, муки, сахара, в металлургии, при наладке вентсистем в период строительства и др.
Нежелательно использование приборов вне диапазонов рабочих температур для измерительного блока и зондов. При высоких температурах рекомендуем использовать пневмометрические трубки из нержавеющей стали или высокотемпературные крыльчатки из специальных сплавов, нежели скоростные зонды, изготовленные с пластиковыми элементами. Например, при измерениях в газоходах, где чаще всего преобладают высокие температуры.
При проведении замеров необходимо, чтобы чувствительный элемент зонда был направлен строго навстречу потоку воздуха. При отклонении от этой оси увеличивается погрешность измерений, причем, чем больше угол отклонения, тем больше погрешность.
Измерение скорости потока и объемного расхода на вентиляционной решетке.
Для проведения измерений можно использовать любой анемометр или термоанемометр, но замеры будут быстрее, правильнее и точнее, если использовать анемометр с крыльчаткой большого диаметра D=60-100 мм, т.к. в этом случае диаметр крыльчатки будет сопоставим с размерами решетки. Для упрощения измерений и уменьшения погрешности можно использовать воронку вместе с прибором. Если необходимо проводить замеры в труднодоступных местах (например, под потолком), можно использовать либо телескопический зонд, либо зонд с удлинителем.
Анемометр с крыльчаткой большого диаметра D=60-100 мм – наиболее подходящий прибор, так как с ним проводится минимальное количество измерений, что дает более точный результат и минимум затраченного времени.
Анемометр с крыльчаткой малого диаметра D=16-25мм и термоанемометр. При использовании этих приборов необходимо провести большее количество измерений, нежели при использовании анемометра с крыльчаткой большого диаметра. Это занимает больше времени, а также уменьшает точность измерений ввиду того, что увеличивается вероятность отклонения от оси измерений при каждом замере.
При использовании любого из вышеперечисленных приборов желательно, чтобы он имел функцию расчета объемного расхода, а также усреднения по времени и количеству замеров. В противном случае придется эти значения рассчитывать самостоятельно. Для начала необходимо провести измерения скорости потока в нескольких точках, распределенных по решетке, например, как показано на рис. 2, после чего рассчитывать среднюю скорость по формуле:
Q = vср x F x 3600 [м3/ч], где vср [м/с] – средняя скорость потока, F [м2] – площадь поперечного сечения на измеряемом участке (решетки).
Анемометры с функциями расчета и усреднения облегчают работу наладчика – автоматизируют процесс расчета значений параметров воздушного потока, хотя измерения по точкам сечения все равно приходиться проводить, а также вводить в прибор площадь сечения.
Рис. 2. Распределение точек замеров в прямоугольном и круглом сечении воздуховода (решетки) по ГОСТ 12.3.018-79.
Воронки и другие принадлежности. При использовании прибора с воронкой отпадает необходимость проведения множества замеров, что дает более точный результат измерений и экономит время. Проводится всего лишь один замер. В случае с диффузором без воронки вообще очень трудно обойтись. После установки воронки с анемометром на вентиляционную решетку (диффузор), как показано на рис. 3, однородный поток воздуха будет устремлен прямо на чувствительный элемент прибора, благодаря чему будет измерена средняя скорость. Анемометры с функцией расчета объемного расхода отображают его автоматически. При этом надо учесть, что у каждой воронки есть свой коэффициент преобразования, который необходимо предварительно ввести в прибор. Если прибор не рассчитывает объемный расход, то его можно вычислить самостоятельно по формуле:
Иногда замеры необходимо производить в труднодоступных местах, когда решетки находятся на потолке или сразу под потолком. В этих случаях, чтобы не пользоваться стремянкой, можно использовать зонды с телескопической рукояткой или удлинители зондов.
Рис. 3. Установка воронки на вентиляционную решетку
Измерение скорости потока и объемного расхода непосредственно в воздуховоде (газоходе).
Перед работой надо убедиться, что в стенке воздуховода есть отверстие, диаметр которого соответствует диаметру измерительного зонда. Необходимо, чтобы это отверстие было на прямом участке воздуховода, так как в этом случае воздушный поток максимально однороден. Прямой участок должен быть длиной не менее пяти диаметров воздуховода. Точка замера выбирается с условием, что до нее должно быть расстояние, равное трем диаметрам воздуховода, и после нее – двум диаметрам.
Для проведения замеров используются термоанемометры, крыльчатые анемометры с малым диаметром крыльчатки D=16-25 мм и дифференциальные манометры с пневмометрическими трубками. Если в воздуховоде бывают малые скорости ( 80°С) используются высокотемпературные крыльчатки.
Измерения проводятся в тех же точках, что и в случае с вентиляционной решеткой. Примерное расположение точек замеров показано на рис. 2.
При использовании анемометров в зависимости от того, есть ли у прибора функция расчета объемного расхода и функция усреднения по времени и количеству замеров, искомые значения средней скорости и объемного расхода либо рассчитывает прибор, либо вычисляются самостоятельно по указанным выше формулам.
Дифференциальные манометры с пневмометрической трубкой используются при высоких температурах (> 80°С) и/или скоростях более 2 м/с. Приборы можно условно разделить на две группы: одни измеряют только перепад давлений (динамический напор), другие еще имеют функцию усреднения и рассчитывают скорость потока и объемный расход. Обращаем внимание, что у пневмометрических трубок, также как и у воронок, есть коэффициенты, которые также предварительно необходимо ввести в прибор. Кроме того, в прибор также надо вводить площадь сечения воздуховода и температуру потока. Можно использовать дифманометры с автоматическим каналом ввода температуры и пневмометрические трубки со встроенной термопарой для упрощения вычислений. Не советуем использовать пневмометрическую трубку Пито в запыленных потоках, в этом случае лучше проводить измерения горячей струной
Измерения проводятся в тех же точках, что и в случае с вентиляционной решеткой. Примерное расположение точек замеров показано на рис. 2.
Для дифманометров из первой группы, которые не имеют функции расчета скорости потока и объемного расхода (например, ДМЦ-01О), упрощенные формулы для расчета искомых значений приведены ниже. Точные формулы с расчетом плотности среды в общем случае см. в ГОСТ 17.2.4.06-90.
Динамический напор, измеряемый прибором:
Pd = Pt – Ps [Па или мм вод.ст.], где Pt – полное давление, Ps – статическое давление.
Скорость потока в точке замера:
— для Pdi в [Па] и
— для Pdi в [мм вод.ст.],
где Pdi – динамический напор в точке замера, Тр [°С] – температура
среды, Кт – коэффициент пневмометрической трубки.
Среднее значение скорости потока:
Объемный расход:
Q = vср x F x 3600 [м3/ч], где vср [м/с] – средняя скорость потока, F [м2] – площадь поперечного сечения на измеряемом участке.
Блок-схема выбора прибора.
Популярные приборы.
Наша компания на протяжении более 20 лет профессионально занимается приборами для измерения параметров воздушного потока: поставка, продажа, поверка, ремонт. Мы готовы проконсультировать и помочь в выборе прибора. Но из множества приборов, представленных на рынке, хотелось бы выделить наиболее популярные по итогам продаж. По мнению наших многочисленных клиентов, именно эти приборы имеют хорошие показатели по отношению «цена / качество».
Интернет-магазин контрольно-измерительных приборов и освещения » Мир приборов «
Ознакомьтесь с нашим ассортиментом в каталоге
Решения для жизни и работы!
Представленная информация на сайте носит справочный характер и не является публичной офертой.
Технические параметры (спецификация) и комплект поставки товара могут быть изменены производителем без предварительного уведомления.