Чем короче волна тем больше частота
Короткие волны умирают, но не сдаются
Считается, что в вопросе обеспечения надежной связи короткие волны давно сдали позиции в пользу более продвинутых современных технологий и остались лишь уделом олдскульных радиолюбителей-хоббийщиков. Однако коротковолновая связь все еще жива и даже эволюционирует и развивается. В некоторых случаях она способна успешно и бесплатно заменить или дублировать дорогой спутниковый телефон там, где никаких других способов быть услышанными просто не существует!
Мощность — малая, связь — дальняя…
Особенность радиоволн коротковолнового диапазона (простирающегося, условно, от 1 до 30 мегагерц) состоит в их «умении» многократно переотражаться от ионосферы Земли и, таким образом, резко увеличивать дальность действия. При ничтожной мощности передатчика в единицы и десятки ватт короткие волны легко распространяются на сотни и тысячи километров, в том числе «пробивают за горизонт».
К примеру, знаменитая советская радиостанция «Север», которой в Великую Отечественную пользовались все наши разведчики и партизанские отряды для связи с центром, использовала для передачи участок коротковолнового диапазона от 3,62 до 6,25 мегагерц, обладала мощностью всего в 2(!) ватта, но обеспечивала дальность связи от 400 километров и выше! Для понимания: 1 ватт — это максимальная мощность передатчика современного мобильного телефона, задача которого – связаться с базовой станцией на расстоянии максимум в несколько километров.
Во всем мире военные и гражданские пользователи (фермеры, геологи, полярники, егеря и т.п.) десятилетиями активно использовали коротковолновую радиосвязь. Но некоторое время назад от нее начали повсеместно отказываться. Военные — в пользу УКВ-связи на коротких расстояниях и спутниковых систем — на длинных. А гражданские пользователи все чаще выбирают вместо КВ-станций сотовую или спутниковую мобильную связь в условиях цивилизации и вне ее.
Причиной массовой «миграции» связи в более высокочастотные диапазоны стала, в первую очередь, одна неприятная особенность коротких волн. Им нужны крупногабаритные антенны. Тут все просто и в полном соответствии с законами физики: чем больше длина волны, тем длиннее нужна антенна. К примеру, на частоте 7 мегагерц длина волны составляет 40 метров. Эффективная антенна не должна быть короче хотя бы четверти длины волны, и в данном случае — это 10 метров.
Десятиметровая антенна должна быть натянута в виде провода на приличной высоте или поднята в виде вертикальной мачты аналогичной длины. Понятно, что развертывание таких антенн не слишком удобно, в особенности для подвижной радиосвязи.
Однако для связи между отдаленными стационарными объектами коротковолновая связь по-прежнему удобна и применяется. И сегодня, в 2020-м году, сотни стареньких советских радиостанций, типа «Карат», «Ангара» и разных армейских моделей с простейшими антеннами из проволоки, как и полвека назад, обеспечивают, например, уходящим на длительный сезон в тайгу охотникам Сибири связь с семьей и домом. Дорогие японские модели коротковолновых раций берут с собой туристы и путешественники, отправляющиеся в глухие уголки. Последние, правда, обычно используют КВ-радио лишь в качестве резерва к спутниковому телефону.
Так что КВ-связь жива. И даже слегка эволюционирует! Собственно, про интересное эволюционное направление сращивания КВ-радио с интернетом и хотелось бы рассказать. Начнем, правда, с предыстории.
Кому вредят… светодиодные лампы?
Последние пару десятков лет горожанину связаться на коротких волнах с кем-либо стало практически невозможно. Законы физики в отношении распространения радиоволн, разумеется, не изменились. Просто эфир на коротких волнах в городах жутко загажен высоким уровнем постоянных помех. Уровень помех столь высок, что в нем напрочь тонут сигналы радиостанций на КВ-частотах. Вы можете успешно вызывать из города удаленную КВ-радиостанцию, и она вас услышит, но вы в помехах не услышите ее ответ.
Эта проблема относительно молода. Раньше такого не было. Что же произошло? Дело в том, что когда-то практически все бытовые электроприборы питались от традиционных трансформаторных источников тока. Трансформатор, «делающий» из 220 вольт в электророзетке нужное пониженное напряжение (5 вольт, 12 вольт, 24 вольта и т.п.), был вещью надежной, беспроблемной, но… дорогой. Железо, медь, сборка. А производителям нужно было снижать стоимость модулей питания в стремительно растущем и дешевеющем парке телевизоров, DVD-плееров, бесчисленных зарядок для телефонов и прочих портативных гаджетов.
И трансформаторным источникам питания пришли на смену бестрансформаторные — так называемые «импульсные», которые оказались радикально дешевле. Особо это повлияло на распространение светодиодных ламп. В каждой из них находится импульсный преобразователь для питания диодов.
В итоге практически все импульсные блоки питания для любых устройств — от телефона до шуруповерта — «фонят» в диапазоне коротких волн! Музыкальный центр, телевизор, зарядка для ноутбука, люстра — все они являются, по сути, радиопередатчиками, передающими шумовой сигнал в широком участке коротковолнового диапазона. А бытовая электросеть 220 вольт выполняет роль эффективной антенны, распространяя помеху в эфире! Таких «передатчиков» не менее десятка в любой квартире, столько же их в соседней, сотни и тысячи — по каждому многоэтажному дому.
Интернет — как средство… против радиопомех
Впрочем, развитие технологий не только породило проблему, но и подкинуло идею для ее решения. А именно – использовать для беспомехового приема коротких волн радиоприемники, установленные удалено вне городов и управляемые через Интернет. Таких приемников разбросано по всему миру немало. Называются они WebSDR. Устанавливают их и открывают бесплатный доступ для всех желающих – энтузиасты на некоммерческой основе.
Как это устроено? Некий энтузиаст-радиолюбитель устанавливает у себя дома (обычно вдали от городских помех, хотя и не всегда) коротковолновую антенну (как правило, не суррогатную, примитивную, а полноразмерную и эффективную) и подключает к ней КВ-радиоприемник, специально предназначенный для работы в тандеме с компьютером со специальным программным обеспечением. Это программно-управляемый радиоприемник, тот самый SDR — Software-Defined Radio.
Компьютер, разумеется, постоянно подключен к Интернету и настроен на определенный веб-адрес. Зайдя по нему, пользователь из любого места может управлять частотой этого радиоприемника и слышать то, что он принимает в реальном времени. Список доступных веб-приемников, их месторасположение, рабочие поддиапазоны и веб-адреса находятся на сайте websdr.com. И вы прямо сейчас можете просто зайти в панель управления любым приемником из этого списка через браузер компьютера или смартфона, настроить его на желаемую частоту в коротковолновом диапазоне и начать слушать эфир.
А как быть, если кто-то уже зашел на сайт приемника и пользуется им? Не проблема — к одному приемнику могут одновременно подключаться десятки пользователей, и настраиваться на нужные им частоты совершенно независимо друг от друга!
Как спутниковый телефон, только без абонентской платы
Как подобная технология может помочь в установлении радиосвязи на коротких волнах и быть использована на практике? Очень просто! Предположим, группа туристов отправляется на Кольский полуостров, где нет мобильной связи и Интернета. С собой у них маломощная и компактная коротковолновая радиостанция мощностью 5–10 ватт и простейшая антенна в виде тонкой проволочки длиной метров десять, закинутой на дерево или на «мачту» из телескопической удочки. Необходимо поддерживать постоянную и стабильную голосовую связь, предположим, с Москвой, где находится группа информационной поддержки, друзья или семья, и «узел связи» — любительская коротковолновая радиостанция мощностью 100 ватт (типовая мощность для стационарного любительского радиооборудования) с антенной на крыше дома или балконе.
Расстояние между абонентами по прямой — около 1300 километров. Используется наиболее подходящая для связи на такой дистанции частота — около 3,7 мГц. Такая дистанция «пробивается» короткими волнами легко, но из-за высокого уровня помех в мегаполисе приемник радиостанции в городе уверенно принимает только очень сильные сигналы. А сигналы с Кольского полуострова от передатчика мощностью 5–10 ватт — слишком слабы в таких условиях…
И вот тут-то помогает сеть веб-приемников! Смотрим по карте и находим приемник, расположенный в Швеции, километрах в пятистах от лагеря путешественников. В итоге корреспондент на Кольском полуострове работает в эфире традиционным способом — слушает посредством приемника своей радиостанции и передает через ее передатчик. А корреспондент в Москве передает обычным образом, а вот принимает своего эфирного визави с помощью компьютера, смартфона или планшета, на котором открыт сайт нужного веб-приемника и настроена частота, на которой заранее договорено поддерживать связь.
Единственный нюанс – небольшая задержка голосового сигнала, приходящего через Интернет. Но это мелочь на фоне достаточно уверенного и стабильного голосового общения — и вдобавок без абонентской платы!
Теория радиоволн: ликбез
Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.
Радиоволна
Длина волны(λ) — это расстояние между соседними гребнями волны.
Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.
Период(T) — время одного полного колебательного движения
Частота(v) — количество полных периодов в секунду
Существует формула, позволяющая определять длину волны по частоте:
Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)
«УКВ», «ДВ», «СВ»
Сверхдлинные волны — v = 3—30 кГц (λ = 10—100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.
Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).
Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.
Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).
Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.
Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).
Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.
Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).
Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:
Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.
Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.
Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.
AM — FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:
AM — амплитудная модуляция
Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.
FM — частотная модуляция
Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.
На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.
Еще термины
Интерференция — в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.
Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».
Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.
Прохождение на КВ диапазонах
Г. Ляпин (UA3OW), С. Бубенников (op UK3AAC)
Короткие волны считаются давно освоенными. Однако, как показывает практика, далеко не все коротковолновики достаточно хорошо разбираются в вопросах их распространения. Цель этой статьи — рассказать об особенностях прохождения на KB диапазонах, о методах его прогнозирования, помочь коротковолновикам использовать специфику распространения коротких волн для проведения дальних связей.
Радиосвязь на KB обеспечивается в подавляющем большинстве случаев отражением, а точнее говоря, преломлением волны внутри какого-либо слоя ионосферы. Напомним, что ионосфера Земли представляет собой совокупность ионизированных слоев или областей (отсюда и пошло ее название), возникших под влиянием солнечной радиации и плавно пере ходящих одна в другую. В ночное время, когда отсутствует излучение Солнца, концентрация ионизированных частиц падает, что приводит к ослаблению отражающих (преломляющих) свойств ионосферы.
Степень ионизации существенно зависит от активности Солнца, которая изменяется со средним периодом 11,3 года (по данным, начиная с 1750 года). Количественная характеристика этой активности — число Вольфа (W) связано с числом пятен на видимой стороне диска светила. Сейчас идет цикл, максимум которого ожидается в 1979—1980 годах (см. рис.1). В настоящее время не имеется единого мнения относительно сроков и величины очередного максимума. Поэтому на рисунке показаны две пунктирные линии, соответствующие прогнозам, полученным различными методами.
Слои ионосферы обозначаются латинскими буквами D, Е и F.
На высотах от 100 до 150 километров находится другая область повышенной ионизации — область Е, Ионизация ее происходит главным образом от мягкого рентгеновского излучения Солнца. Ночью слой Е сохраняет часть своей ионизации, но становится в это время «пористым» и неоднородным. Степень ионизации слоя Е выше в экваториальных областях Земли, и его отражающая способность там больше, чем в средних или высоких широтах. Большой практический интерес для радио любителей представляют спорадические образования в слое. Е облаков повышенной ионизации – Еs o6paзования. (См. статью С. Бубенникова “Что такое Еs про хождение?» — «Радио», 1978. № 4. с. 13.)
Ниже области Е на высотах 50 — 60 километров расположена область D. Ионизация этой области в основном обусловлена рентгеновским излучением Солнца. Ионизация максимальна в полдень и быстро падает, когда Солнце скрывается за горизонтом. Ночью ионизация в области D полностью исчезает.
Во время сильных солнечных вспышек увеличение рентгеновского излучения Солнца вызывает резкое возрастание ионизации области D. Это приводит к так называемым внезапным ионосферным возмущениям, следствием которых является полное нарушение коротковолновой радиосвязи на освещенной половине земного шара на срок от нескольких минут до нескольких десятков минут из-за полного поглощения в области D.
Самым распространенным способом исследования ионосферы является вертикальное зондирование, которое проводится при помощи импульсного передатчика, частота которого плавно или дискретно изменяется в широких пределах. Наиболее высокая частота, отраженная от слоя при вертикальном зондировании, получила название критической частоты этого слоя (так, для слоя F2 критическая частота записывается как foF2). На каждой ионосферной станции за сеанс зондирования снимается полная высотночастотная характеристика (ВЧХ), важнейшими параметрами которой являются критические частоты и высоты слоев.
По ВЧХ определяется еще один параметр — максимально применимая частота (МПЧ) слоя. МПЧ является максимальной частотой, которая отражается от слоя при ионосферном распространении радиоволн. То расстояние, на котором сигнал передатчика может быть принят при однократном отражении от слоя, называется расстоянием скачка. Для слоя F2 это расстояние составляет максимум 3500 — 4000 км. Обычно на ионосферных станциях определяется МПЧ для скачка в 3000 км (MHЧ- 3000-F2). Все частоты выше МПЧ слоем не отражаются, а выходят за пределы ионосферы в открытый космос. МПЧ зависит от времени суток, сезона, географической широты точки отражения и солнечной активности. Она также до некоторой степени зависит от высоты отражающего слоя и от того, как низко лепесток диаграммы направленности антенны прижат к поверхности Земли. Имеется приблизительное соотношение между критическими частотами fo и МПЧ для слоя F2:
МПЧ-3000-F2 = 3,5 х foF2
В общем, МПЧ обычно выше в зимние месяцы, чем в летние. На рис. 2 на изображен суточный ход МПЧ-3000-F2 для летнего и зимнего месяцев при средней солнечной активности. Данные получены на ионосферной станции ИЗМИРАН под Москвой.
На многих станциях в различных частях мира уже длительное время ведется вертикальное зондирование ионосферы. Это дает возможность строить карты глобального распределения критических частот и МПЧ для различных слоев в зависимости от сезона и солнечной активности на несколько месяцев вперед. Набор таких карт вместе с прогнозом МПЧ ежемесячно выпускается Государственным комитетом СССР по гидрометеорологии и контролю природной среды.
На рис. 3 схематически изображено взаимное расположение ионизированных слоев F1, F2, Е, D над дневной поверхностью Земли и не которые случаи распространения радиоволн в ионосфере.
В пункте Б работает станция вертикального зондирования. Критические частоты слоев fоЕ fоF2 и слоем F2 не отражается. Для простоты здесь везде употребляется термин «отражение». Но строго говоря, радиоволна не отражается, а претерпевает преломление внутри ионизированного слоя и возвращается обратно к Земле. Под действием переменного электрического поля волны свободные электроны в слое приходят в колебательное движение с частотой волны, т. е. возникает электрический ток, который своим полем как бы переизлучает волну в обратном направлении. И чем ниже степень ионизации слоя (т. е. количество свободных электронов в единице объема), тем глубже волна проникает внутрь слоя до момента своего «отражения».
Сигнал, посланный из пункта Б, встретился в слое F2 с диффузностью и раздробился на отдельные лучи. Как уже было сказано выше, F2 является основным отражающим слоем при дальнем распространении коротких волн. А каждое прохождение волны через слой (D, E. F) и отражение приводит к потере энергии волны, причем чем ниже расположен слой, тем больше энергии теряет волна при прохождении через него, и чем ниже частота волны, тем больше потери энергии.
Перейдем к непосредственному рассмотрению прохождения на раз личных KB диапазонах. Диапазон 3,5 МГц является самым низко частотным из широко применяемых KB диапазонов. В принципе, отражение волн этого диапазона возможно во всех слоях ионосферы. Однако слой D сильно поглощает волны нижней части KB диапазона, включая и 80-метровые. Поэтому днем в диапазоне 3,5 МГц редко бывают слышны станции, расположенные дальше 400 — 500 км. В это время диапазон, как всем известно, используется для проведения местных связей.
После захода Солнца слой D как бы рассасывается, и волны 80-метрового диапазона могут отражаться от более высоких слоев, в первую очередь от слоя Е. Максимальная длина одного скачка для этого слоя 2000—1500 км. В этом радиусе и проводится наибольшее количество (90%) связей. Причем вполне возможно и наличие многоскачковой структуры распространения» примером тому может служить прохождение VK/ZL/JA в вечерние часы в европейской части СССР.
Ночью слой Е также исчезает, хотя гораздо медленней, чем D, и при мерно за два часа до восхода Солнца МПЧ слоя может стать меньше нижней границы диапазона, и отражения тогда уже будут происходить от слоя F, который и обеспечит в случае многоскачковой структуры наиболее дальнее прохождение.
Зимой, когда ночи становятся длиннее, ионизация нижних слоев пропадает быстрее и возможности проведения дальних связей увеличиваются.
В течение цикла солнечной активности критические частоты слоя Е изменяются мало, увеличиваясь лишь на 15—20% при переходе от минимума к максимуму, так что изменения в характере прохождения в диапазонах 3,5 МГц и 7 МГц не очень заметны.
Большой уровень помех, трудность в применении узконаправленных антенн, сильное затухание волн этих диапазонов создают большие трудности в работе коротковолновика, и поэтому каждое проведенное DX QSO приносит большое удовлетворение.
Весной и летом наблюдается усиленная генерация Es-облаков с высокой МПЧ, что может быть причиной прослушивания в отдельные моменты редких (ближних) станций.
Довольно часто в диапазоне 14 МГц можно услышать слабо про ходящие, слегка искаженные дрожанием сигналы станций, находящихся в «мертвой зоне». Это следствие уже не отражения, а ионосферного рассеивания на локальных неоднородностях, образующихся на высоте слоя Е. Подобный прием возможен лишь при высоком энергетическом потенциале* станции (станций).
Примерно такая же картина наблюдается и в диапазоне 21 МГц, с той лишь разницей, что в годы минимума солнечной активности значение МПЧ верхних слоев может быть меньше нижней границы диапазона и прохождение тогда отсутствует вообще. Наличие еще большей «мертвой зоны» облегчает работу с DX станциями ввиду отсутствия помех от близлежащих станций.
Как было уже сказано, слой F расщепляется на два. Отражение от слоя F1 наблюдается исключительно днем, при этом на широтах примерно выше 50° с. ш. — только летом, на более низких — в течение всего года. Суточный ход fоF2 симметричен относительно полудня, когда fо имеет максимальное значение. В течение цикла солнечной активности возрастание fоF2 составляет не более 30%.
Поведение слоя F2 более сложно. Например, летом может быть аномальное суточное изменение fоF2 когда максимум наблюдается не только в полдень, а в утренние часы и до захода Солнца. И зимой и летом fоF2 достигает максимума за полчаса до восхода Солнца. В зимний полдень fоF2 больше, чем в июне примерно в 1,5—2 раза. Критическая частота F2 зависит от числа Вольфа (W) и может увеличиваться на 50—100%. Вот почему хорошее и устойчивое прохождение в диапазоне 28 МГц может быть только в годы максимума солнечной активности. В годы минимума активности прохождение в этом диапазоне обуславливается в основном лишь отражением от Es-облаков, особенно в летнее время. На 28 МГц возможно и отражение от полярного сияния и метеорных следов, но в радиосвязи на KB эти явления не используются.
Следует заметить, что потери энергии при работе на 10 метрах, по сравнению с другими, самые минимальные. Это обусловлено малым поглощением волн этого диапазона в нижних слоях ионосферы, что позволяет проводить дальнее связи при относительно малой мощности передатчика.
Особо следует остановиться на вопросе о нарушение KB связи. При мощной вспышке на Солнце, либо при прохождении активной области через центральный меридиан диска, на Землю извергается мощный поток корпускулярного излучения, что может явиться причиной магнитной бури, а затем и ионосферной бури, приводящей к резкому ухудшению, а порой, и полному прекращению прохождения на KB диапазонах. В этом случае нарушение связи может быть, во-первых, в результате поглощения коротких волной так называемой полярной «шапке». Другой причиной может быть авроральное поглощение. Это обычно наблюдается тогда, когда один из корреспондентов находится в зоне полярных сияний (для СССР это UA1 и северные части UA9, UA0), или трасса радиосвязи проходит через эту зону. Нарушение здесь может быть в 40% случаев.
Интересно, что перед бурей часто наблюдается увеличение МПЧ до 50 МГц и выше. В течение этого периода возможна связь на 28 МГц при двух-, трехскачковом отражении от слоя F2 и даже дальний прием телевидения.
Государственным комитетом СССР по гидрометеорологии и контролю природной среды выпускается месячный прогноз МПЧ. по которому можно определить рабочие частоты на ближайшие месяцы для трасс радиосвязи с конкретными географическими координатами. Прогноз рабочих частот обычно имеет форму графика суточного хода МПЧ и справедлив только для спокойного состояния ионосферы. На основании его подготавливается прогноз для любительских диапазонов, который ежемесячно публикуется на страницах журнала «Радио».
Другой вид прогноза связан с регулярно повторяющимися возмущениями в ионосфере, причиной которых является появление на диске Солнца активных областей. Продолжительность «жизни» такой активной области может составлять два-три месяца. А так как оборот Солнца равен 27,3 суток, то возможно предсказание повторяемости магнитных возмущений через каждые 27 дней. Патруль Солнца на солнечных обсерваториях дает возможность получать информацию о развития активных областей и их положении на диске светила. На основе этой информации прогнозируются дни магнитных бурь, частота появления Es. поглощение в слое D и другие явления на месяц вперед. В начале текущего месяца на основе этих данных в газете «Советский патриот» сообщаются дни, когда спокойное состояние ионосферы может быть нарушено.
* В понятие энергетический потенциал входит мощность передатчика, чувствительность приемника и коэффициенты усилений приемной и передающей антенн.
Короткие волны
Короткие волны (также декаметровые волны) — диапазон радиоволн с частотой от 3 МГц (длина волны 100 м) до 30 МГц (длина волны 10 м).
Короткие волны отражаются от ионосферы с малыми потерями. Поэтому, путём многократных отражений от ионосферы и поверхности Земли, они могут распространяться на большие расстояния. Короткие волны используются для радиовещания, а также для любительской и профессиональной радиосвязи. Качество приёма при этом зависит от различных процессов в ионосфере, связанных с уровнем солнечной активности, временем года и временем суток. Так днём лучше распространяются волны меньшей длины, а ночью — большей. Для связи между наземными станциями и космическими аппаратами они непригодны, так как не проходят сквозь ионосферу.
На коротких волнах наблюдаются замирания — изменение уровня принимаемого сигнала, они проявляются как кратковременное снижение амплитуды несущей частоты или вовсе пропадание последней. Замирания возникают из-за того, что радиоволны от передатчика идут к приёмнику разными путями, в разной фазе и, интерферируя на антенне приёмника, могут ослаблять друг друга.
Содержание
Влияние слоев ионосферы на распространение радиоволн в КВ-диапазоне
Слой F2 — самый верхний из ионизированных слоев ионосферы. Концентрация этого слоя повышается днем, летом она выше, чем зимой. Максимальное распространение для связи одним скачком до 4000 км. Чем выше концентрация слоя, тем более высокая частота может ещё отразиться от ионосферы. Максимальная частота, при которой происходит отражение, называется максимально передаваемой частотой — МПЧ. С увеличением угла отражения МПЧ увеличивается.
Слой F1 — существует только днем. Максимальное распространение для связи одним скачком до 3000 км. Ночью сливается со слоем F2.
Слой Е — отражающий слой, наименее подвержен солнечной активности. Максимальное распространение для связи одним скачком до 2000 км. МПЧ зависит только от угла отражения.
Слой Еs — слой Е спорадический. Возникает спорадически (изредка), чаще в экваториальных широтах. Характеристики как у слоя Е.
Слой D — самый нижний из ионизированных слоев ионосферы и единственный поглощающий слой для радиоволн КВ диапазона. Существует только днем. Ночью исчезает. При исчезновении слоя D ночью, становится возможен прием слабых и далеко расположенных радиостанций. Из-за уменьшения МПЧ отражаемой слоем F2 и увеличением помех из-за пропадания слоя D, ночью, профессиональная радиосвязь в КВ диапазоне затруднена.
«Аврора» — отражения радиоволн от северного сияния. Таким видом связи впервые воспользовался Румянцев Г. А., легендарный советский радиолюбитель, радиоспортсмен и конструктор.
Прогноз МПЧ — расчет МПЧ производится по месячным, пятидневным и ежедневным прогнозам. В России эти прогнозы выдаются Институтом земного магнетизма, ионосферы и распространения радиоволн им. Н. В. Пушкова Российской Академии наук (ИЗМИРАН).
Вещательные диапазоны КВ
Радиовещание на КВ ведется на участках с длиной волны около:
Дневные поддиапазоны — 11, 13, 16, 19 метров, ночные — 75, 65, 52, 49, 41, 31 метр
Любительские диапазоны КВ
В первые десятилетия существования радио считалось, что волны короче 250 м малопригодны для практических целей. Поэтому весь КВ диапазон был предоставлен в распоряжение любителей-энтузиастов для экспериментов. Первым законодательным актом, регламентировавшим любительскую радиосвяэь, был «Закон о радио», принятый Конгрессом США в 1912 г. По мере совершенствования техники радиосвязи выяснилось, что при определенных условиях на КВ возможна связь на дальние расстояния даже при минимальной мощности передатчика. В настоящее время для любительской связи на КВ выделены строго определённые диапазоны частот, которые несколько отличаются для разных стран мира. Так, в Российской Федерации «Инструкция по регистрации и эксплуатации любительских радиостанций» устанавливает для любительской службы следующие диапазоны:
Ссылки
Практика радиосвязи, как она есть
Все мы ежедневно сталкиваемся с разными видами радиосвязи и беспроводной передачи данных. Да что там сталкиваемся: мы практически пронизаны радиоволнами разной частоты, модуляции и напряженности (за исключением, разве что, случая, если не находимся внутри «клетки Фарадея»). Здесь, на хабре, в силу ИТ-направленности, очень много статей о видах связи и передачи данных, о разнообразных телекомах, о магистралях и «последних милях», да и еще много о чем, что имеет прямое или косвенное отношение к связи, как к проводной, так и к беспроводной.
Так же, наверняка, практически всем хабравчанам в школах, на уроках физики, рассказывали о колебательных контурах, распространении и длине волн, и прочих процессах, лежащих в основах любой технологии радио- и беспроводной связи.
Однако, поискав по хабру, я так и не нашел ни одной статьи, в которой рассказывалось бы о радиосвязи, с бытовой и любительской точки зрения. А ведь если подойти к радиосвязи именно с таким, бытовым взглядом – для одних она может стать удобным, а порой и незаменимым помощником во многих делах, а для других – перерасти в интересное увлечение или хобби. Именно с такими намерениями я хочу сегодня попытаться просто и доступно рассказать о радиосвязи, о том, как она есть в жизни, о том, с чем сам имел место столкнуться и познать.
Совсем немного теории в свободном изложении
Для начала – диапазоны. Рассмотрим диапазоны радиоволн и выберем те, которые нас будут интересовать с практической точки зрения. Википедия приводит ГОСТ, в котором радиоволны делятся на следующие диапазоны, на основании длины волны:
— 3 кГц – 30 кГц – Сверхдлинные волны.
— 30 кГц – 300 кГц – Длинные волны.
— 300 кГц – 3 МГц – Средние волны.
— 3 МГц – 30 МГц – Короткие волны.
— 30 МГц – 300 МГц – Метровые волны.
— 300 МГц – 3 ГГц – Дециметровые волны.
— 3 ГГц – 300 ГГц – Сантиметровые волны.
Определение длины волны можно прочесть в википедии, а я лишь напишу простой и понятный тезис – чем короче длина волны – тем менее она подвержена помехам и затуханиям, проникающая способность увеличивается, огибающая способность уменьшается. То есть если длина волны 11 метров (27 МГц) – то эта волна запросто огибает плотные скопления деревьев в лесу и находит путь для распространения, но при этом для увеличения дальности связи на открытом пространстве – требуется увеличение мощности передатчика. А волна, длиной, например 70 см (433 МГц), практически не будет огибать деревьев, а будет распространяться исключительно за счет просветов между деревьями, своей проникающей способности и возможности переотражения. Однако, за счет своей помехоустойчивости и малого затухания, на открытом пространстве дальность связи будет ограничена лишь зоной прямой видимости, при низкой мощности передатчика.
Стоит, правда, добавить сюда небольшую оговорку: на диапазонах коротких волн наблюдаются эффекты прохождения радиоволн, за счет многократных отражений от атмосферы Земли, и порой получаются ситуации, когда можно абсолютно спокойно установить связь с корреспондентом, находящимся за многие тысячи километров, а товарища, находящегося в паре километров – не услышать вовсе. Но, это явление тесно связано с природными факторами, непостоянно и мало прогнозируемо, поэтому, для бытового использования этот эффект использовать крайне ненадежно.
Скажу сразу: мы немного коснемся коротких волн, и плотно рассмотрим метровые и дециметровые волны. Остальные мы отбросим в силу усложнения аппаратуры, антенного хозяйства, трудностей использования, да и просто неудобства в быту. Кто-то со мной поспорит, что во многих случаях только сантиметровые волны приемлемы для передачи данных, кто-то скажет, что только короткие волны хорошо подходят для связи на большие расстояния, и эти люди будут правы. Но сейчас мы рассматриваем самые простые и доступные виды, с точки зрения простого обывателя.
Плавно переходим к конкретике
В силу рассмотренных выше теоретических знаний подведем промежуточный итог: нам интересны диапазоны дециметровых, метровых и небольшая часть диапазона коротких радиоволн. Кратко, тезисами, о выбранных диапазонах:
– Короткие волны: 3 МГц – 30 МГц. В данном диапазоне работают как профессиональные радиолюбители (начало диапазона, от 3 МГц), использующие дорогую аппаратуру, огромные антенны, имеющие профессиональные навыки и знания, так и серьезные структуры, которым требуется связь на сверхдальних расстояниях, например арктические экспедиции. В конце данного диапазона выделены частоты для бытового и гражданского использования
– CB 27 МГц. Здесь длина волны достигает 11 метров (эффективная антенна имеет физическую длину, равную ¼ длины радиоволны, то есть примерно 2,7 метра). Наверняка, многие из вас видели автомобили такси, на крыше которых красовался длинный хлыстик – это и есть антенна на данный диапазон. В девяностые многие таксомотрные фирмы и люди, занимающиеся частным извозом, облюбовали этот диапазон, ввиду относительной доступности и приемлемой цене оборудования, а так же отсутствию необходимости получать статус радиолюбителя для использования данных частот. Для использования в городе – не самый лучший выбор, мы ведь помним, что этот диапазон крайне подвержен помехам, которых в городе крайне много от массы электрических устройств и линий электропередач.
– Метровые волны: 30 МГц – 300 МГц. Данный диапазон делится на несколько поддиапазонов, в том числе LowBand (30-50 МГц, использовался в советские времена практически повсеместно для коммунальных служб, служб скорой помощи и прочее, в районах используется и по сей день) и так называемый диапазон «2 метра» (136-174 МГц), который так назван за свою длину волны. В диапазоне «2 метра» работают городские и федеральные службы, такие как пожарная охрана, МЧС и другие. Имеются и свободные частоты, которые выдаются на коммерческой основе организациям и предприятиям. В моем городе в этом диапазоне работает одна из фирм-такси, очень довольны качеством связи, по сравнению с CB (27 МГц), который используется остальными таксомоторными парками, как бесплатный. Так же в диапазоне «2 метра» имеется небольшой кусочек, выделенный для радиолюбителей (144-146 МГц). Эти частоты может легально использовать любой человек, получивший радиолюбительскую категорию и позывной сигнал, придерживаясь регламента любительской связи. Используя направленные антенны с высокой точкой установки даже с небольшой излучаемой мощностью можно устанавливать связи на десятки, а в удачных условиях и на сотни километров. Так же стоит упомянуть авиадиапазон (118-136 МГц), здесь все серьезно, большая ответственность и надежная связь.
– Дециметровые волны: 300 – 3000 МГц. В данном диапазоне работает много разнообразных радиостанций и аппаратуры связи, мы рассмотрим лишь интересную для нас часть диапазона, а именно 400-470 МГц, получивший за счет своей длины волны название «70 сантиметров». За счет оптимальных характеристик для использования в условиях большого индустриального города (хорошая помехозащищенность, дальнее распространение в условиях радиовидимости при небольшой мощности), многие крупные службы в крупных городах переходят или перешли на данный диапазон частот. Здесь уже не обойтись без использования «репитеров» — специальных приемо-передатчиков сигнала, устанавливаемых в самых высоких точках, имеющих качественные и чувствительные антенны, и соответственно способные принимать и передавать сигнал на большие расстояния (не забываем: при наличии прямой радиовидимости для данных частот сигнал распространяется далеко и без затуханий, даже при небольшой мощности). Но репитеры – это отдельный разговор, я бы не хотел их касаться в сегодняшней статье, потому как это очень интересная тема, и ее стоит описывать отдельно.
Мы подошли к самой интересной части статьи: в диапазоне «70 сантиметров» находятся выделенные полосы частот, как для официальных радиолюбителей, так и для свободного использования всеми желающими (на некоммерческой основе). Для радиолюбителей отведены частоты 430-440 МГц, для бытового использования выделены 433.075 МГц – 434.775 МГц (сетка из 69 каналов с шагом 25 кГц, LPD) и 446.00625 – 446.09375 МГц сетка из 8 каналов с шагом 12.5 кГц, PMR). Именно с комплекта простеньких радиостанций, купленного в одном из магазинов сотовой связи и началось мое более близкое знакомство, поэтому и рассмотрим стандарты LPD и PMR.
LPD – расшифровывается как Low Power Device, то есть «устройства с низкой мощностью излучения». Именно так и есть – по стандарту, мощность излучаемая передатчиком радиостанции стандарта LPD не должна превышать 10 мВт, что крайне мало, хотя даже этого достаточно для связи на расстоянии до нескольких километров, в условиях прямой видимости. По факту же, большинство полу-игрушечных комплектов радиостанций, находящихся в продаже, имеют значительно большую мощность, хоть и сертифицированы, как LPD. Как говорится «строгость наших законов компенсируется необязательностью их исполнения», чем и пользуются поставщики при сертификации: у радиостанций выставляется низкий уровень мощности через меню, товар проходит сертификацию, а потом, точно так же через стандартное меню – возвращается обычная мощность, как правило, это 2-4 Ватта. Этой мощности достаточно для связи на 10-12 километров в хороших условиях, например над озером, или с возвышенности (не забываем о плохой огибаемости препятствий при данной длине волны).
PMR – расшифровывается как Private Mobile Radio, то есть радиосвязь для частного пользования. По стандарту разрешенная мощность излучения здесь уже больше, чем у LPD, а именно 0.5 Ватта. Однако, в отличии от LPD эта мощность как правило и является честной, редкая радиостанция PMR имеет мощность более 1 Ватта, так как этот стандарт разрешен во многих странах Европы, и сертификация там проходит более серьезно. Так же, диапазон частот PMR более узкий, и в нем «помещаются» всего лишь 8 каналов (против 69 каналов у LPD).
Именно с этих стандартов (а точнее – с комплекта простейших радиостанций из магазина сотовой связи) началось мое более плотное знакомство с радиосвязью. Но в скором времени наступило разочарование от довольно низкого качества устройств, это были скорее «игрушки», нежели что-то относительно серьезное. Однако радиосвязь меня заинтересовала, и я заказал из одного, небезизвестного в кругах радиолюбителей магазина, неплохую портативную радиостанцию, уже любительского уровня, в которой имелось сразу два диапазона, а именно «2 метра» (136-174 МГц) и «70 сантиметров» (400-470 МГц). По моей скромной оценке – в настоящее время это самые популярные и доступные широкому кругу пользователей диапазоны. Аппаратура относительно доступная (особенно китайская, цена низкая, качество высокое), имеющая серьезный функционал, и обладающая приятным внешним видом. Так же не могу не заметить, что на указанных диапазонах антенна действительно может быть портативной (в отличии, например от CB, вспоминаем длину волны).
За полгода пользования радиостанцией мне успело надоесть общаться только на «гражданских частотах» (LPD и PMR, все каналы этих двух сеток легко настраиваются в диапазоне «70 сантиметров»), было принято решение о получении радиолюбительского категории, позывного сигнала, регистрации радиостанции. Сейчас я официальный радиолюбитель, это стало моим хобби. Технологии не стоят на месте, и с помощью карманной портативной радиостанции могу проводить связи дальностью в несколько тысяч километров (через искусственные спутники Земли), общаться с экипажем МКС, другими радиолюбителями (на выделенных для этого частотах).
Ну и конечно же – это удобно и легко! Моя семья оснащена простыми, небольшими (менее мобильного телефона), недорогими китайскими радиостанциями, которые прошиты на свободные каналы LPD диапазона, и в зависимости от того, едем ли мы в лес за грибами, или в магазин за покупками – мы всегда на связи.
В планах – создание единого общегородского информационного канала связи для автовладельцев, туристов, и просто жителей города, который будет доступен даже людям с недорогими комплектами радиостанций из салонов сотовой связи. Но это отдельный разговор, там целая концепция.
Теория радиоволн: ликбез
Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков.
Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами.
Давайте ближе познакомимся с теорией радиоволн.
Радиоволна
Длина волны(λ) — это расстояние между соседними гребнями волны.
Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.
Период(T) — время одного полного колебательного движения
Частота(v) — количество полных периодов в секунду
Существует формула, позволяющая определять длину волны по частоте:
Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)
«УКВ», «ДВ», «СВ»
Сверхдлинные волны — v = 3—30 кГц (λ = 10—100 км).
Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.
Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.
Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).
Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.
Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).
Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.
Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).
Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.
Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).
Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями.
Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:
Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.
Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).
Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях.
Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую. Этот эффект используется в микроволновых печах.
Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.
Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).
Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.
AM — FM
Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:
AM — амплитудная модуляция
Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона.
АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.
FM — частотная модуляция
Это изменение несущей частоты под воздействие кодирующего колебания.
Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании.
На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.
Еще термины
Интерференция — в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.
Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.
Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».
Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.
Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения.
Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.
Короткие волны умирают, но не сдаются
Считается, что в вопросе обеспечения надежной связи короткие волны давно сдали позиции в пользу более продвинутых современных технологий и остались лишь уделом олдскульных радиолюбителей-хоббийщиков. Однако коротковолновая связь все еще жива и даже эволюционирует и развивается. В некоторых случаях она способна успешно и бесплатно заменить или дублировать дорогой спутниковый телефон там, где никаких других способов быть услышанными просто не существует!
Мощность — малая, связь — дальняя…
Особенность радиоволн коротковолнового диапазона (простирающегося, условно, от 1 до 30 мегагерц) состоит в их «умении» многократно переотражаться от ионосферы Земли и, таким образом, резко увеличивать дальность действия. При ничтожной мощности передатчика в единицы и десятки ватт короткие волны легко распространяются на сотни и тысячи километров, в том числе «пробивают за горизонт».
К примеру, знаменитая советская радиостанция «Север», которой в Великую Отечественную пользовались все наши разведчики и партизанские отряды для связи с центром, использовала для передачи участок коротковолнового диапазона от 3,62 до 6,25 мегагерц, обладала мощностью всего в 2(!) ватта, но обеспечивала дальность связи от 400 километров и выше! Для понимания: 1 ватт — это максимальная мощность передатчика современного мобильного телефона, задача которого – связаться с базовой станцией на расстоянии максимум в несколько километров.
Во всем мире военные и гражданские пользователи (фермеры, геологи, полярники, егеря и т.п.) десятилетиями активно использовали коротковолновую радиосвязь. Но некоторое время назад от нее начали повсеместно отказываться. Военные — в пользу УКВ-связи на коротких расстояниях и спутниковых систем — на длинных. А гражданские пользователи все чаще выбирают вместо КВ-станций сотовую или спутниковую мобильную связь в условиях цивилизации и вне ее.
Причиной массовой «миграции» связи в более высокочастотные диапазоны стала, в первую очередь, одна неприятная особенность коротких волн. Им нужны крупногабаритные антенны. Тут все просто и в полном соответствии с законами физики: чем больше длина волны, тем длиннее нужна антенна. К примеру, на частоте 7 мегагерц длина волны составляет 40 метров. Эффективная антенна не должна быть короче хотя бы четверти длины волны, и в данном случае — это 10 метров.
Десятиметровая антенна должна быть натянута в виде провода на приличной высоте или поднята в виде вертикальной мачты аналогичной длины. Понятно, что развертывание таких антенн не слишком удобно, в особенности для подвижной радиосвязи.
Однако для связи между отдаленными стационарными объектами коротковолновая связь по-прежнему удобна и применяется. И сегодня, в 2020-м году, сотни стареньких советских радиостанций, типа «Карат», «Ангара» и разных армейских моделей с простейшими антеннами из проволоки, как и полвека назад, обеспечивают, например, уходящим на длительный сезон в тайгу охотникам Сибири связь с семьей и домом. Дорогие японские модели коротковолновых раций берут с собой туристы и путешественники, отправляющиеся в глухие уголки. Последние, правда, обычно используют КВ-радио лишь в качестве резерва к спутниковому телефону.
Так что КВ-связь жива. И даже слегка эволюционирует! Собственно, про интересное эволюционное направление сращивания КВ-радио с интернетом и хотелось бы рассказать. Начнем, правда, с предыстории.
Кому вредят… светодиодные лампы?
Последние пару десятков лет горожанину связаться на коротких волнах с кем-либо стало практически невозможно. Законы физики в отношении распространения радиоволн, разумеется, не изменились. Просто эфир на коротких волнах в городах жутко загажен высоким уровнем постоянных помех. Уровень помех столь высок, что в нем напрочь тонут сигналы радиостанций на КВ-частотах. Вы можете успешно вызывать из города удаленную КВ-радиостанцию, и она вас услышит, но вы в помехах не услышите ее ответ.
Эта проблема относительно молода. Раньше такого не было. Что же произошло? Дело в том, что когда-то практически все бытовые электроприборы питались от традиционных трансформаторных источников тока. Трансформатор, «делающий» из 220 вольт в электророзетке нужное пониженное напряжение (5 вольт, 12 вольт, 24 вольта и т.п.), был вещью надежной, беспроблемной, но… дорогой. Железо, медь, сборка. А производителям нужно было снижать стоимость модулей питания в стремительно растущем и дешевеющем парке телевизоров, DVD-плееров, бесчисленных зарядок для телефонов и прочих портативных гаджетов.
И трансформаторным источникам питания пришли на смену бестрансформаторные — так называемые «импульсные», которые оказались радикально дешевле. Особо это повлияло на распространение светодиодных ламп. В каждой из них находится импульсный преобразователь для питания диодов.
В итоге практически все импульсные блоки питания для любых устройств — от телефона до шуруповерта — «фонят» в диапазоне коротких волн! Музыкальный центр, телевизор, зарядка для ноутбука, люстра — все они являются, по сути, радиопередатчиками, передающими шумовой сигнал в широком участке коротковолнового диапазона. А бытовая электросеть 220 вольт выполняет роль эффективной антенны, распространяя помеху в эфире! Таких «передатчиков» не менее десятка в любой квартире, столько же их в соседней, сотни и тысячи — по каждому многоэтажному дому.
Интернет — как средство… против радиопомех
Впрочем, развитие технологий не только породило проблему, но и подкинуло идею для ее решения. А именно – использовать для беспомехового приема коротких волн радиоприемники, установленные удалено вне городов и управляемые через Интернет. Таких приемников разбросано по всему миру немало. Называются они WebSDR. Устанавливают их и открывают бесплатный доступ для всех желающих – энтузиасты на некоммерческой основе.
Как это устроено? Некий энтузиаст-радиолюбитель устанавливает у себя дома (обычно вдали от городских помех, хотя и не всегда) коротковолновую антенну (как правило, не суррогатную, примитивную, а полноразмерную и эффективную) и подключает к ней КВ-радиоприемник, специально предназначенный для работы в тандеме с компьютером со специальным программным обеспечением. Это программно-управляемый радиоприемник, тот самый SDR — Software-Defined Radio.
Компьютер, разумеется, постоянно подключен к Интернету и настроен на определенный веб-адрес. Зайдя по нему, пользователь из любого места может управлять частотой этого радиоприемника и слышать то, что он принимает в реальном времени. Список доступных веб-приемников, их месторасположение, рабочие поддиапазоны и веб-адреса находятся на сайте websdr.com. И вы прямо сейчас можете просто зайти в панель управления любым приемником из этого списка через браузер компьютера или смартфона, настроить его на желаемую частоту в коротковолновом диапазоне и начать слушать эфир.
А как быть, если кто-то уже зашел на сайт приемника и пользуется им? Не проблема — к одному приемнику могут одновременно подключаться десятки пользователей, и настраиваться на нужные им частоты совершенно независимо друг от друга!
Как спутниковый телефон, только без абонентской платы
Как подобная технология может помочь в установлении радиосвязи на коротких волнах и быть использована на практике? Очень просто! Предположим, группа туристов отправляется на Кольский полуостров, где нет мобильной связи и Интернета. С собой у них маломощная и компактная коротковолновая радиостанция мощностью 5–10 ватт и простейшая антенна в виде тонкой проволочки длиной метров десять, закинутой на дерево или на «мачту» из телескопической удочки. Необходимо поддерживать постоянную и стабильную голосовую связь, предположим, с Москвой, где находится группа информационной поддержки, друзья или семья, и «узел связи» — любительская коротковолновая радиостанция мощностью 100 ватт (типовая мощность для стационарного любительского радиооборудования) с антенной на крыше дома или балконе.
Расстояние между абонентами по прямой — около 1300 километров. Используется наиболее подходящая для связи на такой дистанции частота — около 3,7 мГц. Такая дистанция «пробивается» короткими волнами легко, но из-за высокого уровня помех в мегаполисе приемник радиостанции в городе уверенно принимает только очень сильные сигналы. А сигналы с Кольского полуострова от передатчика мощностью 5–10 ватт — слишком слабы в таких условиях…
И вот тут-то помогает сеть веб-приемников! Смотрим по карте и находим приемник, расположенный в Швеции, километрах в пятистах от лагеря путешественников. В итоге корреспондент на Кольском полуострове работает в эфире традиционным способом — слушает посредством приемника своей радиостанции и передает через ее передатчик. А корреспондент в Москве передает обычным образом, а вот принимает своего эфирного визави с помощью компьютера, смартфона или планшета, на котором открыт сайт нужного веб-приемника и настроена частота, на которой заранее договорено поддерживать связь.
Единственный нюанс – небольшая задержка голосового сигнала, приходящего через Интернет. Но это мелочь на фоне достаточно уверенного и стабильного голосового общения — и вдобавок без абонентской платы!