Чем меньше звездная величина тем ярче звезда
Чем меньше, тем ярче: что такое звездная величина
На звездной карте, изображении созвездия или в каталоге всегда указывается звездная величина каждой звезды. Звездная величина (magnitude) — это просто некоторый уровень яркости (или блеска). Древнегреческий ученый Гиппарх разделил все видимые им звезды на шесть классов — самые яркие, менее яркие и т. д. по убыванию яркости. Самым ярким звездам он присвоил звездную величину, равную 1 (или первая звездная величина), следующим за ними по яркости — равную 2, и т. д. до самых тусклых звезд шестой звездной величины.
Обратите внимание, что, в противоположность большинству систем и единиц измерения, чем ярче звезды, тем меньше ее звездная величина. Но, поскольку нет в мире совершенства, не было его и у греков — даже у Гиппарха была ахиллесова пята: в его системе не осталось места самым ярким звездам.
Еще одно упущение: у древних греков не было класса звездной величины для звезд, которых они не видели. В то время это не считалось оплошностью, потому что об этих звездах никто ничего не знал. Но сегодня нам известно, что существуют миллионы звезд, не видимых невооруженным глазом; естественно, у всех у них тоже есть некие звездные величины. Им присвоены большие числа: 7–8 для звезд, которые можно легко увидеть в бинокль и 10–11 для звезд, которые легко различимы в небольшой, но хороший телескоп. Значения звездных величин достигают 21 для самых тусклых звезд, которые можно увидеть в Паломарской обсерватории, и даже 30–31 для самых тусклых объектов, изображения которых получены с помощью телескопа «Хаббл».
Световой год
Людям обычно кажется, что световой год — это единица измерения времени, поскольку в этом термине присутствует слово год, но на самом деле это единица измерения расстояния. Световым годом называется расстояние, которое проходит свет за год, перемещаясь в пространстве со скоростью 300 тысяч километров в секунду.
Когда люди наблюдают в космосе некоторый объект, они на самом деле видят, как он выглядел в момент излучения света. Рассмотрим следующие примеры.
Когда астрономы замечают вспышку на Солнце, они на самом деле видят ее не в реальном времени, а с некоторым запаздыванием: свету от вспышки нужно 8 минут, чтобы дойти до Земли. Таким образом, астрономы видят то, что происходило на Солнце 8 минут назад.
Ближайшая к нам после Солнца звезда, Проксима Центавра, находится на расстоянии примерно 4 световых лет от Земли. Поэтому, наблюдая Проксиму, мы видим не то, какая она сейчас, а какой она была 4 года назад.
Яркость и математика
Звезды первой звездной величины примерно в 100 раз ярче звезд шестой звездной величины. Звезды первой звездной величины примерно в 2,512 раза ярче звезд второй звездной величины, последние примерно в 2,512 раза ярче звезд третьей звездной величины и т. д. Шкала звездных величин логарифмическая, и разность на одну звездную величину соответствует изменению яркости в 2,512 раза, причем 2,512 — это корень пятой степени из 100 (поскольку 2,512 × 2,512 × 2,512 × 2,512 × 2,512 = (2,512) 5 = 100). Если вы усомнитесь в моих словах и проделаете эти вычисления, то получите примерно 100,023 — я просто отбросил десятичную часть.
Таким образом, вы можете вычислить степень «тусклости» звезды — по сравнению с другими звездами — с помощью ее звездной величины. Если степень яркости звезд отличается на пять звездных величин (как, например, у звезд первой и шестой звездной величины), это значит, что одна из них ярче другой в (2,512) 5 раз, т. е. примерно в 100 раз. Если же яркость отличается на шесть звездных величин, то одна звезда ярче другой в примерно в 250 раз. Если же сравнить, например, звезды первой и одиннадцатой звездной величины, то первая будет ярче второй в (2,512) 10 раз, т. е. примерно в 10 000 раз (100 в квадрате).
Самый тусклый объект, видимый с помощью телескопа «Хаббл», отличается примерно на 25 звездных величин от самых тусклых звезд, видимых невооруженным глазом (имеется в виду обычное зрение — некоторые специалисты, а также лгуны и хвастуны утверждают, что видят звезды 7-й звездной величины). Разность на 25 звездных величин — значит в 1005 раз. Таким образом, с помощью телескопа «Хаббл» можно увидеть объекты, в 10 миллиардов раз более тусклые, чем способен различить человеческий глаз. И мы вправе это ожидать от телескопа стоимостью миллиард долларов (хорошо, что он не стоит 10 миллиардов долларов).
Не расстраивайтесь: хороший телескоп можно купить меньше, чем за тысячу долларов, а самые лучшие фотографии, сделанные телескопом «Хаббл» стоимостью в миллиард долларов, можно бесплатно загрузить из Internet на сайте www.stsci.edu.
Ясной и темной осенней ночью поищите на небе туманность Андромеды (М31). Это самый удаленный объект, который можно легко увидеть невооруженным глазом. Свет, который воспринимают ваши глаза, покинул эту галактику примерно 2 миллиона лет назад. И если по какой-то таинственной причине эта галактика исчезнет, следующие 2 миллиона лет люди на Земле даже не узнают об этом.
Когда мы смотрим на космические объекты, мы видим не настоящее, а прошлое,
Нельзя узнать точно, как какой-либо космический объект выглядит прямо сейчас.
Вполне возможно и даже очень вероятно, что некоторые крупные звезды из далеких галактик, которые мы видим на небе, больше не существуют. Дело в том, что «продолжительность жизни» некоторых больших звезд — только 10–20 миллионов лет. И если они находятся в галактике, отстоящей от нас на 50 миллионов световых лет, скорее всего, то, что мы видим — уже только воспоминание об этих звездах. Они больше не озаряют свою галактику; они мертвы.
Если мы пошлем вспышку света по направлению к одной из самых отдаленных галактик, обнаруженных с помощью телескопа «Хаббл» или других больших телескопов, то свет будет идти до них около 10–14 миллиардов лет, потому что именно на таком расстоянии от нас находятся подобные галактики. Но, по некоторым прогнозам ученых, примерно через 5–6 миллиардов лет на Солнце закончатся запасы водорода и гелия, в результате чего оно «раздуется» до невероятных размеров и уничтожит всю жизнь на Земле. Поэтому посланный нами свет станет тщетной попыткой оповестить кого-то о существовании нашей цивилизации — удивительном всплеске жизни в холодных просторах Космоса.
Астрономическая единица
Расстояние от Земли до Солнца равняется примерно 149 600 000 километров, или одной астрономической единице (а.е.). И расстояния между объектами в Солнечной системе обычно даются в а.е. В сообщениях в средствах массовой информации, пресс-релизах и популярных книгах астрономы обычно объявляют, на каком расстоянии «от Земли» находятся изучаемые ими звезды и галактики. Но между собой и в научных журналах они говорят о расстояниях «от Солнца», центра Солнечной системы. Это практически не имеет значения, потому что расстояния до звезд измеряются с точностью ±1 а.е., но все-таки это нужно иметь в виду.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Звёздные величины
«Звезда первой величины» — так часто говорят про человека всем известного, знаменитого, яркого. Но у астрономов звёзды первой величины — не самые яркие. На небе найдётся дюжина звёзд поярче. Какой же тогда они величины? Нулевой и минус первой.
Задача 2. Во сколько раз Сириус (−1,5 m ) ярче красной звезды Бетельгейзе (0,5 m ) из созвездия Ориона?
Задача 3 (самая трудная). А во сколько раз Бетельгейзе (0,5 m ) ярче, чем другая красная звезда — Антарес (1 m ) из созвездия Скорпиона?
Почему же глаз устроен так странно, что вдвое более яркие и вдвое более слабые объекты кажутся ему «одинаково удалёнными» по яркости? Ведь, например, каждому ясно, что 2 «ближе» к 1, чем к 4. А с яркостью не так: на рисунке яркость звёзд разных величин символически изображена отрезком соответствующей длины. А рядом — отрезки, соответствующие звёздным величинам, то есть тому, как мы воспринимаем эти яркости (точнее, разницу между ними). Это как если бы следующим делением линейки после 1 см у нас вместо 2 см стоял бы 1 м, и мы про все отрезки, что больше 10 см, говорили бы: «Это примерно метр!». А ещё следующим делением — после метра — было бы уже 100 м. Странная какая-то линейка.
Яркости звёзд (слева) и какими они нам кажутся (справа)
Такое восприятие немного похоже на то, как мы смотрим на уходящие вдаль рельсы. На ближайшей шпале мы можем разглядеть каждую трещину, каждую растущую возле неё травинку. Следующие несколько шпал нам тоже хорошо видны, но уже гораздо менее подробно, и разобраться, которая там из них восьмая, а которая — девятая, уже не так легко. А вдали шпалы и вовсе сливаются: не то чтобы нам их не видно, и, скажем, человека мы разглядим и с большого расстояния, но вот на какой он шпале стоит — на двухсотой или трёхсотой — нам уже непонятно, да и неважно, всё равно далеко. Так же устроена логарифмическая шкала: разница между 1 м и 1 м 20 см в ней гораздо больше, чем между 100 м и 101 м. Маленькую разницу между слабыми источниками света глаз замечает лучше, чем даже в 10 раз большую разницу между очень яркими.
Задача 6. На сколько децибел отличаются громкости звуков, энергии которых отличаются в тысячу раз? А в миллион раз?
Задача 7. Порог слышимости — самый тихий звук, который различает обычный человек, — это как раз 0 децибел. Считая, что без вреда для глаза можно смотреть на объекты в 5 раз ярче полной Луны, сравните диапазон яркостей, воспринимаемых человеческим глазом, с диапазоном громкостей, воспринимаемых ухом. Во сколько раз самый яркий подходящий нам свет ярче самого тусклого? А во сколько раз отличаются энергии самого громкого и самого тихого звуков? Какой инструмент универсальнее — глаз или ухо?
Можно ли, глядя на звезду, догадаться, яркая ли она на самом деле или просто близкая? Вообще-то нет. Но есть «подсказки». Это — цвет звезды: если она белая или голубая, значит — уж точно довольно яркая, хотя и не определить на глаз, просто яркая или чудовищно яркая. А если жёлтая — значит, на самом деле не очень-то яркая, скорее всего, похожа на наше Солнце. Вот с красными сложнее — они могут оказаться и совсем тусклыми, и ужасно яркими. Но про это — как-нибудь в другой раз. А пока — две довольно сложные задачки напоследок.
Задача 9. Звёзды А и В одинаковой светимости, но А в 2 раза дальше. Во сколько раз она слабее на небе? На сколько отличаются их звёздные величины? Во сколько раз дальше должна быть звезда, чтобы казаться на 10 m слабее другой такой же звезды?
Художник Алексей Вайнер
1. В 2,5 · 2,5 = 6,25 раз; в 2,5 · 2,5 · 2,5 ≈ 15,6 раз.
2. 0,5 m − (−1,5 m ) = 2 m ; разница опять в 2,5 · 2,5 = 6,25 раз.
4. Разница −12,7 m − (−26,7 m ) = 14 m ; 14 = 5 + 5+ 5 − 1. Значит, отличие в 100 · 100 · 100 : 2,5 = 400 000 раз.
6. 1000 = 10 · 10 · 10, поэтому громкость отличается на 3 · 10 = 30 дБ. Миллион — это 6 перемноженных десяток, каждое умножение на 10 соответствует изменению громкости на 10 дБ, поэтому разница 6 · 10 = 60 дБ. Это разница между тихим шёпотом и звуком проезжающего мимо грузовика.
7. Свет: 5 m − (−12,7 m ) = 17,7 m от слабой звезды до Луны, перепад между самым ярким и самым слабым 5 · 100 · 100 · 100 · 100 : (2,5 · 2,5) ≈ 100 млн раз. Звук: 120 дБ = 12 · 10 дБ, перепад 10 12 = 1 миллион миллионов раз. Выходит, у уха диапазон больше, чем у глаза. (Мы считали, что глаз адаптирован к ночному пейзажу.)
Разница 10 m — это в 100 · 100 = 10 4 раз. Значит, звезда в \( \sqrt <10000>\) = 100 раз дальше.
1 Подсчитывать энергию и число фотонов — на самом деле совсем не одно и то же, так как фотоны «разных цветов» несут разную энергию. Но здесь мы эти подробности обсуждать не будем.
2 Про шкалу громкости звуков читайте в статье А. Щетникова «Что такое децибел» в «Квантике» № 3 за 2016 год.
Блеск, яркость и светимость в астрономии. В чем отличие?
Астрономия — это наука, и как всякая наука, она имеет свою особую терминологию, или, говоря проще, жаргон. Сторонним людям этот жаргон кажется просто бессмысленным набором фраз, а иногда вызывает улыбку. Вот, например, понятия «блеск звезды», «светимость звезды», «яркость звезды». В принципе понятно, что речь идет о том, насколько звезда яркая или тусклая. Но для чего ввели три разных термина? Или это просто синонимы, а фразы означают одно и то же? Давайте разбираться.
Что такое блеск звезды?
Начнем с блеска. Все вы не раз читали фразы вроде «блеск звезды равен…» или «звезда превосходит по блеску планету Сатурн». Звучит немного странно, не правда ли? Блестеть может начищенный пятак, медный таз на солнце, пуговицы на гимнастерке. В конце концов, могут блестеть глаза. Но звезда? Кажется, что во фразе блеск звезды есть что-то нелепое и слегка архаичное.
На самом деле термин блеск звезды — не устаревшее выражение, а самый что ни есть актуальный, современный термин. Под блеском астрономы подразумевают освещенность, которую создает небесный объект (например, звезда) на плоскости, перпендикулярной лучу зрения.
Слишком мудрено? Можно проще: чем выше блеск звезды, тем сильнее освещает она наши глаза, тем лучше мы ее видим! Звезды высокого блеска видны ночью хорошо, мы говорим про них с восхищением: «Какие яркие звезды!» Звезды, чей блеск мал, видны плохо, или вовсе не видны без телескопа. Мы говорим, что эти звезды тусклые.
Как астрономы измеряют блеск звезд?
Раз понятие блеска в астрономии имеет строгое научное определение, значит блеск можно измерить.
Помимо звездных величин, блеск небесных объектов можно измерять и в традиционных физических величинах, например, в люксах. Связь между звездной величиной и люксом следующая:
Яркость звезд
Выше я написал, что про звезды высокого блеска мы говорим, что эти звезды яркие. Значит ли это, что термины блеск и яркость небесного светила имеют один и тот же смысл?
Нет! Яркость — это количество света, приходящее с единицы площади объекта. Поэтому термин яркость применим только к протяженным объектам — Солнцу, Луне, планетам (уже в небольшой телескоп у них видны диски!), кометам, туманностям. А к точечным звездам или не имеющим ширины метеорам термин яркость уже не применим, ведь у них нет площади! Зато применим термин блеск, ведь он характеризует освещенность, которую создают любые небесные тела, хоть туманности, хоть звезды.
Почему же звезды называют яркими? Это просто анахронизм, общеупотребительное выражение, доставшееся нам с прошлых времен, когда блеск астрономы называли интегральной яркостью небесных объектов, а то, что сейчас считается яркостью, — поверхностной яркостью.
Звездное небо и Млечный Путь летом. Фотография усеяна мириадами звезд, которые имеют разный блеск. В случае с Млечным Путем имеет смысл говорить о яркости отдельных его участков. Фото: James Neeley
Светимость звезд
Нам осталось разобраться с последним термином. Что такое светимость?
Светимость — это мощность излучения небесного тела. Другими словами, это полное количество света, которое испускает небесный объект, например, звезда, в единицу времени. Как и светимость обычной лампочки, светимость звезд измеряется в ваттах. Но числа при этом получаются гигантские, поэтому часто астрономы измеряют светимость звезд в светимостях Солнца, то есть сравнивают мощность излучения звезд с мощностью излучения нашей родной звезды.
Звезда Ригель (бета Ориона) и ее окрестности. Очевидно, что Ригель — самая яркая звезда на этом снимке. Тысячи звезд фона — гораздо более тусклые. Но количественно можно измерить только блеск этих звезд, не яркость! Поэтому астрономы говорят о звездах с большим и меньшим блеском. Фото: Fred Espenak
Но является ли Сириус при этом звездой большей светимости, чем Ригель?
Нет! Сириус светит в 25 раз мощнее Солнца, а Ригель — в 130 тысяч раз мощнее Солнца! Получается, Ригель имеет светимость в 4800 раз большую, чем Сириус! Почему же Сириус имеет на нашем небе бо́льший блеск? Все дело, конечно, в расстоянии до этих звезд. Сириус — одна из ближайших звезд к Земле. Расстояние до нее составляет всего лишь 8 световых лет. Ригель же находится более чем в сто раз дальше, на расстоянии в 860 световых лет от нас. И даже несмотря на это, блеск этих звезд различается не очень сильно! Можно только поражаться, насколько мощно светит Ригель!
Итак, подытожим. Если блеск звезды говорит нам о ее интенсивности на небе, то светимость — о реальной мощности излучения звезды. Блеск нам дан непосредственно, а чтобы вычислить светимость, мы должны знать расстояние до звезды. Термин «яркость» применим только для протяженных объектов, а вот звезд, метеоров, астероидов, коричневых карликов он не касается.
Звездная величина
Видимая звёздная величина (иногда — просто «звёздная величина») — безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.
Содержание
Определение
Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.
В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:
где I — световой поток от объекта, C — постоянная.
Поскольку данная шкала относительная, то её нуль-пункт (0 m ) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10 6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0 m за пределами земной атмосферы создаёт освещённость в 2,54·10 −6 люкс.
Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.
Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:
В наши дни видимая звёдная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.
Спектральная зависимость
Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)
Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.
Звездная величина
Каждая из этих звезд имеет определенную величину, позволяющую их увидеть
Звездная величина — числовая безразмерная величина, характеризирующая яркость звезды или другого космического тела по отношению к видимой площади. Другими словами, эта величина отображает количество электромагнитных волн, излучаемых телом, которые регистрируются наблюдателем. Поэтому данная величина зависит от характеристик наблюдаемого объекта и расстояния от наблюдателя до него. Термин охватывает лишь видимый, инфракрасный и ультрафиолетовый спектры электромагнитного излучения.
По отношению к точечным источникам света используют также термин «блеск», а к протяженным – «яркость».
История
Древнегреческий ученый Гиппарх Никейский, который жил на территории Турции во II веке до н. э., считается одним из влиятельнейших астрономов античности. Он составил объемный каталог звезд, первый в Европе, описав расположения более чем тысячи небесных светил. Также Гиппарх ввел такую характеристику как звездная величина. Наблюдая невооруженным глазом за звездами, астроном решил разделить их по яркости на шесть величин, где первая величина – самый яркий объект, а шестая — наиболее тусклый.
В XIX веке, британский астрономом Норман Погсон усовершенствовал шкалу измерений звездных величин. Он расширил диапазон ее значений и ввел логарифмическую зависимость. То есть с повышением звездной величины на единицу, яркость объекта уменьшается в 2.512 раза. Тогда звезда 1-й величины (1 m ) в сто раз ярче, нежели светило 6-й величины (6 m ).
Вега — эталон звездной величины
За эталон небесного светила с нулевой звездной величиной изначально брался блеск Веги, самой яркой точки в созвездии Лиры. Несколько позже было изложено более точное определение объекта нулевой звездной величины – его освещённость должная равняться 2,54·10 −6 люкс, а световой поток в видимом диапазон 10 6 квантов/(см²·с).
Видимая звездная величина
Абсолютная звездная величина и светимость
Для того чтобы была возможность сравнить истинную яркость космических тел, была разработана такая характеристика как абсолютная звездная величина. Согласно ней вычисляется значение видимой звездной величины объекта, если бы этот объект располагался на за 10 парсек (32,62 световых лет) от Земли. В таком случае отсутствуют зависимость от расстояния до наблюдателя при сравнении различных звезд.
Абсолютная звездная величина для космических объектов в Солнечной системе использует иное расстояние от тела к наблюдателю. А именно 1 астрономическую единицу, при этом, в теории, наблюдатель должен находиться в центре Солнца.
Материалы по теме
Размер Вселенной
Более современной и полезной величиной в астрономии стала «светимость». Эта характеристика определяет полную энергию, которую излучает космическое тело за определенный отрезок времени. Для ее вычисления как раз и служит абсолютная звездная величина.
Спектральная зависимость
Как уже говорилось ранее, звездная величина может быть измерена для различных видов электромагнитного излучения, а потому имеет разные значения для каждого диапазона спектра. Для получения картинки какого-либо космического объекта астрономы могут использовать фотопластинки, которые более чувствительны к высокочастотной части видимого света, и на изображении звезды получаются голубыми. Такая звездная величина называется «фотографической», mPv. Чтобы получилось значение близкое к визуальному («фотовизуальное», mP), фотопластинку покрывают специальной ортохроматической эмульсией и используют желтый светофильтр.
Снимок Солнца через темный светофильтр
Учеными была составлена так называемая фотометрическая система диапазонов, благодаря которой можно определять основные характеристики космических тел, такие как: температура поверхности, степень отражения света (альбедо, не для звезд), степень межзвездного поглощения света и прочие. Для этого производится фотографирование светила в разных спектрах электромагнитного излучения и последующие сравнение результатов. Для фотографии наиболее популярны следующие фильтры: ультрафиолетовый, синий (фотографическая звездная величина) и желтый (близкий к фотовизуальному диапазону).
Фотография с запечатленными энергиями всех диапазонов электромагнитных волн определяет так называемую болометрическую звездную величину (mb). С ее помощью, зная расстояние и степень межзвездного поглощения, астрономы вычисляют светимость космического тела.
Звездные величины некоторых объектов
Трасса Международной космической станции на фоне созвездия Большой Медведицы