Чем можно измерить ускорение

Ускорение при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

v — скорость тела в данный момент времени, v 0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Проекция ускорения

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают ( а ↑↑ v ).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу ( а ↑↓ v ).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Алгоритм решения

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Запишем исходные данные:

Формула, которая связывает ускорение тела с пройденным путем:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Подставим известные данные и вычислим ускорение автомобиля:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

pазбирался: Алиса Никитина | обсудить разбор | оценить

Внимательно прочитайте текст задани я и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с? Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Алгоритм решения

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

Используем для вычислений следующую формулу:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Подставим в нее известные данные и сделаем вычисления:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Этому значению соответствует график «г».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

Решение

Записываем формулу ускорения:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Выбираем любые 2 точки графика. Пусть это будут:

Подставляем данные формулу и вычисляем модуль ускорения:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Большинство современных устройств используют датчики для контроля и управления различными физическими величинами, такими как давление, температура, влажность, интенсивность света, направление и т.д. Один из таких датчиков, используемый для измерения ускорения устройств, называется датчиками акселерометра.

Когда-то давно вы бы нашли такие датчики только в современных машинах, таких как космические ракеты или реактивные самолеты. Теперь они есть практически в каждом смартфоне, ноутбуке, автомобиле и игровой консоли. Давайте копнем глубже и выясним, что это такое, как они работают, и для чего они используются?

Что такое акселерометр?

Измеряя величину гравитационного ускорения, инструмент может вычислить угол, под которым он наклонен относительно Земли. Например, акселерометр, установленный на поверхности Земли, будет измерять ускорение 9,81 м / с2 в прямом направлении вверх.

Измеряя величину динамического ускорения, можно определить, насколько быстро и в каком направлении движется устройство. Например, трехосевой акселерометр может определять величину и направление (во всех трех осях) ускорения как векторную величину.

Акселерометры используются в различных отраслях промышленности и научных исследованиях. Они в основном используются в электронных устройствах для определения ориентации, ускорения координат, ударов и вибрации.

Акселерометры, встроенные в смартфоны, например, выясняют, когда переключать макет экрана с ландшафтного на портретный. Данные, предоставляемые этими датчиками, могут помочь определить, идет ли устройство вверх или падает вниз.

Высокочувствительные акселерометры интегрированы в инерциальные навигационные системы ракет и реактивных двигателей. Беспилотные летательные аппараты также используют такие устройства для стабилизации полета.

Как работает акселерометр?

Механический акселерометр состоит из пружины, прикрепленной массой. Эта пружина обычно подвешивается внутри наружного корпуса. Когда все устройство ускоряется, корпус сразу же движется в том же направлении. Масса, однако, остается в своем положении (на короткое время), растягивая пружину с силой, соответствующей ускорению.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Принцип работы механического акселерометра

Измеряя длину пружины растяжения, мы можем определить ускорение. Это может быть сделано различными способами. Сейсмометр, например, использует тот же принцип для измерения землетрясений.

Когда происходит землетрясение, он трясет корпус сейсмометра, но масса движется дольше. К массе прикрепляется ручка, чтобы проследить ее движение на бумажном графике.

Современные акселерометры генерируют электрические или магнитные сигналы вместо того, чтобы использовать след от ручки на бумаге.

Самые распространенные типы акселерометров

Большинство коммерческих устройств оснащены емкостными, пьезорезистивными и пьезоэлектрическими приборами для преобразования механического движения в электрический сигнал.

1. Пьезоэлектрические акселерометры используют пьезоэлектрический эффект определенных материалов для измерения ускорения, вибрации или механического удара. Эти материалы накапливают электрический заряд (пьезоэлектричество) в ответ на приложенное механическое напряжение.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениеПринцип работы пьезоэлектрического акселерометра

К массе прикрепляется пьезоэлектрический материал, например, цирконат-титанат свинца. При движении акселерометра масса оказывает механическое давление на этот материал. В результате этого материал вырабатывает крошечное электрическое напряжение, которое можно расшифровать, чтобы вычислить соответствующее ускорение.

2. Пьезорезистивные акселерометры работают по аналогичному принципу. Они используют изменение сопротивления пьезорезистивных материалов для преобразования механического напряжения в выходное напряжение постоянного тока. Эти типы акселерометров подходят для измерений удара, где уровень g и диапазон частот значительно высоки.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Endevco 727 | легкий пьезорезистивный акселерометр, идеально подходящий для измерения удара при испытаниях на падение

Пьезоэлектрические компоненты, напротив, не имеют себе равных по высокотемпературному диапазону и малому весу в упаковке.

3. Емкостные акселерометры основаны на изменении электрической емкости в ответ на ускорение. Они содержат два компонента: первичную (стационарную) пластину, прикрепленную к корпусу, и вторичную пластину, соединенную с массой, которая свободно перемещается внутри корпуса.

Емкость изменяется с расстоянием между двумя металлическими пластинами, и, измеряя емкость, можно определить приложенное ускорение. Эти типы акселерометров могут измерять постоянное, а также медленное переходное и периодическое ускорение.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Трехосный емкостный акселерометр

Современные акселерометры бывают всех трех форм. Они часто представляют собой микроэлектромеханические системы (MEMS), содержащие несколько компонентов, каждый размером от 1 до 100 микрометров. Акселерометры, встроенные в планшеты и смартфоны, обычно имеют площадь менее 100 миллиметров.

Микромеханический акселерометр чувствителен только к одному направлению в плоскости. Двухосевой акселерометр построен путем интеграции двух устройств перпендикулярно, а трехосный акселерометр может быть сделан путем добавления другого устройства вне плоскости. Интегрированный модуль может быть гораздо более точным, чем три отдельных устройства, объединенные после упаковки.

Для достижения сверхвысокой чувствительности можно использовать квантовое туннелирование. Однако этот процесс является чрезвычайно сложным и дорогостоящим.

С помощью существующих технологий мы можем измерять ускорения до тысяч g. Инженерам и производителям приходится идти на компромисс между максимальным измеряемым ускорением и чувствительностью устройства.

Применение

Акселерометры используются в различных областях, от инженерной и бытовой электроники до биологии и медицинских технологий. Ниже приведены наиболее часто используемые датчики акселерометров.

Навигация

Инерциальная навигационная система (также называемая инерциальной эталонной платформой) использует компьютер и акселерометры для непрерывного измерения местоположения, ориентации и скорости движущегося объекта без каких-либо внешних ориентиров.

Инженерия

Акселерометры широко используются для измерения вибрации на машинах, автомобильных двигателях и зданиях. В автомобильном секторе акселерометры с высоким значением g используются для обнаружения дорожно-транспортных происшествий и установки подушек безопасности в нужное время.

Они также используются для контроля работоспособности оборудования и регистрации вибрации вращающихся инструментов, таких как компрессоры, турбины, которые, если их не обслуживать, могут привести к дорогостоящему ремонту. Некоторые акселерометры специально настроены (встроены в гравиметры) для измерения гравитационных сил.

Бытовая электроника

Многие производители ноутбуков используют акселерометры для защиты жестких дисков от повреждений. Если датчик обнаруживает внезапное падение, головки жесткого диска припаркованы, чтобы избежать повреждения диска и потери данных.

Биология и медицинское применение

В биологических науках все чаще используются акселерометры. Данные, получаемые с помощью высокочувствительных трехосных акселерометров, позволяют ученым различать поведенческие модели животных, когда они находятся вне поля зрения.

Многие автоматические внешние дефибрилляторы содержат акселерометр для определения глубины сдавления грудной клетки СЛР.

Несколько компаний производят часы для спортсменов, которые состоят из акселерометров для измерения скорости и пройденных дистанций бегунов. Современные будильники фазы сна также интегрированы с акселерометрическими датчиками, так что они могут обнаружить движение спящего и разбудить человека в цикле не-быстрого сна.

Источник

Каким прибором измеряется ускорение

Ускорения измеряются в метpax на секунду в квадрате (м/с 2 ). В качестве единицы измерения ускорения часто применяют величину, связанную с ускорением земного притяжения — g. Например, ускорение, равное 0,1g; l0g и т.д. Ускорения могут быть линейными и угловыми. Средства измерения ускорений называются акселерометрами.

Инерциальный метод

Для измерения линейных ускорений применяются инерциальный метод, метод дифференцирования скорости и метод двухкратного дифференцирования расстояния до неподвижной базы.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рис. 8.33. Средства измерения ускорений: а — схема акселерометра (1 — инерционная масса; 2 — пружина; 3 — электромагнит; 4 — корпус прибора; 5- демпфер; 6 — преобразователь; 7- ось; У- усилитель); б — схема маятникового акселерометра (1 — подвеска; 2 — жидкость; 3 — корпус; 4 — чувствительный элемент; 5 — преобразователь; У- усилитель); в — схема струнного акселерометра (7 и 5- струнный преобразователь; 2 и 4- струна; 3 — упругий подвес; 6- генератор; 7 — механизм натяжения струн; 8- регулирующее устройство); г — схема акселерометра с волоконно-оптическим преобразователем (1 — источник света; 2 — акселерометр; 3 и 8 — линза; 4 — поляризатор; 5 — фотоупрутий материал; 6 — четвертьволновая пластина; 7 — анализатор; 9 — волоконный светопровод; 10 — приемник излучения — фотодиод)

Инерциальный метод основан на измерении силы, развиваемой инерционной массой при ее движении с ускорением. Принцип действия средств измерений, реализующий инерциальный метод, состоит в следующем (рис. 8.33, а). Инерционная масса 7, связанная с корпусом прибора 4 с помощью пружины 2 и демпфера 5, может перемещаться в направлении оси 7, называемой осью чувствительности. Перемещение инерционной массы, пропорциональное измеряемому ускорению, преобразуется посредством резистивных, индуктивных или емкостных преобразователей 6 в электрический сигнал, который после усиления в усилителе поступает на электромагнит 3. Последний создает усилие F, уравновешивающее инерционную силу тах, т.е.

Методы дифференцирования

Методы одно- или двухкратного дифференцирования сводятся соответственно к дифференцированию измеренных скорости или расстояния до неподвижной базы.

Акселерометры

Рассмотрим некоторые возможные схемы акселерометров (рис. 8.33, б, в, г).

Основными элементами акселерометров являются подвесы инерционных масс, преобразователи сигналов, моментные (силовые) устройства, усилители сигналов и корректирующие устройства (демпферы).

Для уменьшения потерь в осях подвеса, обеспечения линейной зависимости между отклонениями массы и измеряемым ускорением подвес помещают в жидкость с удельным весом, равным удельному весу чувствительного элемента, либо устанавливают его на воздушной подушке, на струнах. Применяют также электромагнитные и криогенные подвесы.

В качестве преобразователей сигналов применяются емкостные, индуктивные, фотоэлектрические, струнные и др. Основные требования к ним: большая разрешающая способность, линейная зависимость выхода от входа, отсутствие реакции преобразователя на чувствительный элемент.

Моментными (силовыми) устройствами для ввода сигналов обратной связи являются моментные двигатели (электродвигатели, работающие в заторможенном режиме) и электромагниты.

Маятниковый аеселерометр

В маятниковых акселерометрах (см. рис. 8.33, б) чувствительный элемент 4 находится в жидкости 2, заключенной в корпусе 3. Температура жидкости поддерживается с точностью до 0,01 «С, что позволяет устранить ее конвективные движения. Сигнал с чувствительного элемента снимается преобразователем 5 и подается на усилитель У. С выхода усилителя сигнал поступает на моментный двигатель, развивающий момент, зависящий от ускорения.

Струнный акселерометр

В акселерометрах со струнными преобразователями 1 и 5 (см. рис. 8.33, в) смещение массы т меняет упругие свойства струн 2 и 4. натянутых в направлении оси чувствительности. Упругий подвес 3 исключает движение массы т в поперечном направлении. Сумма частот колебаний струн 2 и 4 (f1 +f2) поддерживается постоянной посредством регулирующего устройства 8, для чего она сравнивается с эталонной частотой f0, вырабатываемой генератором 6. Разность Δf = (f1 +f2)-fo используется для управления механизмом 7 натяжения струн. При поддержании значения (f1 +f2) постоянным получается линейная зависимость между измеряемым ускорением ах и разностью частот Δf.

Струнные акселерометры находят применение в инерциальных системах управления. При диапазоне измерения ускорений до 20 g погрешность не превышает ±0,004 %.

Акселерометр с преобразователем

Акселерометр с волоконно-оптическим измерительным преобразователем основан на эффекте фотоупругости. Некоторые материалы (эпоксидная смола, нитрат лития и др.) меняют свои оптические свойства при их деформировании. На этой основе создан целый ряд средств измерения, в которых сила преобразуется в деформацию. На рис. 8.33, г источник света 1 (например, полупроводниковый лазер), проходя через линзу 3 и поляризатор 4, поступает на стержень из фотоупругого материала 5, изменяющий свое напряженное состояние в зависимости от ускорения груза акселерометра 2. Преобразуя полученный сигнал с помощью четвертьволновой пластины 6, анализатора 7 и линзы 8, он поступает по волоконному светопроводу 9 на приемник излучения (фотодиод) 10. В результате определяется величина ускорения с достаточно высокой точностью. Так, при массе груза 25 г чувствительность рассмотренного акселерометра составляет 0,01g.

Каким прибором измеряется ускорение

Часы прибор для измерения времени — Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ — Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера

морской маятниковый прибор — 41 морской маятниковый прибор Маятниковый прибор, предназначенный для измерений силы тяжести с борта судна. Источник: ГОСТ Р 52334 2005: Гравиразведка. Термины и определения оригинал документа 60. Морской маятниковый прибор Маятниковый при … Словарь-справочник терминов нормативно-технической документации

Маятниковый прибор — инструмент для измерения ускорения силы тяжести относительным методом (см. Гравиметрия). Гравиметрические исследования с помощью М. п. основываются на измерении разности зависящих от ускорения силы тяжести периодов свободных колебаний… … Большая советская энциклопедия

маятниковый прибор — Динамический гравиметр, в котором для измерения силы тяжести измеряется период колебаний одного или нескольких физических маятников. [ГОСТ Р 52334 2005 ] маятниковый прибор Прибор для определения ускорения свободного падения, основанный на… … Справочник технического переводчика

СП 151.13330.2012: Инженерные изыскания для размещения, проектирования и строительства АЭС. Часть II. Инженерные изыскания для разработки проектной и рабочей документации и сопровождения строительства — Терминология СП 151.13330.2012: Инженерные изыскания для размещения, проектирования и строительства АЭС. Часть II. Инженерные изыскания для разработки проектной и рабочей документации и сопровождения строительства: 7.2.11.9 Геотехнические… … Словарь-справочник терминов нормативно-технической документации

ГКИНП 11-140-81: Руководящий технический материал. Топографо-геодезические работы на шельфе и внутренних водоемах. Термины и определения — Терминология ГКИНП 11 140 81: Руководящий технический материал. Топографо геодезические работы на шельфе и внутренних водоемах. Термины и определения: 36. Автономный подводный аппарат Подводный съемочный аппарат, обладающий автономностью… … Словарь-справочник терминов нормативно-технической документации

Гравиметр — (от лат. gravis тяжёлый и греч. metreo измеряю * a. gravimeter; н. Gravimeter, Schweremesser; ф. gravimetre; и. gravimetro) прибор для измерения ускорения силы тяжести. Aбс. измерения (полной величины ускорения силы тяжести) производятся… … Геологическая энциклопедия

Акселерометр — (от лат. accelero ускоряю и греч. metréō измеряю) прибор для измерения ускорения (перегрузок), возникающего на космических летательных аппаратах, ракетах, самолётах и др. движущихся объектах, при испытаниях машин, двигателей и т. д.… … Большая советская энциклопедия

Гравиметр — CG 5 Гравиметр (от лат. gravis тяжёлый + meter) прибор для измерения уско … Википедия

Измеритель скорости. Виды и работа. Применение и особенности

Измеритель скорости является востребованным прибором, который используется для различных целей. Он измеряет скорость движения объектов и веществ в километрах в час или метрах в секунду.

Виды измерителей скорости

Измеритель скорости очень точное оборудование, которое используется практически повсеместно в различных отраслях промышленности и бытовой жизни. Его конструкция многократно модернизировалась под определенные цели.

Существуют следующие разновидности измерителей скорости:
Спидометр

Спидометр – это прибор для измерения скорости колесных транспортных средств. Он устанавливается на панель приборов автомобилей, сельхозтехники, спецтехники и поездов. Он бывает механическим, электронным и электромеханическим.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Механическое устройство оснащается тросом, который выполняет роль привода. Трос подсоединяется к коробке передач или напрямую к оси колеса. Один его оборот соответствует обороту колеса и соответственно прохождению определенной дистанции. Специальный механизм с шестеренками оперативно проводит расчет соответствия пройденной дистанции за определенный промежуток времени к скорости в километрах в час. Подобное оборудование оснащается цифровой шкалой и стрелкой, которая указывает на достигнутую скорость. Механические спидометры используются и сейчас. Их главный недостаток заключается в периодическом износе троса, который необходимо менять. Помимо текущего показания скорости механические модели имеют встроенный в корпусе циферблат, показывающий пробег транспорта с момента начала его эксплуатации.

Электронные спидометры оснащаются датчиками, передающими информацию в электронном виде на циферблат на панели приборов. Она отображается как светящиеся цифры. Отсутствие стрелок позволяет проводить более комфортную визуальную оценку показателей скорости движения.

Электромеханические спидометры являются гибридом двух типов. В них снятие показателей осуществляется электрическим датчиком, но вывод данных о развиваемом темпе движения проводится с помощью стрелки.

Радар

Радар – это прибор предназначенный для измерения скорости движущегося объекта без физического контакта с ним. Обычно такое оборудование применяется правоохранительными органами, а также спортивными судьями. Принцип действия прибора заключается в том, что он создает радиосигнал, который направляется на движущийся объект. После при достижении волны к автомобилю или другому объекту, волна отражается и возвращается на чувствительный элемент устройства. По характеристикам отражаемой волны прибор вычисляет скорость, с которой двигался объект. Существует также устройство, где вместо радиосигнала направляется луч лазера. Выдаваемая на циферблате скорость выражается в километрах за час.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Данное оборудование является не идеальным и дает небольшую погрешность, которая указывается производителем. Радары отличаются между собой не только по классу точности, но и дистанции измерения. Все зависит от мощности излучателя и чувствительного элемента, который принимает отраженные сигналы.

Современные радары существенно отличаются от первых устройств этого класса. Дело в том, что в связи с наличием штрафов за превышение скорости, для защиты от подобных неприятностей началось производство так называемых антирадаров. Данные оборудования позволяют глушить радиосигналы и сбивать показатели, которые выдает радар. В связи с этим полицейские измерители скорости начали оснащаться системой шифрования с особой технологией отправки импульсов и их восприятия. Нельзя сказать, что это дает стопроцентную гарантию от погрешности, но по крайней мере позволяет игнорировать глушение от большинства приборов подавляющих сигналы.

Анемометр

Анемометр – это измеритель скорости передвижения воздушных и газовых потоков. Принцип его действия заключается в наличии лопастей подобных тем, что используются в вентиляторах или в авиации. При прохождении ветра сквозь диффузор анемометра лопасти начинают проворачиваться. Специальный механизм измеряет частоту вращения и определяет скорость движения потока в километрах в час или метрах в секунду. Такое оборудование обычно используется метеорологами для расчетов изменения погоды. По характеристикам движения ветра определяется через сколько времени циклон достигнет определенной местности.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

В бытовой жизни анемометры нашли свое применение в авиации. Они устанавливаются на аэродромах для определения параметров силы ветра с целью корректировки диспетчерами пилотов при посадке самолетов. Анемометрами пользуются военные снайперы для корректировки направления полета пули. С помощью специальных таблиц определяется угол сноса пули ветром при полете. Чем слабее воздушный поток, тем по более ровной траектории нужно выпускать пулю. Данный показатель является важным при стрельбе на длинные дистанции.

Анемометры используются в вентиляционных системах. С их помощью проводится регулировка вентиляторов для точной настройки вентилирования без создания сквозняков. Вывод показателей скорости осуществляется с помощью стрелки как в обычных спидометрах для автомобиля или на циферблат, если прибор является электронным или электромеханическим.

Подобное оборудование не всегда имеет механический привод. Существуют также анемометры с теплочувствительным элементом, который начинает деформироваться при остывании. При движении воздушного потока чувствительный элемент обдувается, и его температура снижается. При этом оборудованием проводятся сложные расчеты, в результате которых выводятся точные показатели скорости ветра с поправкой на температуру самого воздуха. Одними из последних изобретений стали ультразвуковые анемометры, которые анализируют растворение звука посылаемого против движения воздушных масс.

Хронограф

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Хронограф снимает характеристики о полете пули или другого мелкого объекта в метрах за секунду. Также отдельные модели могут иметь возможность переключения показателей на километры в час. Хронографы имеют сложную конструкцию и являются очень чувствительными. Те приборы, которые применяются для измерения скорости движения пуль и прочих боеприпасов выполняются в двух вариантах – дульном и рамочном.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рамочный хронограф является более универсальным. Он выполнен в виде рамки, в которую нужно прицелиться, чтобы пуля пролетела между стенками. С помощью такого хронографа можно измерить скорость движения практически любого мелкого объекта. Это может быть стрела и даже брошенный рукою камень. Подобное оборудование более габаритное, но благодаря универсальности пользуется большой популярностью.

Измеритель скорости газового потока

Также существуют измерители скорости для газовых и воздушных потоков, которые двигаются внутри труб. Данные устройства фиксируются на трубопроводах и оснащаются крыльчаткой, которая проворачивается при контакте со средой. Подобное оборудование имеет много общего со счетчиками газа, но в отличие от них оно показывает не какой объем был пропущен всего, а позволяет рассчитать, сколько газа при такой интенсивности перекачки можно провести за определенный промежуток времени. Подобное оборудование выдает показатели не только в метрах за секунду, но и в объеме. Это могут быть литры или кубические метры.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Интенсивность давления на крыльчатку в различных газах отличается. В связи с этим оборудование калибруется производителем под среду, с которой будет работать. Таким образом, если измеритель скорости рассчитан для природного газа, он не будет давать точные показатели в случае работы с углекислотой. Помимо оборудования для веществ в жидком состоянии, существуют и измерители для газообразной среды, такой как воздух и даже пар.

Скоростемер для воды

Измеритель скорости воды имеет подобную конструкцию, что и для газовой среды. Его используют в исключительных случаях, когда нужно узнать скорость движения водяного потока, а не объем прокачки. Данный показатель является важным при тестировании оборудования для пожаротушения, водяных пушек и в прочих целях. Такой скоростемер представляет собой вытянутую трубку, которая подсоединяется к гибкому шлангу или трубопроводу. Кроме устройств с вращающейся крыльчаткой, снятие показателей может осуществляться лазером или ультразвуковыми волнами.

Измерение скоростей и ускорений

Так как скорость и ускорение взаимосвязаны с изменяющимся перемещением, то для их измерения могут быть использованы преобразователи перемещения, выходной сигнал которых подвергается дифференцированию. При выполнении дифференцирования аналогового сигнала в зависимости от вида сигнала и требуемой точности применяют пассивные дифференцирующие цепи, трансформаторы (ЭДС на вторичной обмотке пропорциональна скорости изменения магнитного потока) и активные дифференцирующие цепи (на базе операционных усилителей).

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рисунок 16.28 — Тахогенератор

Индукционные преобразователи скорости. Принцип действия индукционных преобразователей рассмотрен на рисунке 16.28, где изображен индукционный преобразователь, выходной сигнал которого пропорционален скорости линейного перемещения катушки. Широкое распространение на практике получили индукционные преобразователи угловых скоростей (тахогенераторы). На рисунке 16.28 схематически показан тахогенератор с вращающимся постоянным магнитом. В зазоре магнитопровода расположен постоянный магнит, связанный с контролируемым объектом. При вращении магнита изменяется магнитный поток, пронизывающий обмотку ω. Подбирая определенную форму магнита и по­люсов магнитопровода, можно добиться синусоидального изменения магнитного потока в магнитопроводе при вращении магнита. Амплитуда выходного напряжения и его частота пропорциональны частоте вращения о магнита. Существуют также тахогенераторы переменного тока с вращающимся ферромагнитным якорем, в которых магнитный поток создается дополнительной обмоткой возбуждения, а при вращении якоря изменяется магнитное сопротивление цепи, и тахогенераторы переменного тока с короткозамкнутым ротором. Иногда используются тахогенераторы постоянного тока, представляющие собой генератор с коллектором и щетками и возбуждением от постоянных магнитов или от внешнего источника постоянного тока. Электростатические преобразователи скорости. В простейшем случае электростатический преобразователь скорости выполнен в виде конденсатора, одна из пластин которого перемещается относительно другой со скоростью V, Принцип действия таких преобразователей основан на следующем явлении: при изменении емкости С конденсатора.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рисунок 16.29 — Преобразователь скорости с электретом

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рисунок 16.30 — Индукционный преобразователь скорости.

Индукционный преобразователь скорости, к которому приложено постоянное напряжение U, его зарядный ток (изменяется пропорционально скорости изменения емкости) вычисляется по формуле (16.34)

i = dq/dt == U (dC/dt), (16.34)

где q=UC — заряд конденсатора.

Если изменение емкости пропорционально перемещению пластины конденсатора, то выходной ток пропорционален скорости этого перемещения.

Преобразователи скорости с вязким трением. Принцип действия этих преобразователей основан на зависимости усилия от скорости перемещения тела, преодолевающего вязкое трение. В преобразователях скорости гидравлической системы поршень, связанный с контролируемым объектом, движется в цилиндре с жидкостью. При этом на цилиндр действует сила, пропорциональная скорости.

Широкое распространение получили преобразователи скорости индукционной системы (рисунок 16.30). Преобразователь состоит из постоянного магнита 1 и диска 2 из электропроводного материала, укрепленных на полуосях. Между диском и магнитом имеется воздушный зазор. При перемещении магнита относительно диска в последнем индуцируются вихревые токи, взаимодействие которых с потоком постоянного магнита создает момент, вращающий диск 2. С помощью спиральной пружины 3 этот момент преобразуется в угол поворота α. В резуль­тате угол поворота α пропорционален угловой скорости ω вращения магнита. В дальнейшем этот угол α преобразуют в электрический сигнал преобразователем угловых перемещений.

Корреляционный и доплеровский методы измерения скорости. Сущность корреляционного метода измерения скорости можно проиллюстрировать на примере измерения скорости движения ленты (рисунок 16.31). Лента 1 движется со скоростью V. На расстоянии 1 друг от друга установлены две оптические системы, содержащие осветители 2 и 5 и оптоэлектрические преобразователи 3 и 6. Выходные сигналы преобразователей 3 и 6 усиливаются усилителями 4 и 7 и подаются на входы коррелятора 9, причем сигнал с выхода усилителя 4 проходит через блок регулируемой задержки 8. Неоднородность поверхности контролируемой ленты приводит к модуляции яркости сигналов, воспринимаемых оптоэлектрическими преобразователями, и соответственно к модуляции электрических сигналов на выходах усилителей 4 и 7. Очевидно, что взаимная корреляционная функция этих сигналов будет иметь максимум при временном сдвиге τх=l/V, равном времени прохождения лентой расстояния /между оптическими системами. Задержка сигнала с выхода усилителя 4 на время τх осуществляется блоком регулируемой задержки 8, который управляется сигналом с выхода экстремального регулятора 10, обеспечивающего максимальное значение сигнала на выходе коррелятора 9. Величина у, пропорциональная задержке τх сигнала в блоке 8, выводится на отсчетное устройство 11, шкала которого может быть проградуирована непосредственно в единицах скорости движения. Корреляционный метод измерения скорости находит практическое применение в таких задачах, как измерение скорости проката, скорости движения судна (относительно дна водоема) и т. п. При этом обеспечивается весьма высокая точность измерений. Так, погрешность корреляционного измерителя скорости проката составляет 0,1 %.

Для дистанционного измерения скоростей самолетов, автомобилей и других быстродвижущихся объектов используют доплеровские измерители скорости. Как известно, эффект Доплера заключается в том, что если передатчик, или приемник, или отражатель радиоволн (акустических волн) сближается (удаляется) со скоростью V, то частота принятого сигнала отличается от частоты излученного сигнала на величину, пропорциональную этой скорости. Поэтому выходной величиной доплеровских преобразователей скорости является частота, равная разности частот излученного и принятого сигналов.

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рисунок 16.31 — Структурная схема прибора для измерения скорости движения ленты

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рисунок. 16.32 — Преобразователь ускорений сейсмического типа

Преобразователи ускорения. Для измерения ускорений могут быть применены датчики перемещения или скорости, выходной сигнал которых дифференцируется соответствующее число раз. Однако наибольшее распространение на практике получили преобразователи ускорений сейсмиче­ского типа. Отличительной особенностью указанных преобразователей является отсутствие механической связи между контролируемым объектом и неподвижным, относительно которого этот объект перемещается.

Принцип действия преобразователя сейсмического типа иллюстрируется на рисунке 16.32.

где с= 1/W — эластичность пружины;

W — жесткость пружины.

Полученное перемещение у преобразуется далее в электрический сигнал преобразователем перемещений того или иного типа.

Для улучшения динамических свойств преобразователя при работе с изменяющимися ускорениями в его конструкцию вводится демпфер 2, использующий вязкое трение для создания силы, пропорциональной скорости движения инерционной массы относительно корпуса и равной

где R — коэффициент вязкого трения.

В этом случае движение инерционной массы относительно корпуса описывается операторным способом.

При измерениях изменяющихся ускорений и, в частности, колебательных процессов представляет интерес амплитудно-частотная характеристика преобразователя (16.36)

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение, (16.36)

где Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение— собственная частота колебаний;

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение— отношение частоты вынужденных колебаний к частоте собственных колебаний;

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение— коэффициент демпфирования.

Анализ (16.36) показывает, что динамические погрешности преобразователя малы при коэффициентах демпфирования v = 0,6-0,7 и при измерениях ускорений, меняющихся с частотой ω 3ω отноше­ние y/x

Дата добавления: 2015-01-13 ; просмотров: 1793 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Единицы измерения ускорения.

Ускорение – это физическая величина (a, от лат. acceleratio), характеризующая быстроту изменения скорости тела. Ускорение является векторной величиной, показывающей, насколько изменяется вектор скорости Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениетела при его движении за единицу времени:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Рассмотрим движение автомобиля. Трогаясь с места, он увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Направление ускорения также совпадает с направлением изменения скорости Δ Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениепри очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчета.

Равнопеременное движение точки – это движение с постоянным ускорением,

Под словом равнопеременное понимают:

1. Равноускоренное движение – если модуль скорости увеличивается, т.е. ускорение параллельно скорости — Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение,

2. Равнозамедленное движение – если модуль скорости уменьшается, т.е. ускорение антипараллельно скорости: Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение.

Поскольку ускорение равнопеременного движения постоянно, оно равно изменению скорости за любой конечный интервал времени:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

где Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение— скорость в начальный момент времени, принятый за нуль; Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение— текущее значение скорости (в момент времени t). Формула для определения ускорения из состояния покоя (равноускоренное движение, начальная скорость равна нулю: Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениеимеет вид:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Если же нулю равна не начальная, а конечная скорость ( Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениеторможение при равнозамедленном движении), то формула ускорения принимает вид:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

При движении по криволинейной траектории изменяется не только модуль скорости, но и ее направление. В этом случае вектор ускорения представляют в виде двух составляющих: тангенциальной – по касательной к траектории движения, и нормальной – перпендикулярно траектории

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

В соответствии с этим проекцию ускорения Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениена касательную к траектории называют касательным или тангенциальным ускорением, а проекцию Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениена нормаль – нормальным или центростремительным ускорением.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорениесовпадает с направлением линейной скорости или противоположно ему. То есть, вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение

Чем можно измерить ускорение. Смотреть фото Чем можно измерить ускорение. Смотреть картинку Чем можно измерить ускорение. Картинка про Чем можно измерить ускорение. Фото Чем можно измерить ускорение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *