Предельно допустимое напряжение сток-исток |Uds|: 100 V
Предельно допустимое напряжение затвор-исток |Ugs|: 20 V
Пороговое напряжение включения |Ugs(th)|: 4 V
Максимально допустимый постоянный ток стока |Id|: 19 A
Максимальная температура канала (Tj): 175 °C
Общий заряд затвора (Qg): 61 nC
Сопротивление сток-исток открытого транзистора (Rds): 0.2 Ohm
IRF9540 Datasheet (PDF)
IRF9540, RF1S9540SMData Sheet January 200219A, 100V, 0.200 Ohm, P-Channel Power FeaturesMOSFETs 19A, 100VThese are P-Channel enhancement mode silicon gate power rDS(ON) = 0.200field effect transistors. They are advanced power MOSFETs Single Pulse Avalanche Energy Rateddesigned, tested, and guaranteed to withstand a specified level of energy in the breakdown ava
WWW.ALLDATASHEET.COM Copyright Each Manufacturing Company. All Datasheets cannot be modified without permission. This datasheet has been download from : www.AllDataSheet.com100% Free DataSheet Search Site. Free Download. No Register. Fast Search System. www.AllDataSheet.com
INCHANGE Semiconductorisc P-Channel MOSFET Transistor IRF9540N,IIRF9540NFEATURESStatic drain-source on-resistance:RDS(on)0.117Enhancement mode:100% avalanche testedMinimum Lot-to-Lot variations for robust deviceperformance and reliable operationDESCRIPTIONCombine with the fast switching speed and ruggedized devicedesign,provide the designer with an extr
Мультиметр в режим измерения диодов. Для IRF9540 должно быть так:
Попробовал замерить по этому способу, ничего не получилось, после зарядки конденсатора исток-затвор (4), показания сток-исток (5) равны бесконечности, т.е. транзистор так и не открылся. Хотя по тому способу который я описал в начале он показывает кратковременно какое-то полуоткрытое состояние в процессе закрытия, а при проверке этим же способом такого же P-канального IRFP9140N показывает полностью открытое состояние.
Возможно мой мультиметр (DT-830B) не подходит для проверки именно этого транзистора, т.к. другие типы (N-канальные IRF630, IRF640, IRF740, а так же P-канальный IRFP9140N) вполне открываются и держат открытое состояние довольно долго. Правда мне попадались пару штук из перечисленных (N-канальных) у которых была схожая «проблема» и я посчитал их дефектными.
Может из-за разброса характеристик транзисторов мои экземпляры подпадают в ту категорию, которые не могут быть полностью открыты моим мультиметром, потому прошу кого-либо проверить свои экземпляры транзисторов IRF9540 (если есть в наличии) на предмет проверки мультиметром.
После проверки собранной схемой я склонен считать их рабочими, но все же интересно как у других получится, так же как и у меня или все же транзисторы будут показывать устойчивое открытое состояние.
Последний раз редактировалось lazonews Пн фев 01, 2016 15:25:13, всего редактировалось 1 раз.
Критически важные распределенные системы требуют синхронного преобразования во всех подсистемах и непрерывного потока данных. Распределенные системы сбора данных могут быть синхронизированы как на основе АЦП последовательного приближения, так и на основе сигма-дельта (∑-Δ)-АЦП. Новый подход, основанный на преобразователе частоты дискретизации (SRC), содержащемся в микросхемах линейки AD7770 производства Analog Devices, позволяет достигать синхронизации в системах на основе сигма-дельта-АЦП без прерывания потока данных.
Специалисты компании Infineon рассказывают о сорокалетней истории технологических инноваций, последовавшей за созданием первого полевого транзистора с изолированным затвором (MOSFET), и на примере последних новшеств, касающихся расположения кристалла относительно печатной платы, показывают, как незначительные на первый взгляд изменения способны кардинально поменять характеристики прибора и разрабатываемых на его основе систем.
Кстати, во время экспериментов со схемой для проверки полевиков заметил одну особенность, когда в роли источника питания использую Крону (9В), то IRF9540 нормально открывается о чем свидетельствует ярко светящийся светодиод, а вот IRF630, IRF640? IRF740 и прочие совсем не открываются, нормальная работа у них начинается только при использовании 12В источника питания.
Всем привет, сегодня хочу поделиться схемой плавного включения и плавного затухания светодиодов. Данную схему можно воткнуть куда ваша душа пожелает, привожу схему как с управляющим минусом, так и с управляющим плюсом. Схема не требует каких-либо дополнительных настроек и работает сразу.
Принцип работы схемы:
Управляющий «плюс» поступает через диод 1N4148 и резистор 4,7 кОм на базу транзистора КТ503. При этом транзистор открывается, и через него и резистор 68 кОм начинает заряжаться конденсатор. Напряжение на конденсаторе плавно растет, и далее через резистор 10 кОм поступает на вход полевого транзистора IRF9540. Транзистор постепенно открывается, плавно увеличивая напряжение на выходе схемы. При снятии управляющего напряжения транзистор КТ503 закрывается. Конденсатор разряжается на вход полевого транзистора IRF9540 через резистор 51 кОм. После окончания процесса разряда конденсатора схема перестает потреблять ток и переходит в режим ожидания. Потребляемый ток в этом режиме незначителен.
Схема с управляющим минусом:
Отмечена распиновка IRF9540N
Схема с управляющим плюсом:
Отмечена распиновка IRF9540N и KT503
В этот раз изготавливать схему решил методом ЛУТ (лазерно-утюжная технология). Делал я это первый раз в жизни, сразу скажу, что ничего сложного нет. Для работы нам понадобится: лазерный принтер, глянцевая фотобумага (или страница глянцевого журнала) и утюг.
К О М П О Н Е Н Т Ы:
Транзистор IRF9540N Транзистор KT503 Выпрямительный диод 1N4148 Конденсатор 25V100µF Резисторы: — R1: 4.7 кОм 0.25 Вт — R2: 68 кОм 0.25 Вт — R3: 51 кОм 0.25 Вт — R4: 10 кОм 0.25 Вт Односторонний стеклотекстолит и хлорное железо Клеммники винтовые, 2-х и 3-х контактные, 5 мм
При необходимости, изменить время розжига и затухания светодиодов можно подбором номинала сопротивления R2, а также подбором ёмкости конденсатора.
. Р А Б О Т А: . ?1? В этой записи подробно покажу, как изготавливать плату с управляющим плюсом. Плата с управляющим минусом делается аналогично, даже чуть проще из-за меньшего количества элементов. Отмечаем на текстолите границы будущей платы. Края делаем чуть больше, чем рисунок дорожек, а затем вырезаем. Существует много способов резки текстолита: ножовкой по металлу, ножницами по металлу, с помощью гравера и так далее.
Я с помощью канцелярского ножа сделал бороздки по намеченным линиям, далее выпилил ножовкой и обточил края напильником. Также пробовал использовать ножницы по металлу – оказалось гораздо проще, удобнее и без пыли.
Далее прошкуриваем заготовку под водой наждачной бумагой с зернистостью P800-1000. Затем сушим и обезжириваем поверхность платы 646 растворителем с помощью безворсовой салфетки. После этого нельзя руками прикасаться к поверхности платы.
?2? Далее с помощью программы SprintLayot открываем и печатаем на лазерном принтере схему. Печатать необходимо только слой с дорожками без обозначений. Для этого в программе при печати слева вверху в разделе “слои” снимаем ненужные галочки. Также при печати в настройках принтера выставляем высокую четкость и максимальное качество изображения. Программу и чуть доработанные мной схемы залил для Вас на Яндекс.Диск.
С помощью малярного скотча приклеиваем на обычный лист А4 страницу глянцевого журнала/глянцевую фотобумагу (если их размеры меньше А4) и печатаем на ней нашу схему.
Я пробовал использовать кальку, страницы глянцевого журнала и фотобумагу. Удобнее всего, конечно, работать с фотобумагой, но в отсутствии последней и страницы журнала вполне сгодятся. Калькой же пользоваться не советую – рисунок на плате очень плохо пропечатался и получится нечётким.
?3? Теперь прогреваем текстолит и прикладываем нашу распечатку. Затем утюгом с хорошим прижимом проутюживаем плату в течение нескольких минут.
Теперь даем плате полностью остыть, после чего опускаем в ёмкость с холодной водой на несколько минут и аккуратно избавляемся от бумаги на плате. Если целиком не отдирается, то скатываем потихоньку пальцами.
Затем проверяем качество пропечатанных дорожек, и плохие места подкрашиваем тонким перманентным маркером.
?4? С помощью двустороннего скотча приклеиваем плату на кусочек пенопласта и помещаем в раствор хлорного железа на несколько минут. Время вытравливания зависит от многих параметров, поэтому периодически достаем и проверяем нашу плату. Хлорное железо используем безводное, разводим в теплой воде согласно пропорциям, указанным на упаковке. Чтобы ускорить процесс травления можно периодически покачивать ёмкость с раствором.
После того, как ненужная медь стравилась – отмываем плату в воде. Затем с помощью растворителя или наждачки счищаем тонер с дорожек.
?5? Затем необходимо просверлить дырочки для монтажа элементов платы. Для этого я использовал бормашинку (гравер) и сверла диаметром 0.6 мм и 0.8 мм (из-за разной толщины ножек элементов).
?6? Далее нужно облудить плату. Есть множество различных способов, я решил воспользоваться одним из самых простых и доступных. С помощью кисточки смазываем плату флюсом (например ЛТИ-120) и паяльником лудим дорожки. Главное не держать жало паяльника на одном месте, иначе возможен отрыв дорожек при перегреве. Берем на жало больше припоя и ведем им вдоль дорожки.
?7? Теперь напаиваем необходимые элементы согласно схеме. Для удобства в SprintLayot распечатал на простой бумаге схему с обозначениями и при пайке сверял правильность расположения элементов.
?8? После пайки очень важно полностью смыть флюс, в противном случае могут быть коротыши между проводниками (зависит от применяемого флюса). Сначала рекомендую тщательно протереть плату 646 растворителем, а потом хорошо промыть щеткой с мылом и высушить.
После сушки подключаем «постоянный плюс» и «минус» платы к питанию («управляющий плюс» не трогаем), затем вместо светодиодной ленты подсоединяем мультиметр и проверяем, нет ли напряжения. Если хоть какое-то напряжение все-таки присутствует, значит где-то коротит, возможно плохо смыли флюс.
Ф О Т О Г Р А Ф И И:
Убрал плату в термоусадку
. И Т О Г: . Проделанной работой я доволен, хоть и потратил достаточно много времени. Процесс изготовления плат методом ЛУТ показался мне интересным, и несложным. Но, не смотря на это, в процессе работы допустил, наверное, все ошибки, какие только возможно. Но на ошибках, как говориться, учатся.
Подобная плата плавного розжига светодиодов имеет достаточно широкое применение и может использоваться, как в автомобиле (плавный розжиг ангельских глазок, панели приборов, подсветки салона и т.п.), так и в любом другом месте, где есть светодиоды и питание от 12В. Например, в подсветке системного блока компьютера или декорировании подвесных потолков.
Критически важные распределенные системы требуют синхронного преобразования во всех подсистемах и непрерывного потока данных. Распределенные системы сбора данных могут быть синхронизированы как на основе АЦП последовательного приближения, так и на основе сигма-дельта (∑-Δ)-АЦП. Новый подход, основанный на преобразователе частоты дискретизации (SRC), содержащемся в микросхемах линейки AD7770 производства Analog Devices, позволяет достигать синхронизации в системах на основе сигма-дельта-АЦП без прерывания потока данных.
glazko31
Специалисты компании Infineon рассказывают о сорокалетней истории технологических инноваций, последовавшей за созданием первого полевого транзистора с изолированным затвором (MOSFET), и на примере последних новшеств, касающихся расположения кристалла относительно печатной платы, показывают, как незначительные на первый взгляд изменения способны кардинально поменять характеристики прибора и разрабатываемых на его основе систем.
GenadijG
Часовой пояс: UTC + 3 часа
Кто сейчас на форуме
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 4