Чем можно заварить титановую лопату
Как и чем варить титан? Сварка титана: технология и особенности
Титановые детали и конструкции часто находят применение в узкоспециализированных областях, среди которых авиастроение и космическая отрасль. Столь высокое доверие к металлу обуславливается уникальным сочетанием характеристик. При небольшой удельной массе он обладает высокой прочностью, антикоррозийностью и защитными свойствами от химических воздействий. И это далеко не все качества, которыми характеризуется титан. Сварка титана по этим же причинам становится сложной задачей не только для начинающего мастера, но и для профессионалов.
Особенности сварки материала
Физико-химические свойства титана ограничивают использование некоторых высокотехнологичных способов сварки, что заставляет мастеров модифицировать подходящие, но изначально менее производительные методы. Главная сложность в использовании наиболее распространенных способов сварки заключается в повышенной температуре нагрева данного металла. В частности, эффективная работа с ним возможна при режимах термического воздействия порядка 1500-1700 °C. На уровне 500 °C заготовки чаще всего сохраняют базовые прочностные качества. Технологические особенности сварки титана определяются и негативными факторами воздействия на структуру со стороны атмосферного воздуха. В обычном состоянии этот фактор не имеет значения, но в условиях температуры более 400 °C раскаленные зоны будут требовать дополнительной защиты. И это не говоря об основной изоляции непосредственно сварочной ванны. При повышении температуры возникают и сложности другого рода. Так, при достижении 900 °C происходит увеличение зерен и образование крупных пор, что в дальнейшем сказывается на прочностных качествах заготовки.
Общие сведения о способах сварки
Базовыми методами сварочной обработки титана можно назвать дуговой ручной и автоматический способы. Что касается оптимальных сред, то наиболее эффективными считается гелий и аргон. Но важно учитывать, что в первом случае требуется включение в среду некислородного флюса. Также распространен метод электрошлаковой сварки. Его обычно используют в работах с толстыми заготовками, требующими к тому же высокой термической накалки. При грамотной организации неплохой результат обеспечивает и контактная сварка. Данный процесс требует, в частности, устройства сбалансированной защиты газом. Если применять в работе подкладки, то обеспечится высококачественная сварка титана. Технология плавления, например, подразумевает организацию специальной защиты оборотной части заготовки с помощью аргоновых газов. В свою очередь подкладка может обеспечить этой стороне дополнительное предохранение в условиях повышенной температурной нагрузки, об опасностях которой говорилось выше.
Подготовка металла к сварочной операции
Перед операцией титан необходимо соответствующим образом подготовить. В рамках этого этапа выполняется обработка кромок заготовочных элементов, создание защиты противоположных сторон (использование тех же подкладок), а также зачистка прутка присадки. Кроме этого, производится тщательная зачистка наружного слоя заготовки. Его частицы в ходе сварки могут проникнуть в структуру шва, из-за чего он станет хрупким и непригодным к работе в ответственных механических конструкциях. В случаях обработки толстых деталей от 5 см требуется разделка кромок, при которой угол раскроя должен составлять 60°. Если планируется сварка титана и его сплавов, которые до этого подвергались плазменной или газовой резке, то потребуется и зачистка поверхностей швов с ликвидацией слоя толщиной в 3-4 мм. Универсальной мерой уже финальной подготовки перед работой будет устранение внешних загрязнений, масляных пленок и окислов. Для этой процедуры используются мелкозернистые абразивы, напильник и обезжиривание с растворителями. Затем оставшиеся следы зачистки удаляются сухой ветошью.
Ручная дуговая сварка
В процессе задействуется вольфрамовый электрод с подключением источника постоянного тока. Защите подвергается зона вокруг шва, корень шва и ближние затронутые термическим воздействием зоны. Изоляция обеспечивается козырьками, насадками и термически стойкими пористыми материалами, в которые подается газ. Подкладки желательно применять из меди или стали. Если производится обработка трубы, то газ пускается прямо в дуло. Что касается оптимального режима, то для 2-миллиметрового электрода сила тока может составлять порядка 90 А. Это начальный уровень для работы с заготовками толщиной 4-5 мм. Конкретные величины могут изменяться и в зависимости от того, каким образом легировался титан. Сварка титана выполняется на короткой дуге без колебательных манипуляций. Электрод наклоняется противоположно направлению его движения – то есть вперед углом. Резко завершать операцию нельзя. В целях предотвращения образования окислов все защитные приспособления остаются на прежних местах даже после отключения электродов.
Автоматическая сварка
В работе также используется вольфрамовый электрод. Если применяется неплавящаяся разновидность электрода, то подключаемый ток должен иметь направленную полярность. При этом оптимальный размер выходных отверстий горелки составляет 14-15 мм. Техника выполнения в целом соответствует ручному методу, но важно учитывать, что в силу повышенной активности данного металла операции зажигания и гашения при работе с горелкой должны производиться в стороне от места шва. Автоматическая сварка титана аргоном после гашения должна обеспечивать подачу газа еще как минимум 1 мин.
Электрошлаковая сварка
Менее популярный метод, но он может быть эффективнее в работе с отдельными сплавами. Например, при сварке легированного 5-процентного титана с добавками алюминия и олова. В качестве силового источника применяется трехфазовый трансформатор, что свидетельствует о высоких нагрузках в процессе работы. Достаточно отметить силу тока при сварке толстых поковок – в среднем 1500-1600 А. Далее ход операции зависит от того, каким электродом плавится титан. Сварка титана электродом пластинчатого типа с размерами 12х60 мм обеспечивает оптимальное качество шва, который по характеристикам соответствует основной структуре заготовки. В обработке прессованных деталей часто используют такие же электроды, но с диаметром 8 мм. Это решение может показаться оправданным ввиду нетребовательности структуры металла, но прочностные качества шва будут понижены – в среднем 85% от показателя нетронутой структуры.
Контактная сварка
В этом случае многое зависит от скорости работы. Практика показывает, что для крупных заготовок, к примеру, предпочтительным будет режим 2 мм/сек. Увеличение данного показателя приведет к снижению прочности заготовки и положительная функция защитного газа будет минимизирована. Неплохой по качеству результат можно получить, если заранее выполнить более глубокую механическую обработку поверхности заготовки. Благодаря зачистке крупнозернистой наждачной бумагой вкупе с легкой фрезеровкой будет обеспечена стабильная и ровная сварка титана. Отзывы также указывают на достижения хороших результатов при контактной сварке в условиях сбалансированной осадки. Ее следует подбирать из следующего расчета: в среднем на 20% выше, чем при обработке углеродистой стали.
Особенности холодной сварки
Отсутствие термического воздействия, при котором наблюдаются, по сути, разрушительные процессы в структуре титана, делают этот способ почти идеальным, но и тут есть свои нюансы. Холодная сварка производится под высоким давлением, которое деформирует кристаллы структуры, в результате смещая их и образуя общий сплав. Непосредственно сварка производится внахлест с помощью специальных зажимных механизмов. Силовое механическое воздействия также отличает этот способ, что требует более высоких финансовых затрат. Есть и другой недостаток, которым характеризуется холодная сварка. Титан, в конструкции которого есть образованные такой спайкой швы, менее надежен и может задействоваться только в конструкциях, не предполагающих высокие физические нагрузки.
Возможные дефекты при сварке
Одним из самых серьезных дефектов является образование пор. Это газовые примеси в структуре металла, в формировании которых участвовал водород. Исключить этот изъян можно двумя условиями – выполнением качественной всесторонней зачистки перед сваркой и обеспечением эффективной защиты нагретого металла в процессе обработки. Еще одной проблемой может стать появление окислов, которые переходят от места создания шва к цельной структуре. Кстати, от этого недостатка полностью страхует холодная сварка титана. Отзывы самих пользователей свидетельствуют, что предотвратить этот дефект при термической обработке помогает именно долговременное поддержание газовой защиты аргона уже после завершения процесса. Индикатором для снятия защиты станет нормализация температуры шва.
Заключение
Если сравнивать сварку титана с аналогичными операциями над другими металлами, то будет выявлен целый ряд отличий. Прежде всего, они касаются организационного процесса. От исполнителя требуется надлежащим образом подготовить металл, а также позаботиться о приспособлениях, которые защитят основной бесшовный титан. Сварка титана при соблюдении правил термической обработки и выборе оптимального режима для функции электрода с большей вероятностью обеспечит достойный результат по прочности. Собственно, о том, насколько высоко качество образуемого шва, можно судить по его оттенку уже в ходе сварки. Так, серебристый цвет свидетельствует о высокой защите и, следовательно, укреплении структуры шва. Шов с соломенным оттенком менее прочен, но эту ситуацию еще не поздно исправить, скорректировав, например, подачу газа. О том, что в ходе обеспечения защиты были допущены серьезные ошибки, скажет коричневый оттенок.
Как и чем заварить титановую лопату в домашних условиях
Лопата относится к незаменимому инвентарю в арсенале любого владельца земельного участка. Титановые модели отличаются высокой прочностью и обладают другими важными достоинствами. Однако иногда при повышенной нагрузке на штык металл может лопнуть. Разберёмся, как заварить лопату из титана и что учесть в процессе.
Особенности сварки титана
На свариваемость этого металла влияет несколько факторов. Прежде всего титан обладает высокой химической реакцией по отношению к газам в воздухе, среди которых азот, кислород и водород. Также значение имеет то, что металл обладает большей склонностью к росту зерна, когда температура превышает 800 градусов.
Если титан нагреть до 350 градусов, он начинает активно поглощать кислород. В результате на поверхности (в области сварки) образуется плёнка, окраска которой варьируется от жёлтой до фиолетовой, плавно переходящей в белый цвет.
Нагрев до 500 градусов приводит к увеличению прочности и твёрдости металла. Однако уменьшаются его пластичные свойства.
Взаимодействие титана и водорода приводит к возникновению вредного явления — водородного охрупчивания. Оно способствует повышенной хрупкости материала. После остывания титана через некоторое время приваренная деталь отваливается.
Увеличение количества зерна из-за воздействия высоких температур снижает прочность металла. Сто́ит помнить, что титан обладает высокой температурой плавления. При работе с ним необходимо использовать очень мощный концентрированный источник тепла.
При сварке шов должен быть защищён с обеих сторон. Особое внимание уделяют подготовке кромки. Не нужно долго её прогревать. При сварке титановой лопаты необходимо тщательно следить за температурным режимом. Чтобы защитить металл в рабочей области, рекомендуется воспользоваться специальными флюсовыми составами. Металлические накладки также подойдут. Можно применять газовые подушки. Для их создания применяют насадочные камеры.
В процессе исправления дефектов на лопате нужно тщательно соблюдать технику безопасности. Следует работать крайне осторожно.
Необходимые материалы и оборудование для сварки титановой лопаты
Для процесса потребуется:
Подготовка к сварке в домашних условиях
Чтобы подготовить металл к сварочным работам, необходимо провести обработку кромок участков, на которых будет проводиться процесс. Обязательно удаляют металлический слой с повышенным содержанием кислорода и азота. Присутствие этих частиц в рабочей области приведёт к ухудшению свойств образованного шва. Повысится хрупкость металла.
Если заготовки имеют толщину не более 4 мм, можно при сварке обойтись без разделки кромки. В остальных случаях она выполняется с соблюдением угла раскрытия равного 60 градусам.
Также необходимо защитить корень шва и рабочую область с обратной стороны. Даже если обработка не выходит на противоположную сторону. Ведь при взаимодействии титана и газов из окружающего воздуха начинается реакция, как только температура достигнет 300 градусов.
Для защиты шва с обратной стороны применяют подкладки из стали или меди. Их необходимо подогнать плотно. Также можно воспользоваться поддувом аргона, направляемым в специальные канавки или внутрь конструкции.
Если процесс допускается выполнять без защиты внутренней стороны швов, тогда необходимо делать перерывы, чтобы поверхность остыла. Сами швы должны быть короткими, не более 20 мм.
Способ сварки титановой лопаты неплавящимся электродом (метод TIG)
TIG — технология сварки, при которой используется электрод на основе вольфрама под защитой инертных газов. Его стержень считается неплавящимся. Это дуговая ручная сварка — дуга образуется между электродом и деталью, а из горелки поступает защитный газ. Подача присадок выполняется ручным способом. Проводят заточку электрода под углом 45 градусов. Необходимо соблюдать силу тока в пределах 100 ампер.
Изделия, толщиной до 1,5 мм, можно соединить встык без использования присадок. В остальных случаях осуществляют подачу прутка. Присадка должна иметь состав, подходящий для сплава рабочей области. Перед началом процесса её необходимо отжечь в вакууме. Это позволит убрать водород. В условиях герметичности присадка будет хранить свойства максимум 5 дней.
Для выполнения работы потребуется ток постоянной полярности, напряжение которого достигает 15B. Электрод нужно направлять к поверхности под определённым углом — 70–80°. Подача присадки осуществляется перпендикулярно к оси электрода.
На фото ниже показано расположение электрода и присадки при сварке TIG любого изделия из титана.
Формирование шва должно проводиться точными движениями. Пока рабочая область полностью не остынет, рекомендуется обдувать шов аргоном. Процесс нужно выполнять предельно аккуратно.
Сварка титана
Свариваемость
При нагреве до температуры 350°С и выше титан активно поглощает кислород, образуя различные окислы с высокими твердостью, прочностью и низкой пластичностью. По мере окисления оксидная пленка меняет окраску от желто-золотистой до темно-фиолетовой, переходящей в белую. Эти цвета в околошовной зоне характеризуют качество защиты титана при сварке.
При температуре выше 500°С титан активно взаимодействует с азотом с образованием нитридов, повышающих твердость и прочность металла, но снижающих его пластичность.
Рост зерна, имеющий место при высоких температурах, также отрицательно сказывается на прочности титана. Ему способствует низкая теплопроводность титана, увеличивающая время пребывания шва и околошовного металла в зоне высоких температур. Чтобы снизить рост зерна, сварку необходимо выполнять при минимально возможной погонной энергии.
Кроме всего перечисленного, титан имеет высокую температуру плавления (1660°С), поэтому при сварке требуется мощный, концентрированный источник теплоты.
Способы сварки титана
Необходимое оборудование и материалы
Защитный газ. Высокая химическая активность титана по отношению к газам требует применения инертных газов высокой степени чистоты. В качестве таковых выступают аргон и гелий, имеющие некоторые технологические отличия друг от друга.
Гелий обеспечивает более плавный переход шва от усиления к основному металлу. Он позволяет повысить тепловую мощность дуги и производительность процесса расплавления, что важно при сварке деталей средних и больших толщин.
Аргон дает более узкое и глубокое проплавление основного металла, его расход оказывается в 1,5-2 раза меньше, чем гелия.
Чтобы объединить достоинства газов, иногда используют их смесь.
Электроды. Сваривать титан можно любым вольфрамовым электродом, но не все они обеспечивают одинаково хорошее качество сварного шва и оптимальные характеристики дуги.
Хорошими качествами обладают лантанированные электроды марок ЭВЛ (WL). Добавление оксида лантана увеличивает несущую способность (максимальный ток) электродов примерно на 50% в сравнении с чисто вольфрамовыми. Повышается долговечность электродов и уменьшается загрязнение вольфрамом сварного шва.
Рабочая часть электрода затачивается в конус под углом 30-45°. При увеличении угла заточки снижается глубина проплавления. Нужно иметь в виду, что работоспособность электрода повышается со снижением шероховатости его конуса.
Присадочная проволока. В качестве присадочного материала используются прутки из титана различных марок. Для предохранения металла шва от насыщения водородом, который содержится в присадочных прутках, последние полезно подвергать вакуумному отжигу, в результате которого металл избавляется от водорода.
Подготовка титана к сварке
Если толщина свариваемых заготовок не превышает 3-4 мм, их можно сваривать без разделки кромок. У более толстых деталей выполняется разделка с углом раскрытия равным 60°.
Если свариваемые детали подвергались газовой или плазменной резке, их кромки необходимо срезать механическим способом не менее чем на 3-5 мм. Непосредственно перед сваркой, кромки необходимо очистить от загрязнений, удалить окисную пленку напильником или абразивным кругом и обезжирить ацетоном или иным растворителем. Присадочную проволоку также необходимо очистить от окисей и обезжирить.
Кроме очистки кромок необходимо обеспечить защиту корня шва и поверхность свариваемых деталей с обратной стороны. Это нужно делать даже в том случае, если шов не выходит на противоположную сторону, поскольку титан начинает вступать в реакцию с газами, содержащимися в воздухе, уже при температуре 300-400°C.
Защиту обратной стороны шва производят плотно подгоняемыми съемными стальными или медными подкладками, поддувом аргона в специальные канавки в подкладках или подачей аргона внутрь конструкции (если она имеет трубчатую форму).
На рисунке ниже изображена система подачи аргона внутрь детали, осуществляемая при сварке рамы велосипеда из титановых трубок.
При сваривании толстостенных конструкций, у которых корневой шов не выходит наружу, сварку можно производить без защиты обратной стороны детали при условии ее минимального разогрева. Швы в этом случае должны выполняться короткими (15-20 мм), с перерывами на охлаждение.
Технология сварки титана
Подбор диаметров электрода и присадочной проволоки, а также соответствующего им сварочного тока зависит преимущественно от толщины свариваемого металла. В качестве ориентировочных, можно использовать данные, приведенные в нижеследующей таблице.
Толщина свари- ваемого металла, мм | Свароч- ный ток, А | Напря- жение дуги, В | Диаметр приса- дочной прово- локи, мм | Коли- чество прохо- дов |
1 | 40-60 | 10-14 | 1,2-1,5 | 1 |
2 | 70-90 | 10-14 | 1,5-2,0 | 1 |
3 | 120-130 | 10-15 | 1,5-2,0 | 2 |
4 | 130-140 | 11-15 | 1,5-2,0 | 2 |
5 | 140-160 | 11-15 | 2,0-2,5 | 2-3 |
10 | 160-200 | 11-15 | 2,0-3,0 | 10-14 |
Горелку перемещают равномерно, без поперечных колебаний. Присадочный материал вводится в зону сварки также равномерно и без поперечных движений. Его конец опирается на край сварочной ванны. Во время сварки нельзя выводить нагретый конец прутка из зоны газовой защиты.
Подачу защитного газа прекращают только через 5-10 сек после потемнения шва, когда его температура опустится ниже 400°С.
Во избежание перегрева околошовных участков и роста зерна металла, сварку необходимо выполнять при минимально возможном токе.
Дефекты сварки титана
Как варить титан в аргоновой среде
Титан применяется во многих областях промышленности, в судостроении, в медицине для изготовления протезов. Причина использования – высокая прочность при небольшой массе, активное сопротивление процессам коррозии. Металл не относится к числу редких элементов. Его добывается больше, чем цинка, свинца или меди. Цена высокая по причине затратной обработки заготовок. Для соединения деталей используется сварка титана аргоном.
Свойства металла и его сплавов
При температуре плавления 1668°С сплав способен самовоспламеняться в среде кислорода при 400°С. Титан активно поглощает водород, реагирует на азот. При добавлении в него разных элементов таблицы Менделеева получаются сплавы, обладающие другими свойствами.
Общая технология сварки аргоном
При сварке деталей из титановых сплавов нужно помнить, что к ним применимы не все технологии, распространенные на производстве. Причиной является особая активность металла. При попадании в зону обработки оксидов, нитридов или карбидов качество сварного шва снижается. Другая причина – высокая температура. При 880°С свойства сплавов резко меняются. Они приобретают чувствительность к скорости охлаждения и крупнозернистость.
На качестве сварки сказываются:
Хорошее соединение можно получить только при аргонодуговой сварке титана. Процесс работы представляет много сложностей. Критичная для металла температура – выше 400-500°С. Шов может не выдержать ударов. При проведении работ с соблюдением всех требований технологии сварки титана и его сплавов в среде аргона прочность шва равняется 0,6-0,8.
Методы сварки в аргоновой среде
На практике применяются различные способы соединения титановых сплавов в аргонной среде.
Наиболее часто встречающиеся:
Перечисленные виды контактной сварки ведутся в быстром темпе. При длительном воздействии высоких температур изделие становится хрупким. В качестве флюса применяют состав АН-Т2 или АН-11, АНТ-1, АНТ-3, АНТ-7. Перед соединением деталей их подвергают обезжириванию и механической обработке. С целью удаления оксидной пленки иногда применяется подогретая кислота. Все подготовительные работы проводятся в защитных перчатках.
Для работы требуются специальные электроды. При сварке полуавтоматом используется маркированная присадочная проволока. Перед использованием она зачищается шкуркой и обезжиривается. Для соединения деталей из титана нужна керамическая горелка с газовой линзой.
Хорошо можно сварить сплавы ВТ1-ВТ5, хуже соединяются ВТ15-ВТ22. Остальные виды считаются промежуточными. Все операции выполняются аппаратами с правильной настройкой. Необходимо включить постоянное напряжение прямой полярности 80-130 В. При этих параметрах работа выполняется током 45-220 А. Горелка передвигается со скоростью 18-22 м/ч.
Точечный
Этот метод используется при соединении деталей или листов, толщина которых может достигать 4 мм. Рабочие параметры:
Толщина деталей (мм) | Диаметр электрода | Прохождение тока (сек) | Сжатие деталей (сек) | Сила тока (А) |
0,8 | 4,0 – 4,5 | 0,10 – 0,15 | 0,1 | 7000 |
1,0 | 4,5 – 5,0 | 0,15 – 0,20 | 0,3 | 8000 |
1,2 | 5,0 – 5,5 | 0,20 – 0,25 | 0,3 | 8500 |
1,5 | 5,5 – 6,0 | 0,25 – 0,30 | 0,4 | 9000 |
2.0 | 6,0 – 7,0 | 0,25 – 0,30 | 0,4 | 10000 |
2,5 | 7,0 – 8,0 | 0,30 – 0,40 | 0,4 | 12000 |
Метод используется при сварке кожухов, опорных рамок и других конструкций.
Контактный
Применение данного способа предусмотрено требованиями ГОСТ. Скорость соединения – 2-2,5 мм/сек. При ее превышении шов будет иметь сниженную прочность. На практике применяются несколько разновидностей контактной сварки. Каждая имеет индивидуальные режимы, зависящие от толщины заготовок, диаметра электрода, времени прохождения сварочного тока через место соединения и других параметров.
Конденсаторная стыковая сварка
Режим работы определяется площадью заготовок. Свариваемые детали могут иметь сечение 150-10000 мм². От него зависят остальные параметры: припуски оплавки и осадки, рабочий ток и другие значения. Главное отличие метода – запас электрической энергии в батарее, состоящей из конденсаторов большой мощности. Заготовки из труб до 23 мм в диаметре можно заварить без защитного газа, так как электрический импульс выжигает в месте сварки все окислители. Емкость накопительной батареи – 5000-7000 мкф, импульсное напряжение – 800-1200 вольт.
Шовный роликовый
Отличие способа – использование электродов, напоминающих ролики. Они катятся и сжимают заготовки. Импульсы тока большой мощности подаются в рабочую зону, образуя цепочку из точек сварки. Шов герметичный при металле толщиной 0,2-3,0 мм. Он часто встречается при изготовлении емкостей: топливных баков, других сосудов для хранения жидкостей без создания высокого давления.
Толщина листов (мм) | Ширина шва (мм) | Усилие на роликах (Н) | Действие тока (сек) | Скорость сварки (м/мин) | Сила тока (А) |
0,8+0,8 | 3,5-4,0 | 2950 | 0,10-0,12 | 0,8-1,0 | 6000 |
1,0+1,0 | 4,5-5,5 | 3935 | 0,14-0,16 | 0,6-0,8 | 7500 |
1,5+1,5 | 5,5-6,5 | 4915 | 0,20-0,24 | 0,5-0,6 | 10000 |
2,0+2,0 | 6,5-7,5 | 6385 | 0,24-0,28 | 0,4-0,5 | 12000 |
2,5+2,5 | 7,0-8,0 | 7855 | 0,28-0,32 | 0,3-0,4 | 15000 |
Метод применяется для герметичных соединений титановых деталей.
Под флюсом
Способ годится для соединения деталей толщиной до 5 мм. Заварить их можно встык, внахлест или под углом. Для работы используется ток 250-330 А при напряжении от 24 д 38 В. Скорость сварки 40-50 м/ч. Используемый режим:
Толщина заготовок (мм) | Способ соединения | Сила тока (А) | Напряжение (В) | Скорость сварки (м/час) |
3-5 | Стыковой | 250-320 | 24-38 | 50 |
3-5 | Угловой | 250-300 | 32-36 | 40-50 |
2-3 | Внахлест | 250-300 | 30-35 | 40 |
Во время работы шов засыпается флюсом в виде порошка. При его сгорании образуются инертные газы и закрывают собой сварочную ванну и пространство рядом со швом. Флюсовой материал предварительно просушивают при высокой температуре (около 250°С). Аппаратура включается на режим тока обратной полярности величиной 600-650 А.
Особенности ручного метода сварки
Ручная сварка применяется для изготовления изделий в единственном числе или мелкими сериями, при выполнении работ большой сложности, с которыми автомат справиться не в состоянии. Ток выбирают около 100-140 А. Электрод нужно вести прямо, с наклоном вперед. Оборудование настраивается на постоянный ток. Зона сварки подвергается защите, которая не снимается в течение 1-2 минут после отключения тока. Цвет шва свидетельствует о его качестве: высокое – серебристый, низкое – синий или черный.
Необходимые электроды
Для сварки титановых сплавов используются электроды, изготовленные из вольфрама с добавками небольшого количества оксида лантана, который дает возможность увеличения тока на 50%, продлить срок службы и снизить степень загрязнения сварочной ванны. Конус изделия для снижения шероховатости полируется.
Используются изделия, имеющие сечение 12х60 мм. С их помощью получают шов высокого качества, близкий по составу к свариваемому материалу.
Рекомендации специалистов
Качество шва зависит не только от квалификации сварщика.
Большое влияние оказывают:
Специалисты рекомендуют вместо гелия, имеющего большой расход, использовать аргон. Его затраты в 1,5-2 раза меньше, скорость обработки увеличивается.
При сварке крупных деталей лучше пользоваться током прямой полярности. Он более глубоко проплавляет металл. Листы толщиной до 2 мм следует соединять током обратной полярности, который дает малую глубину оплавления и не прожигает материал.
Заготовки необходимо правильно подготовить. Для удаления окисной пленки сплав обезжиривается на 20 см от шва.
Далее нужно протравить место работы составом:
Раствор нагревается до 65-70°С и используется по назначению.
Механическую обработку делают стальной щеткой, наждачной бумагой №12. Все трещинки и заусенцы удаляются с поверхности. После этого можно начинать сварку.
Дефекты и методы исправления
При работе с титаном встречаются различные дефекты, предусмотренные ГОСТом:
В шве не допускаются разрывы и трещины, которые в дальнейшем становятся очагами разрушения. Причина дефектов – содержание в металле лишнего углерода, водорода, фосфора или никеля. Для удаления трещин необходимо засверлить их концы, зачистить место дефекта и заварить его заново.
Поры – это заполненные газом полости. Их нужно обработать механическими способами, зачистить и переварить.
Твердые включения встречаются в виде инородных веществ, попавших в шов. Такое место полностью удаляется и соединяется заново.
Несплавление – часть металла не соединилась со швом. Причина – неправильный режим работы аппарата, угол наклона электрода или недостаточная обработка заготовки. Дефектное место полностью удаляется, детали свариваются вновь.
Избежать дефектов можно только при использовании лазерной техники.