Что объединяет все клетки на земле
Биология. 5 класс
Единство живого
Что представляет собой живая природа? Это огромное количество живых организмов, животных, растений, грибов, бактерий. Всех их объединяет ряд признаков: способность к самостоятельному существованию, росту, развитию и др. Несмотря на многообразие форм, все живые организмы имеют клеточное строение и сходный набор химических элементов и веществ. Клетка – мельчайшая частичка живого вещества, обладающая всеми признаками живого.
Доядерные организмы возникли на Земле несколько миллиардов лет назад и представлены исключительно одноклеточными организмами. Ядерные организмы состоят из одной или нескольких клеток, однако все клетки имеют общий план строения. Как устроены клетки различных живых организмов? Об этом вы узнаете в данном уроке.
Особенности организмов разных царств живой природы
Цели и задачи
Цель: систематизировать и обобщить понятия раздела «Клетка – основа строения и жизнедеятельности организмов».
— раскрыть значение особенностей клеточного строения различных организмов;
— сравнить строение клеток бактерий, грибов, растений и животных.
Узнаем, научимся, сможем
— что объединяет все живые организмы;
— специфичные признаки различных видов клеток;
— органоиды клетки, присущие тому или иному виду живых организмов;
— отличать клетки растений от клеток животных;
— находить сходства и различия в строении клеток бактерий, грибов, растений и животных.
Царства живых организмов
Способность к фотосинтез
Необходимость в готовых питательных веществах
Остановка роста после достижения максимального размера
Клетка – основа жизни на земле
АННОТАЦИЯ
В данной статье рассмотрены основные структурные и функциональные составляющие животной и растительной клетки как элементарной единицы всего живого и важная роль при передаче генетического материала из поколения в поколение. Коротко описана клеточная теория и неклеточные формы жизни, а также типы клеточной организации. Описания бактериальной, животной и растительной клеток и ядра клетки сопровождаются красочными рисунками с подробным описанием составляющих элементов. Также отмечается важная роль в жизнедеятельности организмов апоптоза – естественной, запрограммированной гибели клеток.
ABSTRACT
Ключевые слова: клетка, клеточная теория, ядро клетки, хромосомы, белки, апоптоз.
Keywords: cell, cellular theory, cell nucleus, chromosomes, proteins, apoptosis.
Введение
Клетка – это основная структурная и функциональная единица всех живых организмов, живая элементарная единица, способная к самовоспроизведению. Живые организмы могут состоять из одной клетки (бактерии, одноклеточные водоросли и одноклеточные животные) или многих клеток.
Тело взрослого человека образуют около ста триллионов клеток. Форма клеток различна и обусловлена их функцией – от круглой (эритроциты) до древообразной (нервные клетки). Размеры клеток также различны – от 0,1-0,25 мкм (у некоторых бактерий) до 155 мм (яйцо страуса в скорлупе). Тело человека образовано клетками различных типов, характерным образом организующихся в ткани, которые формируют органы, заполняют пространство между ними или покрывают снаружи. Клетки окружены межклеточным веществом, обеспечивающим их механическую поддержку и осуществляющим транспорт химических веществ. Самые короткоживущие из них (1-2 дня) – это клетки кишечного эпителия. Ежедневно погибает около 70 миллиардов этих клеток. Примером других короткоживущих клеток являются эритроциты – их ежедневно погибает около 2 миллиардов [3].
Однако есть и такие клетки (например, нейроны, клетки волокон скелетных мышц), продолжительность жизни которых соответствует жизни организма. Нервные клетки мозга, однажды возникнув, уже не делятся, и до конца жизни человека они способны поддерживать необходимые связи в нервной системе. Интересно то, что при нашем рождении в мозгу уже существует около 14 миллиардов клеток. И это количество не увеличивается до самой смерти, а, наоборот, постепенно уменьшается, т. е. поврежденные ткани мозга неспособны восстанавливаться путем регенерации. После того как человеку исполняется 25 лет, ежедневно происходит сокращение количества клеток мозга на 100 тысяч [1].
Несмотря на свои малые размеры, клетка представляет собой сложнейшую биологическую систему, жизнедеятельность которой поддерживается благодаря разнообразным биохимическим процессам, которые происходят под строгим генетическим контролем. Генетический контроль развития и функционирования клетки осуществляют материальные носители информации – гены. Они сосредоточены главным образом в ядре клетки, но некоторая их часть находится в других клеточных органоидах (митохондриях, пластидах, центриолях).
Строение и функционирование генетических структур клеток на микроскопическом уровне, их количественную и качественную изменчивость изучает одно из направлений генетики, называемое цитогенетикой.
Представление о клетке как об элементарной структурно-функциональной единице всех живых организмов сложилось в результате цепи изобретений и открытий, сделанных в XVI-XX веках:
1590 г. – Янсен изобрел микроскоп, в котором большое увеличение достигалось соединением в тубусе двух линз;
1965 г. – в Кембридже (Англия) установлена первая промышленно изготовленная модель электронного микроскопа.
Естественно, между этими двумя датами происходило множество событий, в результате которых были усовершенствованы микроскопы (основное средство изучения клеток), а также исследования и открытия в области генетики и, в частности, цитологии.
Клеточная теория и неклеточные формы жизни
Результатом длительного исследования строения клеток различных организмов стало создание клеточной теории, у истоков которой в ее современном виде стояли немецкий ботаник М.Я. Шлейден (1804-1881) и зоолог Т. Шванн (1810-1882). В настоящее время эта теория содержит три главных положения:
Отсюда следует, что клетка – это элементарная единица живого, вне клетки нет жизни, так как в клетке сохраняется и реализуется биологическая информация (даже у вирусов). Современная биология подтверждает, что все клетки одинаковым образом хранят биологическую информацию, передают генетический материал из поколения в поколение, хранят и переносят информацию, регулируют обмен веществ и т. д. Вместе с тем многоклеточный организм обладает свойствами, которые нельзя рассматривать как простую сумму свойств и качеств отдельных клеток.
Таким образом, клетка является обособленной и организационно наименьшей структурой, для которой характерна вся совокупность свойств жизни и которая в соответствующих условиях окружающей среды способна поддерживать в себе эти свойства и передавать их следующим поколениям.
Все многообразие живых существ можно разделить на две резко отличающиеся группы: неклеточные и клеточные формы жизни. Первая группа представляет собой вирусы, способные проникать в определенные живые клетки и размножаться только внутри этих клеток. Подобно всем другим организмам вирусы обладают собственным генетическим аппаратом, кодирующим синтез вирусных частиц, которые собираются из биохимических предшественников, находящихся в клетке-хозяине, используя биосинтетическую и энергетическую системы этой клетки [8].
Вирусы резко отличаются от всех других форм жизни. По строению и организации они представляют собой нуклеопротеидные частицы, по способу репродукции являются внутриклеточными паразитами. Таким образом, вирусы являются внутриклеточными паразитами на генетическом уровне.
Типы клеточной организации
Клеточная структура присуща основной массе живых существ на Земле. Все эти организмы представлены клетками двух типов: прокариотическими и эукариотическими клетками. К прокариотическим клеткам относят бактерии и синезеленые водоросли. Прокариоты – доядерные организмы, не имеющие типичного ядра, заключенного в ядерную мембрану. Вместо ядра у них находится так называемый нуклеотид – ДНК-содержащая зона клетки прокариот (рис. 1.).
Рисунок 1. Схема строения бактериальной клетки
Строение бактериальной клетки:
1 – цитоплазматическая мембрана; 2 – клеточная стенка; 3 – слизистая капсула; 4 – цитоплазма; 5 – хромосомная ДНК; 6 – рибосомы; 7 – мезосома; 8 – фотосинтетические мембраны; 9 – включения; 10 – жгутики; 11 – пили.
Прокариотическая ДНК не содержит гистоновых белков, но связана с небольшим количеством негистоновых белков. Этот комплекс ДНК и негистоновых белков и образует нуклеотид, который обычно располагается в центре клетки. Мезосомы – это складчатые мембранные структуры, на поверхности которых находятся ферменты, участвующие в процессе дыхания. Клеточная стенка придает бактериям определенную форму и упругость. Капсулы и слизистые слои – это слизистые или клейкие выделения бактерий. Капсула представляет собой относительно толстое и компактное образование, а слизистый слой намного рыхлее. И капсулы, и слизистые слои служат дополнительной защитой для клеток. Многие бактерии подвижны, и эта подвижность обусловлена наличием у них одного или нескольких жгутиков, которые по своей структуре напоминают одну из микротрубочек эукариотического жгута. Пили, или фимбрии – это тонкие выросты на клеточной стенке некоторых грамотрицательных бактерий. Их число варьирует у разных видов от одной до нескольких сотен. Рибосомы – органоиды клетки, участвующие в синтезе белка. У прокариот они несколько мельче эукариотических [6].
Эукариотические клетки представлены двумя подтипами: клетками одноклеточных организмов, которые структурно и физиологически являются самостоятельными организмами, и клетками многоклеточных организмов. Последние разделяют на растительные и животные клетки. На рисунке 2 представлены составы животной и растительной клетки.
Рисунок 2. Животная и растительная клетка
В клетке можно выделить 4 группы структурных компонентов: 1) мембранная система; 2) клеточные органоиды; 3) цитоплазматический матрикс; 4) клеточные включения. В свою очередь, мембранную систему составляют: 1) клеточная плазматическая мембрана; 2) цитоплазматическая сеть и 3) пластичный комплекс Гольджи. Клеточная мембрана отделяет цитоплазму клетки от наружной среды или клеточной стенки (у растений) и выполняет три основные функции: отграничивающую, барьерную и транспортную. Она играет важную роль в обмене веществ между клеткой и внешней средой, в движении клеток и в сцеплении друг с другом. Цитоплазму всех эукариотических клеток пронизывает сложная система мембран, получившая название цитоплазматической сети. Пластичный комплекс Гольджи обычно локализуется вблизи клеточного ядра и состоит из многочисленных групп цистерн, которые ограничены мембранами, имеющими гладкую поверхность. Одной из основных функций комплекса Гольджи является транспорт веществ и химическая модификация поступающих в него веществ. Другой важной функцией этого комплекса является формирование лизосом [2].
Клеточные органоиды и ядро клетки
Клеточные органоиды (клеточные органеллы) – это постоянные дифференцированные клеточные структуры, имеющие определенные функции и строение. К клеточным органоидам относят ядро, центриоли, митохондрии, рибосомы, лизосомы, пероксисомы, пластиды, жгутики и реснички.
Ядро – важнейшая составная часть клетки. Это наиболее крупный органоид клетки, составляющий 10-20 % ее объема. Оно может находиться в состоянии покоя или деления (мейоза). Ядро управляет всеми процессами жизнедеятельности клетки. Эти процессы сложны и многообразны: клетка должна поддерживать форму, получать извне вещества для пластического и энергетического обмена, синтезировать органические вещества
Клеточное ядро имеет шаровидную или вытянутую форму. Основная функция ядра – хранение наследственной информации или генетического материала. Ядро состоит из ядерной оболочки и расположенных под ней нуклеоплазмы, ядрышка и хроматина (рис. 3).
Рисунок 3. Строение ядра клетки
Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом. Здесь происходит синтез рРНК (рибосомальной РНК).
Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки. Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.
Из многочисленных свойств и функций ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы и активно регулирующего транспорт макромолекул между ядром и цитоплазмой. Другой важной функцией ядерной оболочки следует считать ее участие в создании внутриядерной структуры.
Строение и химический состав хромосом.
Хромосомы – это самовоспроизводящиеся органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Основная функция хромосом – хранение, воспроизведение и передача генетической информации при размножении клеток и организмов. Хромосомы эукариотических клеток состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс. Белки составляют значительную часть состава хромосом (65%). Все хромосомные белки разделяют на гистоновые и негистоновые [7].
Гистоновые белки, или гистоны – это белки, богатые остатками аргинина и лизина, определяющими их щелочные свойства. Гистоны присутствуют в ядрах в виде комплекса с ДНК. Они выполняют две важные функции – структурную и регуляторную. Структурная функция заключается в том, что они обеспечивают пространственную организацию ДНК в хромосомах и играют важную роль в ее упаковке. Регуляторная функция гистоновых белков состоит в регуляции синтеза нуклеиновых кислот (как ДНК, так и РНК).
Негистоновые белки представлены большим количеством молекул, которые разделяют более чем 100 функций. Среди этих белков есть ферменты, ответственные за репарацию, репликацию, транскрипцию и модификации ДНК. Помимо ДНК и белков в составе хромосом обнаружены небольшие количества РНК, липидов, полисахаридов и ионы металлов.
Морфологию хромосом изучают во время митоза методом микроскопии. В этот период хромосомы максимально спирализованы. В первой половине митоза хромосомы состоят из двух одинаковых по форме структурных и функциональных элементов, называемых хроматидами, которые соединены между собой в области первичной перетяжки. В месте первичной перетяжки расположена центромера – особым образом организованный участок хромосомы, общий для обоих сестринских хроматид.
Во второй половине митоза происходит деление центромеры и отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками. Для каждой хромосомы положение центромеры строго постоянно.
В некоторых растительных клетках и всех животных клетках находится характерно окрашиваемая часть цитоплазмы, которую называют центросомой или клеточным центром. В состав центросомы входит пара центриолей, расположенных под прямым углом друг к другу (рис. 4).
Рисунок 4. Составные части материнской и дочерней центриоли
Стенка центриоли образована 27 микротрубочками, сгруппированными в 9 триплетов. Пару центриолей иногда называют диплосомой. В каждой диплосоме одна центриоль зрелая, материнская, другая – незрелая, дочерняя, является уменьшенной копией материнской [5].
Основная функция митохондрии – синтез АТФ, т. е. образование энергии – около 95% в животной клетке и чуть меньше – в растительной, специфических белках и стероидных гормонах.
Рибосома – органоид клетки, осуществляющий биосинтез белка. Представляет собой рибонуклеопротеиновую частицу диаметром 20-30 нм. В прокариотической клетке около 10 тыс. рибосом, а в эукариотической – 50 тыс. Рибосомы состоят из двух субчастиц – большой и малой. В цитоплазме клетки рибосома связывается с мРНК и осуществляет синтез белка.
Лизосома – органоид клеток животных и грибов, осуществляющий внутриклеточное пищеварение. Местом формирования лизосом является комплекс Гольджи. Внутри лизосом содержится более 20 различных ферментов. В клетке обычно находятся десятки лизосом.
Пластиды – это органоиды эукариотической растительной клетки. Каждая пластида ограничена двумя элементарными мембранами. Пластиды разнообразны по форме, размерам, строению и функции. По различной окраске различают хлоропласты, хромопласты и лейкопласты. Обычно в клетке встречается только один из перечисленных пластид. Каждая клетка содержит несколько десятков хлоропластов, в каждом из которых находится 10-60 копий ДНК.
Жгутик – органелла движения ряда простейших. В клетке бывает 1-4 жгутика, а редко и более. Жгутик эукариотической клетки – это вырост толщиной около 0,25 мкм и длиной 150 мкм, покрытый плазматической мембраной. Как и другие органеллы, жгутик имеет сложную структуру. Движутся жгутики, в отличие от ресничек, волнообразно. Ресничка – органелла движения или рецепции у клеток животных и некоторых растений. Движутся реснички обычно маятникообразно.
Цитоплазма клетки состоит из цитоплазматического матрикса и органоидов. Цитоплазматический матрикс заполняет пространство между клеточной мембраной, ядерной оболочкой и другими внутриклеточными структурами. Химический состав цитоплазматического матрикса разнообразен и зависит от выполняемых клеткой функций, а также образует внутреннюю среду клетки и объединяет все внутриклеточные структуры, обеспечивая их взаимодействие.
Клеточные включения – это компоненты цитоплазмы, представляющие собой отложения веществ, временно выведенных из обмена, и конечных его продуктов. Особый вид клеточных включений – остаточные тельца – продукты деятельности лизосом [4; 8].
Естественная гибель клетки (апоптоз).
Апоптоз – регулируемый процесс программируемой клеточной гибели, в результате которого клетка распадается на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро фагоцитируются макрофагами либо соседними клетками, минуя развитие воспалительной реакции.
К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен. Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. «Осколки» погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами. Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом. Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях [5].
В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу (делению клетки), и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.
Заключение
В этой статье рассмотрена лишь обобщенная информация о строении растительных и животных клеток. На Земле много живых организмов, но только одна Жизнь: один генетический код, схожее клеточное строение, несколько десятков общих генов. Клетка имеет сложную внутреннюю организацию и специфическое взаимодействие органелл в процессе жизнедеятельности, является элементарной единицей полноценной живой системы. Клетка – это наименьшая самовоспроизводящаяся единица жизни, на уровне клетки протекают рост и развитие, размножение клеток, обмен веществ и энергии. Она является морфологической и физиологической структурой, элементарной единицей растительных и животных организмов. В многоклеточном организме протекающие процессы складываются из совокупности координированных функций его клеток. Без клетки, вне клетки и с разрушением клетки жизнь прекращается. Клетка – это Жизнь!
Список литературы:
1. Ахундова Э.М., Салаева С.Д. Генетика: вопросы и ответы. – Баку, 2019. – 381 с.
2. Гринев В.В. Генетика человека. – Минск: БГУ, 2006. – 131 с.
3. Гусейнова Н.Т. Цитология: Учебник. – Баку, 2018. – 224 с.
4. Курчанов Н.А. Генетика человека с основами общей генетики: Учебное пособие. – СПб.: СпецЛит, 2005. – 185 с.
5. Стволинская Н.С. Цитология / Н.С. Стволинская. – М.: Прометей, 2012. – 208 с.
6. Цаценко Л.В., Бойко Ю.С. Цитология. – Ростов-н/Д: Феникс, 2009. – 186 с.
7. Ченцов Ю.С. Введение в клеточную биологию. – М.: Академкнига, 2004. – 495 с.
8. Ченцов Ю.С. Общая цитология: Учебник. – М.: МГУ, 1984. – 442 с.
Из чего состоят живые организмы?
Познакомившись со всеми царствами живой природы, ты уже знаешь, какое огромное количество различных организмов абсолютно любых форм и размеров населяет нашу планету. А что же их всех объединяет? Оказывается, каждое живое существо состоит из мельчайших частиц, которые называются клетками. Причем их количество может быть разным: есть простейшие организмы, в состав которых входит всего одна клетка, а есть и те, которые состоят из миллиардов различных клеток.
Клетки: история открытия
На протяжении довольно длительного периода истории ученые слишком мало знали о живых организмах и их строении. И только в середине XVII в. английский ученый Роберт Гук первым увидел клетки и дал им название. Ему удалось усовершенствовать примитивный микроскоп и рассмотреть в него тонкий срез пробкового дерева. Гук увидел ячейки, похожие на пчелиные соты, и назвал их клетками.
Первым, кто наблюдал живые клетки, стал голландский ученый Антони ван Левенгук. Его интересовали образцы крови, кожи, слюны и даже дождевой воды. Левенгук был очень удивлен, увидев однажды в капле дождевой воды подвижных маленьких «зверьков».
Это были одноклеточные организмы — амебы, инфузории, бактерии.
К началу XVIII в. ученые уже имели некое представление о внутреннем строении организмов. А с усовершенствованием оптических приборов у биологов появлялось все больше и больше возможностей для изучения клеток.
Немецкий ботаник Маттиас Щлейден сделал вывод о том, что все части растений, которые он наблюдал в микроскоп, состоят из клеток.
К подобному заключению пришел еще один немецкий ученый — Теодор Шванн, изучавший внутреннее строение животных. Позже была сформирована так называемая клеточная теория. Ее основные положения сводятся к следующему:
Клетки разных тканей тела человека
Клетки считаются самыми маленькими частицами нашего тела. Они входят в состав волос; ногтей, костей и всех остальных органов. Внутри каждого из нас находится огромное количество клеток. Клетки крови разносят по организму кислород. Клетки мышц расслабляются и сокращаются — именно поэтому мы может двигаться. Жировые клетки накапливают в нашем организме энергию и сохраняют тепло. Клетки кожи образуют вокруг тела защитную оболочку.
Клетка — это основной элемент жизни. Клетка может питаться, двигаться и воспроизводиться.
Организм человека состоит из 220 млрд клеток. Ученые разделили их на две большие категории: наряду с 20 млрд бессмертных клеток, которые сопровождают человека на протяжении всей его жизни, в его организме находятся 200 млрд постоянно замещаемых и обновляемых клеток. Например, клетки кишечника живут 3—5 дней, печени — 480 дней, а вот нервные и мышечные клетки могут жить 100 и более лет.
Ученые предположили, что если все клетки человеческого организма выложить в одну линию, то ее протяженность составит 15 000 км!
Структура клетки
Форма и размер
Клетки очень разнообразны по форме и размеру. Они могут выглядеть как шарик, звезда, прямоугольник, овал и т.д. Самые большие клетки размером со страусиное яйцо (до 15 см), а самые маленькие видны только под микроскопом с большим увеличением.
Строение клетки
Внутри клетки находятся органоиды, или органеллы. Они призваны обеспечивать все потребности клетки. Органоиды поставляют питание, выводят наружу ненужные вещества, защищают и восстанавливают клетку, помогают ей расти и воспроизводиться.
Так, например, ядро — это центр управления. Митохондрии представляют собой энергетические станции клетки. А в аппарате Гольджи происходят необычные превращения: здесь образуются, упаковываются и транспортируются органические вещества, необходимые клетке. Лизосомы отвечают за переваривание пищи и попавших в клетку отработанных веществ, бактерий, вирусов. Эндоплазматическая сеть является внутренним «скелетом» клетки. Рибосомы — это «клеточная кухня» по производству белка. Плазматическая мембрана защищает клетку и транспортирует вещества как наружу, так и внутрь нее.
Клеточная стенка
Это защитная оболочка растительной клетки, основное назначение которой заключается в обеспечении целостности клетки.
А теперь представь, что каждая клетка человека защищена подобной клеточной стенкой. Вряд ли бы мы были достаточно гибкими и подвижными. То же самое можно сказать и о животных.
Клеточная мембрана
Клеточная мембрана есть как в растительных так и в животных клетках. В клетках растительного происхождения мембрана — это вторая оболочка, расположенная под клеточной стенкой. Клеточная мембрана животных клеток содержит холестерин, который придает ей определенную прочность. В растительных клетках холестерин отсутствует, поэтому мембраны таких клеток гораздо мягче чем животных. Для того чтобы клетка оставалась здоровой, она должна получать питание и освобождаться от отходов своей жизнедеятельности.
Посмотри внимательно на этот рисунок. На мембране находятся небольшие отверстия. Через них в клетку поступают питательные вещества и выводятся токсины.
Цитоплазма
Наше путешествие продолжается. Пройдя сквозь мембрану, ты окажешься в слое густого желе. Это вещество, наполняющее клетку, и есть цитоплазма.
Цитоплазма находится в постоянном движении.
В ней происходят все обменные процессы и химические превращения, характерные для клетки. Цитоплазма не только обеспечивает взаимодействие всех компонентов клетки, но и удерживает их на своих местах. Более того, цитоплазма придает клетке определенную форму.
Эндоплазматический ретикулум
Чтобы тебе было проще понять, что именно скрывается за таким сложным и непонятным названием, представь свой путь в школу. Если ты живешь далеко от учебного заведения, то тебе, скорее всего, приходится пользоваться разными видами транспорта, которые движутся по основным городским магистралям. А если школа находится в шаговой доступности, ты идешь по тротуару. В любом случае в городе ты перемещаешься либо по проезжей части улицы, либо по пешеходной. Нечто подобное происходит и в клетке. Там тоже имеется своеобразная сеть дорог и дорожек. Это и есть эндоплазматический ретикулум.
Специальные полости, пузырьки и канальцы соединяют все части клетки. Одни идут от мембраны ядра к клеточной мембране, другие — к различным органоидам Эндоплазматический ретикулум играет важную роль в жизни клетки: он участвует в основных обменных процессах, образовании гормонов, накоплении углеводов, нейтрализации ядов и т.д.
Рибосома
Ты уже знаешь, что в клетке есть разветвленная сеть путей. Разглядывая их, ты наверняка обратил внимание на маленькие шарики, которые прикреплены к эндоплазматическому ретикулуму. Это и есть рибосомы.
Рибосомы — это своеобразные фабрики по производству белка, который впоследствии используется клетками для восстановления, обновления или различных химических реакций.
Почему большинство рибосом находится на мембранах эндоплазматической сети? Эндоплазматическая сеть — это транспортный орган клетки, который переносит различные вещества в органоиды и уносит от них отходы. А рибосомы заняты выработкой белка, который сразу же попадает в транспортную сеть и доставляется туда, где в нем есть необходимость.
Лизосома
Путешествуя по эндоплазматической сети, внимательно присмотрись к окружающей тебя цитоплазме. Ты обязательно увидишь небольшие шарики, которые называются лизосомами. Они наполнены специальными ферментами (энзимами), которые используются клеткой для расщепления и частичного переваривания пищи. Благодаря лизосомам пища делится на мелкие кусочки, которые затем транспортируются к другим маленьким органоидам клетки — митохондриям.
Интересной функцией лизосом является самопереваривание, или полное саморастворение клетки под действием собственных ферментов. Но в некоторых случаях такое растворение не только приводит к гибели клетки, но и помогает организму развиваться. Например, в процессе превращения личинки насекомого во взрослую особь лизосомы растворяют ткани личинки, а вещества, которые образовались в результате этого процесса, используются другими клетками развивающегося насекомого. Аналогичное явление происходит и с хвостом головастика при превращении его во взрослую лягушку: хвост рассасывается, а полезные вещества идут на строительство новых клеток.
Еще одна очень важная задача лизосом заключается в разрушении и переваривании частей клетки, поврежденных в результате травмы, а также стареющих клеток, которые должны замещаться новыми. Именно лизосомы играют ключевую роль в таком замещении и образовании новых клеток.
Митохондрия
Митохондрии — это микроскопические органоиды округлой или продолговатой формы, отвечающие за выработку энергии в клетке. Иногда их называют энергетическими или силовыми «фабриками» клетки. Митохондрии способствуют возникновению и прохождению химических реакций, в результате которых пища превращается в воду и углекислый газ. В процессе таких реакций выделяется большое количество энергии, без которой клетка не может выполнять никакую работу. Все химические реакции управляются особыми ферментами, которые находятся в митохондриях
Более активные клетки испытывают потребность в большем количестве энергии. Именно поэтому в таких клетках митохондрий больше, чем в менее активных. Здесь можно привести следующее сравнение: чем крупнее город, тем в большем количестве электроэнергии он нуждается. Успехи спортсмена зависят от количества митохондрий: чем их больше, тем выше его выносливость и тем лучшие результаты он может показать. Количество митохондрий зависит от вида живого организма, в котором они находятся. Так, например, у одноклеточных зеленых водорослей всего лишь одна большая митохондрия, а у некоторых простейших эти органоиды и вовсе отсутствуют, в то время как в клетках сердца, мышц и мозга животных содержатся тысячи митохондрий.
Митохондрии настолько малы, что их нельзя увидеть невооруженным глазом или даже в обычный микроскоп. Они видны только в электронный микроскоп.
Основная задача аппарата Гольджи — транспортная (выведение из клетки различных ферментов и гормонов). В цистернах созревают белки, образуются лизосомы, происходят и другие биохимические превращения: вещества, поступающие из эндоплазматической сети, упаковываются в специальные мембранные пузырьки и доставляются в те места клетки, где в них есть необходимость, например в растении — к месту образования новой почки.
Аппарат Гольджи
Этот маленький органоид получил название в честь итальянского ученого Камилло Гольджи, который в 1898 г. обнаружил его в нервных клетках, изучая структуру головного и спинного мозга. Внешне аппарат Гольджи представляет собой стопку плоских мембранных мешочков, которые называются цистернами, и систему пузырьков, называемых пузырьками Гольджи. Как правило, в каждой стопке насчитывается от четырех до шести цистерн, а вот количество таких стопок может быть разным: от одной большой до нескольких сотен очень маленьких. В 1906 г. Камилло Гольджи был удостоен Нобелевской премии по медицине за разработку гистологических методов исследования нервной системы.
Вакуоль
Вакуоли — это небольшие мешочки, заполненные клеточным соком — водным раствором различных питательных веществ. Причем химический состав клеточного сока зависит от вида растения, ткани, органа и возраста клетки. Вакуоли — это своеобразные хранилища запасных веществ клетки. Но кроме полезных элементов в них могут находиться и продукты жизнедеятельности, т.е. различные токсичные и ядовитые вещества, которые специально помещаются туда для хранения.
Вакуоли просто необходимы растительным клеткам. Это связано в первую очередь с накоплением и хранением воды, необходимой для питания растений.
Когда вакуоли наполнены водой, растение выглядит сильным и здоровым. Вспомни, что происходит с комнатным цветком, когда ты забываешь его поливать в течение нескольких недель. Он чахнет и вянет. Это происходит потому, что количество воды в вакуолях постепенно уменьшается.
Хлоропласт
Почему большинство растений зеленого цвета? Причина этого — наличие в клетке хлоропластов. Эти маленькие органоиды в форме шара или диска наполнены пигментом зеленого цвета — хлорофиллом, который и придает растениям зеленый цвет. Хлорофилл используется для захвата солнечной энергии, которая впоследствии применяется для образования питательных веществ.
Биологам удалось обнаружить очень интересную особенность хлоропластов. Оказывается, они движутся! Хлоропласты в состоянии изменять свое положение в клетке. Как правило, эти органоиды скапливаются возле ядра и клеточных стенок, а двигаться начинают при изменении освещения. При слабом освещении хлоропласты располагаются перпендикулярно падающим лучам: таким образом они улавливают больше света. При сильном освещении — перемещаются к стенкам клетки и поворачиваются ребром к падающим лучам. Более того, от освещения зависит и форма этих органоидов: при очень ярком свете они принимают сферическую форму.
Специализация клеток
Одноклеточные организмы обладают способностью выполнять все необходимые для их жизнедеятельности функции. С многоклеточными организмами дело обстоит несколько иначе. Их клетки зависят друг от друга и не могут существовать изолированно.
В многоклеточном организме различные виды клеток специализируются на выполнении разных работ. Одни заняты перевариванием пищи, другие — борьбой с инфекциями, третьи — доставкой питательных веществ по всему организму.
Чем растительная клетка отличается от животной?
Что общего в растительной и животной клетках?
Как в животных, так и в растительных клетках есть ядро с ядерной мембраной, цитоплазма, мембрана, рибосомы и митохондрии.