Что объединяло первых греческих философов физиков

Древнегреческая философия. периодизация и черты

Античная философия жила около 1200 лет и в своем развитии насчитывает четыре основных этапа или периода:

Философы сократического (классического) периода также пытались объяснить сущность природы и Космоса, однако сделали это глубже «досократиков»:

III.Для эллинистического периода (периода кризиса полиса и образования крупных государств в Азии и Африке под властью греков и во главе соратниками Александра Македонского и их потомками) характерно:
1. распространение антиобщественной философии киников;
2. зарождение стоического направления философии;
3. деятельность «сократических» философских школ: Академии Платона, Ликея Аристотеля, киренской школы (киренаиков) и др.;
4. философия Эпикура и пр.

ВЫВОДЫ: временные проблемы и особенности в целом.

По сути понятие «философия» в рассматриваемые периоды было синонимом зарождающейся науки и теоретической мысли вообще, совокупного, не разделенного до поры, до времени на специальные разделы знания как конкретного, так и обобщенного. По смене основных проблем можно выделить следующие её периоды:

Таким образом, Античная философия возникла и развивалась во время зарождения и становления рабовладельческого общества, когда оно делилось на классы и обособлялась социальная группа людей, занимавшаяся только умственным трудом. Своим появлением эта философия обязана и развитию естествознания, прежде всего математики, астрономии. Правда, в то далекое время естествознание еще не выделилось в самостоятельную область человеческого познания. Все знание о мире и человеке объединялось в философии.Не случайно Древнейшую философии еще называют наукой наук.

Источник

Объясняя мир

Что объединяло первых греческих философов физиков. Смотреть фото Что объединяло первых греческих философов физиков. Смотреть картинку Что объединяло первых греческих философов физиков. Картинка про Что объединяло первых греческих философов физиков. Фото Что объединяло первых греческих философов физиков

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.

Оглавление

Приведённый ознакомительный фрагмент книги Объясняя мир предоставлен нашим книжным партнёром — компанией ЛитРес.

Физика в Древней Греции

Задолго до и в процессе расцвета науки в Древней Греции существенный вклад в технику, математику и астрономию внесли вавилоняне, китайцы, египтяне, индийцы и представители других народов. Тем не менее именно Греция осветила путь будущего развития науки и явилась образцом для остальной Европы, и именно Европа стала колыбелью современной науки, в формировании которой древнегреческие мыслители сыграли особую роль.

Можно до бесконечности спорить о том, как получилось, что именно древние греки достигли таких высот знания. Возможно, свою роль сыграло то, что зачатки науки появились тогда, когда древнегреческая цивилизация складывалась из независимых городов-государств, многие из которых были демократическими. Но, как мы увидим, самые выдающиеся открытия греки совершили уже тогда, когда эти маленькие государства оказались поглощены великими империями: эллинистическими царствами, а позже — Римом. Греки эпохи эллинизма и римского господства добились таких успехов в естествознании и математике, которые никто не смог превзойти до самой научной революции XVI–XVII вв. в Европе.

В этой части моей работы я расскажу о том, как древнегреческая наука отражала физическую картину мира. Об астрономии мы поговорим во второй части. В каждой из пяти глав, на которые поделена первая часть, вы в более или менее хронологическом порядке познакомитесь с пятью направлениями познания, с которыми наука пришла в согласие: поэзией, математикой, философией, техникой и религией. К теме взаимоотношений науки с этими пятью родственными направлениями мы будем возвращаться вновь и вновь.

1. Материя и поэзия

Мысленно перенесемся в прошлое. К VI в. до н. э. западное побережье нынешней Турции уже было заселено греками, говорившими преимущественно на ионийском диалекте. Самым богатым и мощным среди ионийских городов был Милет, основанный в естественной гавани при впадении реки Меандр в Эгейское море. В Милете на столетие раньше Сократа греческие мыслители стали рассуждать о природе первичной субстанции, из которой создан мир.

О милетцах я впервые узнал на старших курсах Корнелльского университета, когда занимался историей и философией науки. В лекциях милетцев называли «физиками». Одновременно я прослушал курс физики, в том числе современную атомистическую теорию строения вещества. Мне казалось, что между учением милетцев и нынешней физикой очень мало общего. Не то чтобы они были совершенно неправы в своих заключениях о строении вещества, скорее, я не понимал, как именно они могли прийти к ним. Исторических свидетельств о том, как греческие мыслители рассуждали в доплатоновскую эпоху, очень мало, но я был практически уверен, что ни милетцы, ни другие древнегреческие естествоиспытатели архаического и классического периодов (примерно от 600 до 450 г. до н. э. и от 450 до 300 г. до н. э.) не могли рассуждать так же, как это делают нынешние ученые.

Имел ли в виду Фалес, говоря, что «всеобщей первичной субстанцией» является вода, что все вещество состоит из воды? Если это так, то мы не можем сказать ничего о том, как он пришел к такому выводу, но если считать, что все вещество имеет единую первооснову, то вода не так уж плоха в этой роли. Вода может быть не только жидкой: замерзая, она, легко переходит в твердое состояние или превращается в пар в процессе кипения. Также очевидно, что без воды не может быть жизни. Но мы не знаем, считал ли Фалес, что, к примеру, камни тоже состоят из обыкновенной воды, или лишь видел что-то значительное в том, что камни и другие твердые тела имеют много общего с замерзшей водой.

У Фалеса был друг и ученик по имени Анаксимандр, который пришел к иному заключению. Он тоже считал, что существует единая фундаментальная субстанция, но Анаксимандр не сопоставлял ее с каким-либо обычным веществом. Вместо этого он полагал, что такой субстанцией является нечто, которое он называл «бесконечным» или «беспредельным». Его взгляды дошли до нас в изложении Симпликия Киликийского, философа-неоплатоника, жившего примерно тысячу лет спустя. В своем труде «Комментарий к “Физике» Аристотеля”» Симпликий приводит фразу, которая, вероятно, является изложением слов самого Анаксимандра:

На Анаксимене цепочка преемственности философов из Милета заканчивается. С 550-х годов до н. э. Милет и другие ионийские города попадают под власть растущего Персидского царства. В 499 г. до н. э. жители Милета подняли восстание против персов, но потерпели поражение, и город оказался разорен. Впоследствии он возродился как важный центр древнегреческой цивилизации, но никогда больше не становился центром греческой науки.

Возможно, что Эмпедокл и Анаксимандр использовали понятия «любовь», «ненависть», а также «справедливость» и «несправедливость» лишь как метафоры порядка и беспорядка, примерно в том же духе, как Эйнштейн, бывало, употреблял слово «бог» в качестве метафоры еще непознанных законов природы. Но нам не следует пытаться втиснуть слова досократиков в тесные рамки современных интерпретаций. Как мне кажется, появление в рассуждениях о сути природы категорий человеческих эмоций, таких как любовь и ненависть у Эмпедокла, или таких, как справедливость и воздаяние у Анаксимандра, — лишь свидетельство той пропасти, которая разделяет образ мысли древних досократиков и современных ученых-физиков.

Как и современные ученые, ранние греческие мыслители намеревались проникнуть сквозь поверхностные представления о мире, пытаясь заглянуть вглубь реальности. Сущность мира невозможно определить с первого взгляда, из чего бы он ни состоял: из воды, из воздуха, из земли, из всех четырех стихий или даже из атомов.

Парменид из Элеи, который вызывал восхищение у Платона, дошел до крайности в своих поисках тайных смыслов. Элея (современное название Велия) — город в южной части Италии. В начале V в. до н. э. Парменид, в противовес Гераклиту, учил, что постоянная изменчивость и разнообразие природы являются иллюзией. Эти идеи отстаивал его ученик Зенон из Элеи, которого не следует путать с другим Зеноном, так называемым Зеноном-стоиком. В своем сочинении «Апории» Зенон описывал некоторое количество парадоксальных утверждений, доказывающих невозможность движения. Например, чтобы пробежать всю беговую дорожку стадиона, вначале необходимо покрыть половину расстояния, потом — половину от оставшегося, и так до бесконечности. Таким образом, пробежать всю беговую дорожку невозможно. Насколько мы можем судить из дошедших до нас отрывков, по тем же самым причинам Зенону казалось, что невозможно путешествовать на какое-либо заданное расстояние, следовательно, движения вообще не существует.

Гораздо более поразительно не то, насколько Парменид и Зенон были неправы, а то, почему же они не удосужились объяснить, по какой причине, если движения не существует, вещи выглядят движущимися. На самом деле ни один из древнегреческих мыслителей от Фалеса до Платона — ни из Милета, ни из Абдер, ни из Элеи, ни из Афин — никогда не брал на себя труд детально объяснить, как его теория конечной, истинной реальности соотносится с восприятием вещей.

Это вовсе не было умственной ленью, а, скорее, чем-то вроде склонности ранних греков к интеллектуальному высокомерию, которое привело их к решению, что не стоит стремиться к пониманию явлений окружающего мира вообще. Это лишь первый из примеров подобного отношения, нанесшего большой вред познанию в истории науки. В разные времена считалось, что круговые орбиты более совершенны, чем эллиптические, что золото — более благородный металл, чем свинец, и что человек — существо высшего порядка по сравнению с его собратьями-обезьянами.

Может быть, мы и сейчас совершаем подобные ошибки, обходя вниманием какие-то возможности научного прогресса, потому что игнорируем некие явления, считая их недостойными нашего внимания? Нельзя быть уверенным, но я думаю, что не совершаем. Конечно, невозможно исследовать все, но мы выбираем задачи, которые, по нашему мнению, правильному или ошибочному, дают лучшие перспективы для научного осмысления. Биологи, изучающие хромосомы или нервные клетки, работают с такими животными, как мухи-дрозофилы и кальмары, а не с орлами или львами. Физиков, исследующих элементарные частицы, иногда обвиняют в снобистском и очень дорогом увлечении, требующем использования самых высоких энергий, которые можно достигнуть. Но только при высоких энергиях мы можем создавать и изучать гипотетические частицы большой массы, например, частицы так называемой темной материи, которая, по мнению астрономов, составляет 5/6 вещества во Вселенной. В любом случае мы уделяем достаточно внимания и изучению явлений, наблюдаемых при низких энергиях, как, например, определение массы нейтрино, составляющей миллионную долю массы электрона.

Делая критические замечания по поводу досократиков, я вовсе не имею в виду, что априорная аргументация не присутствует в науке. Сегодня, например, мы ожидаем, что фундаментальные физические законы удовлетворяют принципам симметрии, то есть что физические законы не изменятся, если мы неким определенным образом изменим систему отсчета. Точно так же как принцип неизменности Парменида, некоторые из этих законов симметрии не проявляют себя непосредственно в физических явлениях — считается, что они могут спонтанно нарушаться. Это значит, что уравнения наших теорий обладают определенной простотой, касающейся, например, некоторых свойств разных видов элементарных частиц, но эта простота не присуща решениям уравнений, а именно они-то и описывают реальные явления. Как бы то ни было, в отличие от приверженности Парменида принципу неизменности мира, априорное предположение о существовании фундаментальной симметрии законов природы симметрии появилось в результате многолетних экспериментов, проводимых в поисках физических законов, описывающих реальный мир. Существование как спонтанно нарушенных, так и не нарушенных видов симметрии доказано экспериментами, которые подтверждают следствия этих нарушений и сохранений. Субъективные суждения, которыми мы руководствуемся в человеческих отношениях, здесь никак не задействованы.

Платон, в отличие от своего кумира Сократа, был афинским аристократом. Он является первым греческим философом, большое количество письменных источников которого сохранилось. Платона, как и Сократа, куда больше интересовали проблемы рода человеческого, чем природа вещей. Он надеялся сделать политическую карьеру, которая позволила бы ему воплотить свои утопические и антидемократические идеи на практике. В 367 г. до н. э. Платон получил приглашение от Дионисия II приехать в Сиракузы и оказать помощь в реформировании правительства, но, к счастью для жителей Сиракуз, этого так и не случилось.

В одном из своих диалогов, «Тимее», Платон свел вместе мысли о четырех основополагающих элементах с абдерским понятием атомов. Платон считал четыре элемента Эмпедокла состоящими из частиц, имеющих форму четырех из пяти правильных многогранников, известных из математики. Это тела, грани которых представляют собой многоугольники, с одинаковыми ребрами, образующими в вершинах одинаковые телесные углы (см. техническое замечание 2). Например, один из таких правильных многогранников — куб, грани которого являются одинаковыми квадратами и в каждой вершине встречается по три квадрата. Платон полагал, что атомы земли имеют форму куба. Другие правильные многогранники — это тетраэдр (пирамида с четырьмя треугольными гранями), восьмигранный октаэдр, двадцатигранный икосаэдр и двенадцатигранный додекаэдр. Платон предполагал, что атомы огня, воздуха и воды имеют соответственно формы тетраэдра, октаэдра и икосаэдра. Оставался додекаэдр, который, по мнению Платона, лежал в основе стихии космоса. Позже Аристотель представил пятый элемент — эфир (или квинтэссенцию), заполняющий, как он считал, пространство за орбитой Луны.

Обычно, когда описывают эти ранние размышления, касающиеся природы вещества, подчеркивают, что они послужили прообразом современной науки. Особенно принято восхищаться Демокритом: в Греции даже есть университет, названный его именем. В самом деле, попытки определить основные составляющие вещества продолжались тысячелетиями, хотя время от времени состав элементов менялся. К началу нового времени алхимики выделяли три основополагающих элемента: ртуть, соль и серу. Современное понятие о химических элементах появилось в период революционных преобразований в химии, инициированных Пристли, Лавуазье, Дальтоном и другими учеными в конце XVIII в. Сейчас насчитывается 92 элемента естественного происхождения, от водорода до урана (включая серу и ртуть, но не соль). К тому же постоянно растет перечень искусственно созданных элементов тяжелее урана. В нормальных условиях чистый химический элемент состоит из атомов одного и того же вида, элементы отличаются друг от друга по типу атомов, из которых они состоят. Сегодня мы изучаем элементарные частицы, из которых состоят атомы химических элементов, но, тем или иным образом, мы продолжаем поиск основополагающих составляющих природы, начатый в Милете.

Тем не менее я считаю, что нельзя преувеличивать современное значение архаической или классической греческой науки. В современной науке есть важная особенность, которая полностью отсутствует у всех упомянутых мною мыслителей от Фалеса до Платона: никто из них не пытался доказать или хотя бы (кроме разве что Зенона) серьезно подтвердить свои предположения. Читая их записи, постоянно задаешь один и тот же вопрос: «А откуда вы знаете?» Это относится как к Демокриту, так и ко всем остальным. Нигде в отрывках его работ, которые дошли до нас, мы не видим ни одной попытки показать, что вещество действительно состоит из атомов.

Мне кажется, что для того, чтобы правильно понимать ранних греческих мыслителей, лучше воспринимать их не как физиков, не как ученых и даже не как философов, а как поэтов.

Я должен объяснить, что имею в виду поэзию в узком смысле этого слова — как язык, в котором используются такие словесные приемы, как размер, ритм и аллитерация. Даже в этом смысле Ксенофан, Парменид и Эмпедокл были поэтами. После дорийского вторжения и окончания бронзовой эры Микенской цивилизации в XII в. до н. э. греки, по большей части, стали неграмотными. При отсутствии письменности стихи стали практически единственным способом, с помощью которого люди могли оставить свое послание следующим поколениям, поскольку они запоминаются намного легче, чем проза. Греки оставались неграмотными примерно до 700 г. до н. э. Новый алфавит, заимствованный у финикийцев, был впервые использован Гомером и Гесиодом, чтобы записать, опять-таки, стихи, часть из которых брала свое начало в надолго запомнившихся темных временах Греции. Проза появилась позднее.

Даже те ранние греческие философы, которые писали прозой, как Анаксимандр, Гераклит и Демокрит, приспосабливали свои строки к поэтическому стилю. Цицерон говорил о Демокрите, что он более поэтичен, чем многие поэты. Платон в юности хотел стать поэтом, и хотя он писал прозой и жестоко обрушился на поэзию в своем «Государстве», его литературный стиль всегда вызывал восхищение.

Иногда становится понятно, что Платон не намеревался говорить обо всем буквально. Один из примеров этого — уже упомянутая исключительно слабая аргументация того, что он выбирает именно два треугольника как основу всей материи. Если взять еще более явный пример, в «Тимее» Платон рассказывает историю Атлантиды, которая якобы процветала за тысячи лет до времени его собственного существования. Платон не мог серьезно полагать, что он действительно знал о чем-то, происходившем тысячи лет назад.

Я не хочу сказать, что ранние греческие мыслители выбрали поэтическую форму для своих записок, чтобы им не надо было доказывать свои теории. Они просто не чувствовали необходимости в каких-либо доказательствах. Сегодня мы проверяем наши предположения о природе, используя выдвинутые теории, чтобы прийти к более или менее точным умозаключениям, которые можно проверить наблюдением. Ранние греческие мыслители и их многочисленные последователи этого не делали по одной простой причине: они никогда не видели, как это делается.

Например, теория струн, которая описывает различные взаимодействия элементарных частиц как разного рода колебания микроскопических струн, очень красива. Она имеет достаточно последовательное математическое обоснование, таким образом, ее содержание не произвольно, а в значительной степени подтверждается с помощью математического аппарата. К тому же в этой теории есть красота настоящего произведения искусства — сонета или сонаты. Но, к сожалению, теория струн так и не получила ни одного экспериментального доказательства, поэтому физики-теоретики (по крайней мере большинство из нас) не могут сказать однозначно, приложима ли эта теория к реальности. Это то самое требование подтверждения, которое так часто отсутствует в произведениях поэтов, изучающих природу, от Фалеса до Платона.

2. Музыка и математика

Даже если бы Фалес и его последователи понимали, что им необходимо делать выводы из своих теорий строения материи, которые можно сравнить с результатами наблюдений, эта задача оказалась бы для них чрезмерно трудной, отчасти из-за ограничений древнегреческой математики. Вавилоняне достигли больших успехов в арифметике, используя шестидесятеричную систему счисления, а не десятичную. Также они развили некоторые простые алгебраические приемы (хотя и не записывая их специальными символами), например, решение различных квадратных уравнений. Но для древних греков математика была, скорее, геометрией. Как мы можем заметить, к тому времени, когда жил Платон, уже были доказаны теоремы, связанные с треугольниками и многогранниками. Большая часть геометрических понятий, описанных в Евклидовых «Началах», была известна задолго до Евклида, примерно в 300 г. до н. э. Но и в то время у греков были очень ограниченные представления об арифметике, не говоря уж об алгебре, тригонометрии и математическом анализе.

Возможно, первым явлением, которое древние изучали с помощью арифметических методов, была музыка. Это описано в работах последователей Пифагора. Уроженец населенного ионийцами острова Самос Пифагор уехал в южную Италию примерно в 530 г. до н. э. Там, в греческом городе Кротоне, он основал культ, который просуществовал до конца IV в. до н. э.

Большего прогресса пифагорейцы достигли, скорее, в чистой математике, чем в физике. Все знают теорему Пифагора о том, что площадь квадрата, одной из сторон которого является гипотенуза прямоугольного треугольника, равна сумме площадей двух квадратов, стороны которых являются катетами этого треугольника. Но неизвестно, кто именно из пифагорейцев доказал эту теорему и как он это сделал. Ее можно очень просто доказать, основываясь на теории соотношений, которая принадлежит пифагорейцу Архиту Тарентскому, современнику Платона (см. техническое замечание 4). В теореме 46 Первой книги «Начал» Евклида приводится более сложное доказательство. Кстати, Архит решил знаменитую задачу, которая до него оставалась нерешенной: как, имея куб и используя чисто геометрические методы, построить куб, в два раза больший по объему.

Теорема Пифагора ведет к другому великому открытию о том, что геометрические построения могут привести к соотношениям, которые не могут быть выражены частным от деления целых чисел. Если каждый катет прямоугольного треугольника имеет длину, равную единице (неважно, в каких единицах измерения), то сумма площадей двух квадратов, сторонами которого являются эти катеты, составляет 1² + 1² = 2. Тогда в соответствии с теоремой Пифагора длина гипотенузы должна выражаться числом, квадрат которого равен 2, но легко увидеть, что число, квадрат которого равен 2, не может быть выражено как соотношение целых чисел (см. техническое замечание 5). Доказательство этого дается в Десятой книге «Начал» Евклида. Ранее о нем говорит Аристотель в «Первой аналитике» в качестве примера reductio ad impossibile [3] , не давая ссылку на оригинальный источник. Существует легенда о том, что это открытие принадлежит пифагорейцу Гиппасу, который, возможно, родился в городе Метапонте на юге Италии и был изгнан или убит пифагорейцами за разглашение этого открытия.

Традиция чистой математики была продолжена в Академии Платона. Говорили, что у ее дверей висело предупреждение, запрещающее вход любому, кто невежествен в геометрии. Сам Платон математиком не был, но с восторгом относился к математикам, отчасти, вероятно, потому, что во время своего путешествия в Сиракузы, чтобы стать наставником молодого Дионисия II Младшего, встречался с пифагорейцем Архитом Тарентским.

В Академии одним из математиков, который оказал огромное влияние на Платона, был Теэтет Афинский, ставший главным героем одного из диалогов Платона и объектом для обсуждения в другом. Теэтет знаменит открытием пяти правильных многогранников, которые, как мы уже видели, обеспечили основу теории элементов Платона. Доказательство того, что эти тела являются единственно возможными выпуклыми многогранниками, предложено в «Началах» Евклида и приписывается Теэтету, который также внес свой вклад в теорию того, что мы сегодня называем иррациональными числами.

Самым великим эллинским математиком IV в. до н. э. был Евдокс Книдский, ученик Архита и современник Платона. Хотя он прожил большую часть своей жизни в городе Книде, на побережье Малой Азии, Евдокс учился в Академии Платона и позже вернулся туда, чтобы самому стать учителем. От Евдокса не осталось никаких записей, но он известен тем, что решил множество сложных математических задач, например доказал, что объем конуса равен одной трети объема цилиндра с тем же основанием и высотой (я не представляю, как Евдокс мог сделать это, не прибегая к математическому анализу). Его величайшим вкладом в математику стало изобретение метода исчерпывания, при использовании которого теоремы выводились из простых аксиом, не требующих доказательства. Этот же метод использовал Евклид в своих работах. На самом деле многое в «Началах» Евклида может быть отнесено на счет Евдокса.

Однако гораздо более важным, чем вопрос стиля (хотя и связано с ним), является ошибочное желание достичь абсолютной истины при помощи одного лишь чистого разума, на что вдохновляли математики. В своей дискуссии об образовании философа в диалоге «Государство» Платон использовал сократовский аргумент о том, что астрономию нужно изучать таким же способом, как и геометрию. Согласно Сократу, смотреть в небо может быть полезно для развития разума, точно так же как смотреть на геометрические построения полезно для изучения математики, но в обоих случаях настоящее знание приходит только через мысль. «Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне…»

Математика — это средство, с помощью которого мы выводим следствия физических законов. Более того, это незаменимый язык, на котором излагаются сами физические законы. Она часто пробуждает новые идеи в области естественных наук, и, в свою очередь, нужды науки часто подталкивают развитие математики. Работа физика-теоретика Эдварда Виттена обеспечила такой громадный прорыв в математике, что в 1990 г. он получил одну из самых высоких наград в области математики — Филдсовскую медаль. Но при этом математика не является естественной наукой. Математика сама по себе, без наблюдений за окружающим миром, не может ничего рассказать о нем. И математические теоремы не могут быть ни подтверждены, ни опровергнуты такими наблюдениями.

Ни в древнем мире, ни даже в начале Нового времени об этом не подозревали. Мы уже видели, что Платон и пифагорейцы воспринимали математические объекты, например, числа или треугольники, как элементарные составляющие природы, и мы еще увидим, как некоторые философы считали вычислительную астрономию частью математики, а не естественной наукой.

Различие между математикой и естественными науками достаточно четко. Для нас остается загадкой, как математические построения, никак не связанные с природой, часто оказываются применимы к физическим теориям. В своей знаменитой статье физик Юджин Вигнер писал о «непостижимой эффективности математики». Но в целом мы никоим образом не смешиваем математические концепции и принципы естественных наук, которые в конечном счете должны быть подтверждены наблюдением за окружающим миром.

Сейчас конфликты между математиками и другими учеными порой возникают из-за вопросов математической строгости. С начала XIX в. чистые математики требовали, чтобы строгость стала основой всего. Определения и допущения должны быть точными, а доказательства проведены с абсолютной достоверностью. Физики более гибки, точность и достоверность требуется им только для того, чтобы избежать серьезных ошибок. В предисловии к своей монографии по квантовой теории полей я признаю, что «в книге есть части, которые читатель, склонный к математике, будет читать со слезами на глазах».

Это вызывает сложности во взаимопонимании. Математики говорили мне, что работы физиков часто кажутся им раздражающе расплывчатыми. Те физики, которым, как и мне самому, нужен продвинутый математический аппарат, часто находят, что стремление математиков к строгости усложняет работу, но не так ценно для самой физики.

Физики, склонные к математике, совершили благородный поступок, формализовав современную физику элементарных частиц — квантовую теорию поля — по строгим математическим канонам, и достигли некоторых интересных результатов. Но за последние полвека в Стандартной модели элементарных частиц не было никакого развития, связанного с достижением более высокого уровня математической строгости.

Греческие математики процветали и после Евклида. В главе 4 мы поговорим о великих достижениях математиков позднего эллинистического периода — Архимеда и Аполлония Пергского.

3. Движение и философия

После Платона размышления греков о природе стали менее поэтическими и более аргументированными. Прежде всего, эти изменения заметны в работах Аристотеля. Аристотель не был ни урожденным афинянином, ни даже ионийцем. Он родился в 384 г. до н. э. в Македонии и переехал в Афины в 367 г. до н. э., чтобы учиться в основанной Платоном Академии. После смерти Платона в 347 г. до н. э. Аристотель уехал из Афин, некоторое время жил на острове Лесбос в Эгейском море и в прибрежном городе Ассос. В 343 г. до н. э. царь Филипп II призвал его обратно в Македонию, чтобы сделать наставником для своего сына, будущего Александра Великого.

Македония возвысилась в греческом мире после того, как армия Филиппа разбила армию Афин и Фив в битве при Херонее в 338 г. до н. э. После смерти Филиппа в 336 г. до н. э. Аристотель вернулся в Афины, где основал свою собственную школу Ликей. Наряду с Академией Платона, Садом Эпикура и Портиком [4] стоиков Ликей был одной из четырех самых великих афинских школ. Он просуществовал несколько веков, вероятно, пока не был закрыт, когда Афины были захвачены римскими войсками под предводительством Суллы в 86 г. до н. э. У Ликея была долгая жизнь, но Академия Платона, действовавшая в том или ином виде до 529 г. н. э., имеет более долгую историю, чем многие ныне существующие европейские университеты.

Платон и Аристотель были реалистами, но в разном смысле этого слова. Платон был реалистом в средневековом значении: он верил в реальность абстрактных идей, в частности, в идеальную форму вещей. Он считал, что реально существует идеальная форма сосны, а все отдельно существующие сосны только являются ее неидеальными воплощениями. Идеальные формы неизменны, как этого требовали Парменид и Зенон. Аристотель был реалистом в общепринятом современном смысле: для него категории хотя и были очень интересны, но существовали отдельные вещи, например, отдельные сосны, вполне реальные, а не платоновские отражения идеального.

Начнем с того, что работы Аристотеля переполнены телеологией: вещи являются тем, что они есть, благодаря целям, которым они служат. В «Физике» мы читаем: «Кроме того, дело одной и той же [науки — познавать] «ради чего» и есть цель, а также [средства], которые для этого имеются. Ведь природа есть цель и “ради чего”…»

То, что Аристотель придает особое значение телеологии, вполне естественно для человека его склада, который интересовался биологией. В Ассосе и на Лесбосе Аристотель изучал морскую биологию, а его отец Никомах был врачом при македонском дворе. Друзья, более сведущие в биологии, чем я, говорят, что описания животных, сделанные Аристотелем, достойны восхищения. Телеология вполне естественна для того, кто, как Аристотель в своем сочинении «О частях животных», изучает сердце или желудок животного — едва ли ему приходится задаваться вопросом, какой цели служат эти органы.

Более того, до работ Дарвина и Уоллеса в XIX в. натуралисты не понимали, что, хотя органы тела служат разным целям, не существует никакой цели, лежащей в основе эволюции. Живые организмы стали тем, чем они стали, благодаря продолжавшемуся миллионы лет естественному отбору из передающихся по наследству вариаций. И, конечно, задолго до Дарвина физики изучали вещество и силу, не задумываясь, какой цели они служат.

Увлечение Аристотеля зоологией, возможно, определило и то, что он особо подчеркивал значение классификации и систематизации, подразделял предметы и понятия на категории. Некоторые из них мы используем до сих пор: например, аристотелевское деление способов управления государством на монархию, аристократию и, хотя и не демократию, но конституционное государственное устройство. Однако многие его классификации бессмысленны. Я могу себе представить, как Аристотель мог бы классифицировать фрукты: все фрукты делятся на три разновидности — яблоки, апельсины и фрукты, которые не являются ни яблоками, ни апельсинами.

Аристотеля нельзя обвинить в том, что он полностью игнорировал наблюдения падающих тел. Хотя и не понимая причин этого явления, он отметил, что сопротивление воздуха или любой другой окружающей среды оказывает эффект на падающее тело: его скорость приближается к постоянному значению, равновесной скорости, которая возрастает при увеличении массы предмета (см. техническое замечание 6). Возможно, для Аристотеля было более важно, что наблюдения того, что скорость падающего тела увеличивается при возрастании его веса, подтверждали его учение о том, что тело падает, потому что естественное место материала, из которого оно сделано, находится в центре мира.

То, что Аристотель писал о падающих телах, типично для его физики: детальная, хотя и не имеющая отношения к математике, аргументация, основывающаяся на базовых принципах, которые, в свою очередь, выводятся из самых простых наблюдений за явлениями природы. При этом он даже не пытается проверить те принципы, которые положены в основу всего рассуждения.

Я не хочу сказать, что философия Аристотеля была воспринята его последователями и продолжателями как альтернатива науке. В древности и Средневековье не было концепции науки, существующей отдельно от философии. Размышления о природе уже были философией. Только в XIX в., когда немецкие университеты учредили докторскую степень для ученых, занимающихся искусствами и науками, чтобы приравнять их по статусу к докторам теологии, юриспруденции и медицины, было изобретено звание «доктор философии». До этого, когда философию сравнивали с другими способами познания природы, ее противопоставляли не науке, а математике.

Ни один мыслитель не оказал такого влияния на историю философии, как Аристотель. Как мы увидим в главе 9, им восхищались некоторые арабские философы, причем Аверроэс дошел в этом восхищении до раболепия. Глава 10 расскажет о влиянии Аристотеля на христианскую Европу в начале XIII в., когда Фома Аквинский увязал его мысли с христианством. В позднем Средневековье Аристотель был известен просто как Философ, а Аверроэс — как комментатор. После Аквинского изучение трудов Аристотеля заняло центральное место в университетском образовании. В прологе к «Кентерберийским рассказам» Чосера мы знакомимся с оксфордским студентом:

Студент оксфордский с нами рядом плелся…

Ему милее двадцать книг иметь,

Чем платье дорогое, лютню, снедь.

Он негу презирал сокровищ тленных,

Но Аристотель — кладезь мыслей ценных —

Не мог прибавить денег ни гроша…

Конечно, в наше время все изменилось. После открытия науки стало необходимо отделить ее от того, что мы сейчас называем философией. Существуют очень интересные работы по философии науки, но они не сильно влияют на научные исследования.

Попытки научной революции в XIV в. были во многом бунтом против аристотелизма, о котором подробно рассказывается в главе 10. В последние годы те, кто изучает труды Аристотеля, часто принимаются опровергать тех, кто считает его идеи устаревшими, устраивая своего рода «контрреволюцию». Знаменитый историк Томас Кун так описывал, как он перешел от пренебрежения по отношению к Аристотелю к восхищению им:

Я слышал, как Кун говорил это, когда мы оба получали почетные степени университета Падуи, и попросил разъяснить их. Он ответил: «После моего первого прочтения (работ Аристотеля по физике) изменилась не моя оценка его достижений, но мое понимание их». Я не понимал этого: для меня «совсем неплохой физик» звучит именно как оценка.

Я на это не купился. В науке (я здесь не говорю о философии) важно не решение каких-то популярных научных проблем-однодневок, а понимание мира. В рамках этой работы ученый находит, какие объяснения возможны и решение каких задач может привести к этим объяснениям. Прогресс науки во многом зависит от поиска вопросов, которые нуждаются в ответах.

Конечно, ученый должен попытаться понять исторический контекст научных открытий. Исходя из этого, задача историка зависит от его планов. Если его целью является только воссоздать прошлое, понять «как все было на самом деле», тогда ему, возможно, и не понадобится оценивать достижения ученых прошлого по современным стандартам. Но таких суждений не избежать, если кто-то хочет проследить развитие научного прогресса от прошлого к настоящему.

Этот прогресс — совершенно объективное явление, а не просто новые веяния в моде. Можно ли сомневаться в том, что Ньютон знал о движении больше, чем Аристотель, или что мы знаем больше, чем Ньютон? Вопросы о том, какие виды движения являются естественными или какова цель того или иного физического явления, никогда не имели смысла.

Я согласен с Линдбергом, что несправедливо считать Аристотеля глупцом. Я оцениваю прошлое по стандартам современности только с целью подвести к пониманию того, как трудно было даже для такого умного человека, как Аристотель, научиться познавать природу. Ничего из того, что стало обычной практикой в современной науке, не является очевидным для человека, который никогда не видел, как это делается.

4. Эллинистическая физика и техника

После смерти Александра Македонского его империя развалилась на несколько частей. С точки зрения истории науки наибольший интерес из образовавшихся в тот момент государств представляет Египет. Там правила династия царей греческого происхождения, которую основал Птолемей I, один из главных военачальников армии Александра. Закончилась династия на Птолемее XV, сыне Клеопатры и (возможно) Юлия Цезаря. Последний из царствовавших Птолемеев был убит вскоре после поражения флота Антония и Клеопатры у мыса Акциум в 31 г. до н. э., после чего Египет был поглощен Римской империей.

Особенно важным центром науки эллинизма был город Александрия, столица династии Птолемеев, основанная самим Александром недалеко от устья Нила. Александрия стала крупнейшим городом в греческом мире, и даже потом, в Римской империи, уступая размером и роскошью лишь самому Риму.

Около 300 г. до н. э. Птолемей I основал Александрийский Мусейон — им стала часть царского дворца. Вначале Музей, названный так, потому что был посвящен девяти музам, был местом, где изучали литературу и языки. Но после восшествия на престол Птолемея II в 285 г. до н. э. он превратился также и в центр по изучению наук. Над литературой знатоки продолжали работать и в Музее, и в Александрийской библиотеке, но теперь в Музее муза астрономии Урания засияла ярче своих сестер, отвечающих за различные искусства. Музей и наука Древней Греции пережили падение династии Птолемеев, и, как мы увидим, некоторые наиболее значительные достижения в науке совершались в греческой половине Римской империи — в основном в Александрии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *