Что обеспечивает синтез белка
Что обеспечивает синтез белка
Белки, образуемые из полипептидов, — основные структурные компоненты тела человека, они катализируют большинство процессов метаболизма. Полипептидом называют цепь, состоящую из аминокислот, последовательность которых зависит от последовательности оснований в иРНК в соответствии с «генетическим кодом».
Каждая аминокислота представлена в иРНК одной или несколькими группа ми, называемыми триплетами кодонов, а их интерпретация в качестве полипептида носит имя трансляции. Трансляция иРНК происходит в рибосомах цитоплазмы в направлении от 5′- к З’-концу. Образуемые в результате полипептиды затем превращаются в белки.
Функциональные свойства белков обусловлены в основном их активными центрами, формирующимися при образовании третичной и четвертичной структур.
Генетический код для синтеза белка
Для трансляции необходимы молекулы тРНК, которые кодируют аминокислоты, соответствующие последовательности антикодона. Большинство аминокислот кодированы несколькими кодонами, исключение составляют триптофан и метионин (кодированы одним кодоном). Три из 64 возможных триплетных комбинаций А, Ц, Г и У в иРНК кодируют СТОП-сигналы: УГА, УАГ и УАА.
АУГ кодирует метионин и служит СТАРТ-сигналом, а также одновременно определяет амино-(N-)терминальный конец полипептида и формирует одну из трёх возможных рамок считывания. Генетический код митохондриальной ДНК немного отличается.
Трансляция при синтезе белка
Инициация. Малая субъединица рибосомы, содержащая несколько факторов инициации и кодирующая метионин метионил-тРНК, связывается с 5′-кэпом иРНК, а затем начинает скольжение вдоль молекулы иРНК и, достигнув первой АУГ-последовательности, сцепляется с ней. При этом происходит высвобождение факторов инициации, а большая субъединица рибосомы прикрепляется к малой, после чего запускается процесс трансляции.
Большая субъединица рибосомы имеет в своём составе два специализированных участка, известных как А-сайт (аминоацил-тРНК-связывающий участок) и Р-сайт (пептидил-тРНК-связывающий участок). В конце инициации к Р-сайту прикреплена заряженная мет-тРНК, антикодон которой сцеплен с АУГ-кодоном, в то время как А-сайт свободен.
Элонгация. В соответствии с расположенным рядом кодоном иРНК к А-сайту при помощи растворимого фактора элонгации 1 (EF1) прикрепляется аминоацил-тРНК. Под воздействием пептидилтрансферазы возникает пептидная связь между аминогруппой (-NH2) аминокислоты на А-сайте и карбоксильной группой (-СООН) на Р-сайте, при этом первая тРНК отделяется.
Фермент транслоказа обеспечивает отделение свободной тРНК, движение рибосомы вдоль молекулы иРНК, а также перенос растущей пептидной цепочки от А-сайта к Р-сайту. Для осуществления данного процесса необходим фактор EF2.
Митохондриальные иРНК транслируются при помощи митохондриоспецифических тРНК.
Терминация. Элонгация продолжается до тех пор, пока на пути рибосомы не встретится один из терминирующих (СТОП) кодонов, которые распознают благодаря мультивалентным факторам освобождения (терминации, RF). При этом специфичность пептидилтрансферазы изменяется таким образом, что к | белку прикрепляется молекула воды. Затем рибосома отделяется и распадается на составляющие её субъединицы, освобождая готовый полипептид.
Для синтеза полипептида, длина которого составляет примерно 400 аминокислот, в среднем необходимо до 20 с.
Как только одна рибосома освобождает кэп иРНК, к нему присоединяется следующая, формируя полирибосому или полисому. Время жизни иРНК составляет несколько часов.
Строение белка
Аминокислотная последовательность полипептида обусловливает его первичную структуру.
Вторичная структура белка представляет собой трёхмерное расположение частей полипептида: а-спираль, коллагеновая про-а-спираль или бета-складочная конформация.
Третичная структура белка образуется при самоукладке всех вторичных структур полипептида.
Четвертичная структура белка — окончательная конформация мультимерного белка, такого, как, например, гемоглобин, который состоит из двух а-глобулиновых и двух бета-глобулиновых мономеров, а также молекулы гема и атома двухвалентного железа. Коллагеновые волокна состоят из трёхспиральных нитей, которые образованы тремя про-а-спиралями.
Чаще всего структуру белка поддерживают дисульфидные мосты, которые возникают между серосодержащими остатками цистеина расположенных рядом цепей, в то время как ферментативные свойства зависят прежде всего от распределения заряженных групп.
Посттрансляционные изменения белка
К посттрансляционным изменениям относят удаление N-терминального метионина и дробление. Объединение происходит между одинаковыми и разными полипептидами, а также между простетическими группами, к которым относят гем.
Полипептиды, предназначенные для внеклеточной (экстрацеллюлярной) секреции, вначале подвергаются гликозилированию в эндоплазматическом ретикулуме и аппарате Гольджи. Для их отбора имеет значение сигнальный пептид, расположенный около N-конца, который связывается с сигналраспознающей частицей, состоящей из цитоплазматической 7SL-PHK и шести специфических белков.
При помощи сигнального пептида происходит связывание с мембранным рецептором эндоплазматического ретикулума. Сразу после синтеза полипептид переносится через мембрану; как только появляется его С-конец (карбоксильная часть), сигнальный пептид отделяется. Затем полипептиды в составе везикул, которые отпочковываются от эндоплазматического ретикулума, попадают к аппарату Гольджи.
Гликозилированию обычно подвержен N-конец пептида. При этом происходит присоединение олигосахарида к NH2-rpynne боковой цепи аспарагина (например, при производстве антител и лизоцима). Иногда олигосахарид присоединяется к ОН-группе боковой цепи серина, треонина или гидроксилизина (например, секретируемые антигены групп крови системы АВО).
Среди других модификаций различают гидроксилирование лизина и пролина, играющее важную роль в образовании про-а-спиралей коллагена, сульфатацию тирозина, служащую сигналом к компартментализации (пространственному разделению), а также липидизацию остатков цистеина и глицина, необходимую для их прикрепления к фосфолипидной мембране.
Ацетилирование лизина в гистоне Н4 влияет на его связывание с ДНК. Протеинкиназы фосфорилируют остатки серина и тирозина и могут регулировать ферментативную способность энзимов, как в случае с каскадной сигнальной трансдукцией протоонкогенов.
Медицинское значение понимания синтеза белка
В основе механизма возникновения болезни клеточных включений лежит недостаточность гликозилирования лизоцима. Рицин, входящий в состав бобов клещевины обыкновенной (Ricinus communis), блокирует EF2, а дифтерийный токсин — транслоказу.
Мишенью для большого количества антибиотиков служат процессы трансляции, характерные для прокариот. Например, эритромицин разрушает транслоказу, хлорамфеникол взаимодействует с пептидилтрансферазой, тетрациклин препятствует связыванию аминоацил-тРНК, пуромицин по своей структуре сходен с аминоацил-тРНК, а стрептомицин связывается с малой субъединицей бактериальных рибосом. При этом митохондрии человека имеют эволюционное родство с бактериями, поэтому некоторые антибиотики оказывают влияние и на митохондриальные функции.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Общая информация о биосинтезе белка: значение, код ДНК, процесс считывания и передачи информации
Общая информация о биосинтезе белка
Значение биосинтеза белка в клетке
Процесс биосинтез белка — наиболее значимая реакция пластического обмена. Способность синтезировать белок есть у всех клеток живых организмов: сложных и простых, грибов, растений и животных. Клетка содержит несколько тысяч различных белков. При этом, для каждого вида клеток характерны специфические белки.
Способность к синтезу собственных уникальных белков является наследственной и сохраняется на протяжении всей жизни организма. Биосинтез белков происходит наиболее интенсивно, когда клетки активно растут и развиваются.
Что такое биосинтез белка?
Процессом синтеза белка называется — процесс, состоящий из множества стадий, на которых происходит синтез белковой макромолекулы и последующее созревание (формирование) белка, и происходящий в живых организмах.
Фотосинтез связан с большими энергетическими затратами. Благодаря ему происходит обеспечение клеток так называемым строительным материалом, биологическими катализаторами (ферментами), регуляторами и средствами защиты организма.
Каково значение белков в клетке? Значение белков неоценимо. Для этого рассмотрим, что такое биосинтез подробнее.
Код ДНК
Определение места синтеза белковых макромолекул — наивысшее достижение молекулярной биологии. ДНК играет ключевую роль в определении структуры синтезируемого белка. Молекула ДНК содержит информацию о первичной структуре молекулы белка.
Геном — часть молекулы ДНК, содержащая информацию о первичной структуре одного белка.
Генетический код — единая для всех живых организмов система сохранения полной наследственной информации.
Если говорить о структуре, то она представляет собой определенную последовательность нуклеотидов в молекулах нуклеиновых кислот. Эта последовательность задает последовательность введения аминокислотных остатков в полипептидную цепь в ходе ее синтеза.
Согласно исследованиям ученых, каждая аминокислота в полипептидной цепи кодируется последовательностью, которая состоит из 3 нуклеотидов (это триплет нуклеотидов).
Всего выделяют 20 основных аминокислот. Каждая аминокислота имеет способность кодироваться несколькими разными триплетами.
Матрица — молекула ДНК, которая содержит информацию.
Процесс считывания и передачи информации
Расположение молекул ДНК — ядро клетки. Также они могут находиться в пластидах и митохондриях. В определенный момент происходит деспирализация молекулы ДНК и расхождение ее параллельных цепей.
В соответствии с принципом комплементарности, на этих цепях происходит синтез небольших молекул и-РНК (информационной РНК). Это транскрипция или считывание.
Молекула и-РНК, синтезированная таким образом, направляется к месту синтеза белка.
Трансляция — процесс переноса и-РНК из ядра к месту синтеза белка.
Механизм биосинтеза белка
Синтез белковых молекул осуществляется на мембранах ЭПС (эндоплазматическая сеть). Рибосома является органеллой, которая отвечает за синтез белка. Рибосомы, нанизываясь на молекулу и-РНК, формируют полисому. Молекула т-РНК (транспортная РНК), которая несет кислотный остаток, подходит к каждой рибосоме.
т-РНК отличается формой трилистика: верхушка — это триплет нуклеотидов или антикодон. Он формирует комплементарную пару с соответствующим триплетом и-РНК (кодоном).
Рибосома в процессе синтеза белка надвигается на нитевидную молекулу и-РНК, которая оказывается двумя ее субъединицами. Присоединение т-РНК к и-РНК происходит в определенном месте — в месте совпадения кодона и антикодона. Присоединение аминокислотных остатков к синтезируемой цепи происходит при помощи полипептидных связей. Происходит отсоединение т-РНК, после чего она покидает рибосому.
Это продолжается до завершения синтеза нити аминокислотных остатков (белковой молекулы).
Заключительный этап — приобретение синтезированным белком пространственной структуры. Благодаря соответствующим ферментам от него отщепляются лишние аминокислотные остатки, происходит введение небелковых фосфатных, карбоксильных и других групп, присоединение углеводов, липидов и т. д. Белок «созревает». Как только все эти процессы заканчиваются, молекула белка становится полностью функционально активной.
Как клетка синтезирует белок
(Статья для аудитории детей 12 лет)
Роль основных «рабочих лошадок» в клетках и, следовательно, во всем нашем организме исполняют разнообразные белки. Мы – многоклеточные существа (у шестиклассника, например, 30 триллионов клеток!), следовательно, белков нам нужно много. И это должны быть не те же самые белки, которых в целом литре газировки всего 1 грамм, а в одной котлете – 25. Это наши собственные белки, только нам свойственные, по крупинкам собранные из того, что мы съели, переварили и усвоили. Итак, если белок – главный работник, то его надо много, и он должен быть качественным, именно тем, какой положен (запрограммирован, зашифрован!). Значит клетка, словно завод по производству белков, должна иметь, во-первых, надежные станки по производству этих белков, а во-вторых, надежную программу-инструкцию для производства каждого конкретного белка.
Мы решаем контрольную или спим на уроке, мерзнем на остановке или едим дома горячую котлету – и организм постоянно приспосабливает работу наших клеток, а стало быть белков, под набор тех условий, в которые мы его, организм, поместили. Поэтому так не бывает, чтобы один белок работал вечно. Поработал – клетка его расщепила и чаще всего пересобрала во что-то другое, в другой белок. И эта белковая карусель крутится все время, пока живет организм. А мы еще помним, что белков очень много – и по общему количеству молекул, и по их разновидностям. И для каждого вида белка при каждом станке – своя инструкция по сборке. Имеет смысл микроскопической клетке хранить килограмм инструкций у каждого станка на все случаи жизни? Разумеется, нет.
В работе у занятой делом клетки должны быть только самые нужные на данный момент инструкции, а остальные пусть хранятся в сборниках инструкций в библиотеке. Нужна инструкция – библиотекарь нашел нужную страницу в сборнике – помощник откопировал ее – персонал, обслуживающий станок, по инструкции собрал нужное количество белка – белок пошел работать, пока не настанет срок разобрать его на запчасти, да и отслужившая инструкция тоже разбирается. В клетке никакое добро не пропадает. А кто все эти сотрудники клетки? Разумеется, это тоже белки, точнее – особый их класс – ферменты. Белки, управляющие процессами в клетках и многократно ускоряющие их.
Итак, давайте все-таки ближе к биологии. Библиотека – это набор наших хромосом в ядре каждой клетки. Основа каждой хромосомы – длинная молекула под названием ДНК* (шестиклассник про ДНК уж наверняка хоть раз, да слышал). Сборник инструкций – одна нить ДНК. Но чтобы заработало производство конкретного белка, весь сборник не нужен, нужна только инструкция-информация о составе этого белка. Эта информация – малая часть цепочки ДНК под названием «ген». (Тоже наверняка знакомое слово. Если у вас абсолютный музыкальный слух – как у мамы, то она всем радостно хвастает, что это у вас ее гены). Текст гена в каком-то смысле гораздо проще, чем любой текст на любом языке. Он написан только четырьмя буквами! Откуда же тогда такое многообразие кодируемых генами белков и признаков? В «тексте» гена чаще всего сотни или тысячи «букв», и комбинация букв может быть любой. (Кстати, «буквы» – это структурные части молекулы ДНК, ее блоки под названием нуклеотиды, запоминайте. Их четыре типа: А, Т, Г и Ц**).
Копирование инструкции по сборке белка, т. е. гена, – это процесс транскрипции (дословно – переписывание). Он происходит в ядре клетки. Образуется копия гена – молекула-матрица, или матричная РНК*. Но она, как ни странно, не очень-то похожа на исходный ген ДНК. Более того, она является в некотором смысле «копией наоборот», как негативное фотоизображение, где белое становится черным, а черное – белым. К слову, РНК тоже состоит из нуклеотидов, и их тоже четыре типа – те же А, Г, Ц, но есть замена: вместо Т – У**. Как получается «негативная» копия, да еще и с заменой буквы? В клетке работает особое правило – комплементарности. Разбираемся.
Комплимент/комплемент – дословно – дополнение! Вам сделали комплимент? Это такое приятное дополнение к вашей неотразимости. Комплимент от шефа – вкусное бесплатное дополнение к вашему заказу в ресторане. Комплементарность в биологии – взаимная дополняемость биологических молекул или их частей. Согласно правилу комплементарности фермент-копировальщик, собирающий РНК, напротив «буквы»-нуклеотида А в образце, молекуле ДНК, обязан поставить «букву» У в РНК, напротив Т – А, напротив Г – Ц, напротив Ц – Г. (Проще всего запомнить Г–Ц и наоборот, не так ли?). Например, в ДНК было ГТАЦ, а в РНК станет ЦАУГ. И так далее – десять тысяч раз подряд и без ошибок! А главное – с умопомрачительной скоростью, которую обеспечивают быстрые и точные работники-ферменты.
Итак, непохожая, перешифрованная, но все-таки копия (!) фрагмента ДНК – матричная РНК готова, ее можно «выносить» за пределы «библиотеки». Именно она послужит той матрицей-инструкцией, по которой персонал по обслуживанию «станка» по производству белка осуществит его многократный синтез. Синтез белка, к сведению, идет уже не в ядре, а в более просторной цитоплазме клетки. Белка, мы помним, надо много, а в ядре – тесно, да и не надо его лишний раз беспокоить такой суетой: хромосомы должны храниться в тишине и порядке. Всё как в настоящей библиотеке.
Матричная РНК выходит на работу. По записанной в ней инструкции клеточный органоид (маленький орган) рибосома будет синтезировать белок. Именно рибосома является тем самым «станком» по производству белка. Но белки состоят не из нуклеотидов. Белки – тоже длинные молекулы, состоящие из других блоков – аминокислот. Их 20 разновидностей. Т. е. «язык» белков – это целых 20 букв! Как текст-комбинацию из 4 букв перевести в текст-комбинацию из 20 букв? Просто. Каждая аминокислота белка зашифрована последовательностью из трех нуклеотидов матричной РНК, каждой из комбинаций трех нуклеотидов РНК соответствует одна аминокислота (за исключением трех случаев – последовательностей УАГ, УГА и УАА). Таких комбинаций получается 61, а вместе с тремя исключениями – 64. Это число всех возможных комбинаций трех нуклеотидов четырех разновидностей. Хотите – проверьте перебором.
Чтобы было понятнее, поясним на примере. Возьмем последовательность нуклеотидов ГЦУ на матрице РНК. Ей, к сведению, соответствует аминокислота под названием аланин. И – о радость! – никто не заставит учить наизусть, какая аминокислота какой последовательности нуклеотидов в РНК соответствует – на это есть специальная таблица генетического кода. А в ней, кстати, есть повторы нуклеотидных последовательностей. Мы помним, аминокислот 20, а кодирующих комбинаций из трех нуклеотидов – 61, поэтому повторы неизбежны.
Рибосома-«станок» нанизывается на свою инструкцию, матричную РНК, как бусина на нитку. (А чтобы не терять время, обычно сразу много «станков»-рибосом по очереди нанизывается на инструкцию-матрицу). И начинается настоящий балет с участием обслуживающих его ферментов и еще одного вида РНК – транспортных РНК. Именно они помогают расшифровать код матричной РНК (они знают таблицу генетического кода наизусть!) и собрать аминокислоты в единую белковую цепочку.
Транспортные молекулы тоже состоят из нуклеотидов, все те же «положенные» для РНК знакомые А, У, Г и Ц. Но только в отличие от матричной РНК, транспортная гораздо более легкая и компактная, специально свернутая для мобильности наподобие листа клевера. И на верхушке этого «листа» находится ключевая последовательность из трех нуклеотидов, комплементарных трем кодирующим «буквам» матричной РНК. Так, например, уже знакомую аминокислоту аланин принесет транспортная РНК с «ключом» ЦГА на верхушке, встанет рядом с ГЦУ в матричной РНК – ага, подошло! Таких транспортных РНК (тРНК для краткости) – 61 вид.
Итак, создаем белок из аминокислот по нуклеотидной инструкции матричной РНК на «станке»-рибосоме. В активном центре рибосомы как на парковке встают рядом две комплементарно подходящие к матрице транспортные РНК со своими «ключами» на макушке – тройками нуклеотидов, и «прицепами» на хвосте – соответствующими аминокислотами. Предположим, это только начало синтеза: у каждой транспортной молекулы по одному прицепу. Но особый фермент-сшивальщик, который всегда рядом, соединяет между собой оказавшиеся рядом «прицепы»-аминокислоты. А со стороны выглядит это так, словно одна тРНК, к примеру, правая на «парковке», говорит левой «подержи мой прицеп, а я сейчас…» – и быстро-быстро улепетывает. И у доброй левой тРНК оказывается уже двойной прицеп – из двух аминокислот: ближайший к ней – свой, а дальний – чужой.
И тут рибосома сдвигается на три нуклеотида влево. Не удивляйтесь, «гаражи»-рибосомы сами тоже вполне мобильны и, как мы помним, норовят по очереди нанизаться на нитку матричной РНК. В итоге бывшая левая тРНК со своим двойным прицепом становится правой. Слева, соответственно, освобождается новое парковочное место». Приходит новая тРНК, паркуется слева. И тут уже уставшая держать двойной «хвост» из аминокислот поумневшая правая тРНК говорит левой «подержи мой прицеп, а я сейчас…» – и быстро-быстро… Ну вы поняли. Так образуется цепочка-хвост из трех, потом четырех… до многих тысяч аминокислот. Процесс называется трансляция (дословно – перенос, перемещение, передача).
Синтез белковой цепочки обрывается, когда в активном центре рибосомы оказывается одна из трех последовательностей нуклеотидов матричной РНК, у которых нет в принципе соответствующих аминокислот. Это те самые исключения УАГ, УГА или УАА. На этих последовательностях нарастание белковой нитки прекращается, поскольку не бывает тРНК с «ключами» АУЦ, АЦУ или АУУ на верхушке, некому везти «прицепы»-аминокислоты к месту сборки.
Белковая цепочка сворачивается в компактную структуру и отправляется на работу. Если на сегодня всё, и белка такого типа клетке больше не нужно, она с помощью специальных ферментов разбирает инструкцию по его сборке, т. е. матричную РНК, на нуклеотиды, чтобы потом повторно их использовать. А если и сам белок уже свое отработал – то и его разбирает. На аминокислоты, конечно же. И карусель транскрипции-трансляции работает дальше, обслуживая новые потребности клетки. Шестиклассник написал контрольную – пора есть котлету.