Что обеспечивает способность системы поддерживать динамическое постоянство внутренней среды

ГДЗ биология 8 класс Пасечник, Суматохин, Калинова Просвещение 2019-2020 Задание: § 14 Состав крови Постоянство внутренней среды

Стр. 62. Вспомните

№ 1. Каков состав крови у позвоночных животных?

У позвоночных животных кровь имеет красный цвет благодаря содержанию в ней эритроцитов гемоглобина, который переносит кислород. Также в ее состав входят лейкоциты, плазма, тромбоциты.

№ 2. Как осуществляется питание у амёбы?

Питается амеба путем фагоцитоза, в процессе которого поглощает одноклеточные водоросли, бактерии и мелких простейших. Для захвата пищи на поверхности ее тела образованы псевдоподии.

Когда между плазмалеммой (эластичная молекулярная структура, которая состоит из липидов и белков) и пищевой частицей возникает контакт, в этом месте образуется своеобразная пищевая чашечка. Стенки ее смыкаются, а в образовавшуюся полость начинают поступать при помощи лизосом пищеварительные ферменты. Так происходит процесс формирования пищевой вакуоли, которая в дальнейшем переходит в центральную часть клетки и подхватывается токами цитоплазмы.

С непереваренными остатками пищи вакуоль подходит к поверхности клетки, где сливается с мембраной и выбрасывает свое содержимое наружу.

Стр. 65. Вопросы после параграфа

№ 1. Каков состав крови человека?

Кровь человека на 60% состоит из плазмы (желтовато-белая жидкость, включающая воду, соли, витамины, белки и микроэлементы). На 40% кровь состоит из клеток – форменных элементов, среди которых: эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца) и тромбоциты (кровяные пластинки).

№ 2. Что такое плазма крови и каковы её функции?

Плазма крови – это ее жидкая часть, в которой взвешены форменные элементы. Она представляет собой однородную желтовато-белую жидкость, которая на 90% состоит из воды с растворенными в ней питательными веществами: жиры, белки, гормоны, углеводы, соли и витамины, необходимые для построения тканей в организме и поддержания из жизнедеятельности. Также в состав плазмы входят органические вещества, которые отвечают за регулирование обмена веществ.

Благодаря плазме к клеткам тканей и органов организма доставляются питательные вещества, а продукты обмена выводятся во внешнюю среду. Плазма в сочетании со свертывающимися веществами участвует в процессе заживления поврежденных сосудов и остановке кровотечений.

№ 3. Что вам известно о форменных элементах крови?

Форменными элементами крови являются лейкоциты, эритроциты и тромбоциты, которые образуются в красном костном мозге. Все они являются потомками фибробластов – единой кроветворной клетки, однако выполняют разные специфические функции.

В крови человека различают несколько типов лейкоцитов, в зависимости от их размеров, формы ядра, отсутствия или наличия зернистости в протоплазме: нейтрофилы (фагоцитируют живые и мертвые микроорганизмы, переваривая их при помощи ферментов; способны к амебному движению), эозинофилы (обезвреживают и разрушают токсины белкового происхождения, комплексы антиген и чужеродные белки; продуцируют фермент гистаминазу; разрушают и поглощают гистамин), базофилы (участвуют в аллергических реакциях, выделяя гепарин и гистамин после встречи с аллергеном, которые препятствуют свертываемости крови, расширяют капилляры).

Также среди лейкоцитов выделяют незернистые типы – моноциты и лимфоциты. Моноциты обладают бактерицидной и фагоцитарной активностью в кислой среде, принимают участие в формировании иммунного ответа, а потому их число может возрастать при воспалительных процессах в организме. Лимфоциты отвечают за реакции гуморального и клеточного иммунитета. Они принимают участие в формировании специфического иммунитета и осуществляют своеобразный иммунный надзор в организме. Также они способны проникать в ткани и обратно возвращаться в кровь, сохраняя при этом генетическое постоянство внутренней среды.

Эритроциты – это безъядерные красные кровяные клетки, которые имеют двояковогнутую дисковидную форму, а в поперечном разрезе напоминают гантели и могут транспортировать большое количество различных веществ, проникая через узкие капилляры. Основной составляющей их является гемоглобин, который и придает крови красный цвет.

Главная функция эритроцитов – перенос кислорода и углекислого газа. В крови человека содержится приблизительно 25 трлн. красных кровяных телец. В норме их содержание подвержено незначительным колебаниям. Например, при заболеваниях их количество уменьшается.

Тромбоциты – это мелкие кровяные пластинки неправильной формы, которые не имеют ядер, но обладают хорошей подвижностью и фагоцитарной активностью. После образования в красном мозге они попадают в кровоток и задействованы в иммунных реакциях организма, однако жизнеспособны всего несколько суток. Разрушаясь в селезенке, они выделяют компоненты системы свертывания крови, а потому принимают участие в свертывании крови, формировании сгустка и лизисе образующегося при этом фибрина. В то же время тромбоциты обладают способностью к агрегации (склеиваются друг с другом) и адгезии (прилипание).

№ 4. Почему организму важно поддерживать относительное постоянство внутренней среды?

Внутренняя среда – это совокупность всех жидкостей организма (кровь, лимфа, тканевая жидкость), которые омывают клетки и структуры тканей, а также принимают участие в процессе обмена веществ. Они осуществляют связь между всеми органами и клетками организма, и самого организма с внешней, окружающей его средой.

В случае любых изменений во внешней среде организм старается сохранить постоянство внутренней среды, например, температуру, химический состав или осмотическое давление, что является необходимым для нормального функционирования клеток. Многочисленные рецепторные структуры и клеточные элементы, воспринимая отклонение в составе жидкостей, активируют биохимические, физиологические и биофизическое регуляторные функции, чтобы устранить возникшие отклонения. Регуляторные реакции делают все, чтобы изменить состав внутренней среды и привести ее в соответствующие условия.

Еще великий французский физиолог К. Бернар говорил, что постоянство внутренней среды является необходимым условием свободной и комфортной жизни высших животных. Например, концентрация хлорида натрия в плазме крови должна быть на постоянном уровне 0,9%. При увеличении его состава будет происходить процесс истощения клеток крови, они начнут терять воду. При понижении произойдет поступление чрезмерного количества воды из клеток крови. Это ведет к нарушению работы клеток и их гибели, что не может положительно сказываться на состоянии всего организма и часто становится причиной его гибели.

Стр. 65. Подумайте

Какие механизмы лежат в основе поддержания организмом постоянства внутренней среды?

Попадая во внутреннюю среду из внешней, чужеродные молекулы и микроорганизмы нарушают ее постоянство и клеточные структуры, угрожая тем самым генетической индивидуальности организма. В результате такого попадания в организме из-за мутации соматических клеток постоянно образуются внутренние чужеродные тела. Это позволяет внутренней среде обеспечить реализацию механизмов защиты и от чужеродных веществ и клеток эндогенного происхождения, и от микроорганизмов и экзогенных чужеродных веществ.

Механизмы защиты и поддержания постоянства внутренней среды организма делятся на две группы: специфические и неспецифические. Специфические механизмы направлены на уничтожение конкретных чужеродных агентов, обеспечивая при этом приоритет противодействия именно чужеродному началу. Они осуществляются иммунной системой за счет гуморального и клеточного иммунитета организма. Неспецифические механизмы не имеют приоритетов в противодействии чужеродным факторам. Это эпителий слизистых оболочек и кожа, чьи барьерные функции за счет движения слизи, сокращения эпителия и выделения ими химических веществ позволяют обеспечить преграду для прохождения чужеродных микроорганизмов внутрь организма.

Обеспечивают механизмы неспецифической защиты гуморальные факторы, которые представлены белковыми веществами плазмы крови, которые выполняют лизис чужеродных клеток. К гуморальным факторам относятся и бетализины, плакины, лейкины, обладающие бактериологическим действием. Неспецифическая защита представлена также клеточным механизмом воспалительных реакций тканей, процессом поглощения и разрушения макромолекул.

Источник

Гомеостаз

Гомеостаз популяции — способность популяции поддерживать определённую численность своих особей длительное время.

Американский физиолог Уолтер Кеннон (Walter B. Cannon) в 1932 году в своей книге «The Wisdom of the Body» («Мудрость тела») предложил этот термин как название для «координированных физиологических процессов, которые поддерживают большинство устойчивых состояний организма». В дальнейшем этот термин распространился на способность динамически сохранять постоянство своего внутреннего состояния любой открытой системы. Однако представление о постоянстве внутренней среды было сформулировано ещё в 1878 году французским учёным Клодом Бернаром.

Связанные понятия

Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Упоминания в литературе

Связанные понятия (продолжение)

Не путать с реннином, сычужным ферментом.Ренин (от лат. ren — почка), ангиотензиногеназа — компонент ренин-ангиотензиновой системы, регулирующей кровяное давление. Ренин (КФ 3.4.23.15) — протеолитический фермент позвоночных животных и человека.

Синаптическая передача (также называемая нейропередача) — электрические движения в синапсах, вызванные распространением нервных импульсов. Каждая нервная клетка получает нейромедиатор из пресинаптического нейрона или из терминального окончания или из постсинаптического нейрона или дендрида вторичного нейрона и посылает его обратно нескольким нейронам, которые повторяют данный процесс, таким образом, распространяя волну импульсов до тех пор, пока импульс не достигнет определенного органа или специфической.

Источник

ГОМЕОСТАЗ

ГОМЕОСТАЗ, гомеостазис (homeostasis; греч, homoios подобный, тот же самый + stasis состояние, неподвижность),— относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т. д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими.

Как известно, живая клетка представляет подвижную, саморегулирующуюся систему. Ее внутренняя организация поддерживается активными процессами, направленными на ограничение, предупреждение или устранение сдвигов, вызываемых различными воздействиями из окружающей и внутренней среды. Способность возвращаться к исходному состоянию после отклонения от нек-рого среднего уровня, вызванного тем или иным «возмущающим» фактором, является основным свойством клетки. Многоклеточный организм представляет собой целостную организацию, клеточные элементы к-рой специализированы для выполнения различных функций. Взаимодействие внутри организма осуществляется сложными регулирующими, координирующими и коррелирующими механизмами с участием нервных, гуморальных, обменных и других факторов. Множество отдельных механизмов, регулирующих внутри- и межклеточные взаимоотношения, оказывает в ряде случаев взаимопротивоположные (антагонистические) воздействия, уравновешивающие друг друга. Это приводит к установлению в организме подвижного физиологического фона (физиологического баланса) и позволяет живой системе поддерживать относительное динамическое постоянство, несмотря на изменения в окружающей среде и сдвиги, возникающие в процессе жизнедеятельности организма.

Термин «гомеостаз» предложен в 1929 г. амер. физиологом У. Кенноном, который считал, что физиол, процессы, поддерживающие стабильность в организме, настолько сложны и многообразны, что их целесообразно объединить под общим названием Г. Однако еще в 1878 г. К. Бернар писал, что все жизненные процессы имеют только одну цель — поддержание постоянства условий жизни в нашей внутренней среде. Аналогичные высказывания встречаются в трудах многих исследователей 19 и первой половины 20 в. [Э. Пфлюгер, Ш. Рише, Фредерик (L. A. Fredericq), И. М. Сеченов, И. П. Павлов, К. М. Быков и др.]. Большое значение для изучения проблемы Г. сыграли работы Л. С. Штерн (о, сотр.), посвященные роли барьерных функций (см.), регулирующих состав и свойства микросреды органов и тканей.

Само представление о Гомеостазе не соответствует концепции устойчивого (неколеблющегося) равновесия в организме — принцип равновесия не приложим к сложным физиол, и биохим. процессам, протекающим в живых системах. Неправильно также противопоставление Г. ритмическим колебаниям во внутренней среде (см. Биологические ритмы). Г. в широком понимании охватывает вопросы циклического и фазового течения реакций, компенсации (см. Компенсаторные процессы), регулирования и саморегулирования физиол, функций (см. Саморегуляция физиологических функций), динамику взаимозависимости нервных, гуморальных и других компонентов регуляторного процесса. Границы Г. могут быть жесткими и пластичными, меняться в зависимости от индивидуальных возрастных, половых, социальных, проф. и иных условий.

Особое значение для жизнедеятельности организма имеет постоянство состава крови — жидкой основы организма (fluid matrix), по выражению У. Кеннона. Хорошо известна устойчивость ее активной реакции (pH), осмотического давления, соотношения электролитов (натрия, кальция, хлора, магния, фосфора), содержания глюкозы, числа форменных элементов и т. д. Так, напр., pH крови, как правило, не выходит за пределы 7,35—7,47. Даже резкие расстройства кислотно-щелочного обмена с патол, накоплением кислот в тканевой жидкости, напр, при диабетическом ацидозе, очень мало влияют на активную реакцию крови (см. Кислотно-щелочное равновесие). Несмотря на то, что осмотическое давление крови и тканевой жидкости подвергается непрерывным колебаниям вследствие постоянного поступления осмотически активных продуктов межуточного обмена, оно сохраняется на определенном уровне и изменяется только при некоторых выраженных патол, состояниях (см. Осмотическое давление). Сохранение постоянства осмотического давления имеет первостепенное значение для водного обмена и поддержания ионного равновесия в организме (см. Водно-солевой обмен). Наибольшим постоянством отличается концентрация ионов натрия во внутренней среде. Содержание других электролитов колеблется также в узких границах. Наличие большого количества осморецепторов (см.) в тканях и органах, в т. ч. в центральных нервных образованиях (гипоталамусе, гиппокампе), и координированной системы регуляторов водного обмена и ионного состава позволяет организму быстро устранять сдвиги в осмотическом давлении крови, происходящие, напр., при введении воды в организм.

Особо важное значение имеет постоянство внутренней среды для деятельности ц. н. с.: даже незначительные хим. и физ.-хим. сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях (см. Гематоэнцефалический барьер). Сложной гомеостатической системой, включающей различные нейрогуморальные, биохим., гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления (см.). При этом верхний предел уровня АД определяется функциональными возможностями барорецепторов сосудистой системы тела (см. Ангиоцепторы), а нижний предел — потребностями организма в кровоснабжении.

К наиболее совершенным гомеостатическим механизмам в организме высших животных и человека относятся процессы терморегуляции (см.); у гомойотермных животных колебания температуры во внутренних отделах тела при самых резких изменениях температуры в окружающей среде не превышают десятых долей градуса.

Различные исследователи по разному объясняют механизмы общебиол. характера, лежащие в основе Г. Так, У. Кеннон особое значение придавал в. н. с., Л. А. Орбели одним из ведущих факторов Г. считал адаптационно-трофическую функцию симпатической нервной системы. Организующая роль нервного аппарата (принцип нервизма) лежит в основе широко известных представлений о сущности принципов Г. (И. М. Сеченов, И. П. Павлов, А. Д. Сперанский и др.). Однако ни принцип доминанты (А. А. Ухтомский), ни теория барьерных функций (Л. С. Штерн), ни общий адаптационный синдром (Г. Селье), ни теория функциональных систем (П. К. Анохин), ни гипоталамическое регулирование Г. (Н. И. Гращенков) и многие другие теории не позволяют полностью решить проблему Г.

Перед исследователями и клиницистами на практике встают вопросы оценки приспособительных (адаптационных) или компенсаторных возможностей организма, их регулирования, усиления и мобилизации, прогнозирования ответных реакций организма на возмущающие воздействия. Некоторые состояния вегетативной неустойчивости, обусловленные недостаточностью, избытком или неадекватностью регуляторных механизмов, рассматриваются как «болезни гомеостаза». С известной условностью к ним могут быть отнесены функциональные нарушения нормальной деятельности организма, связанные с его старением, вынужденная перестройка биологических ритмов, некоторые явления вегетативной дистонии, гипер- и гипокомпенсаторная реактивность при стрессовых и экстремальных воздействиях (см. Стресс) и т. д.

Для оценки состояния гомеостатических механизмов в физиол, эксперименте и в клин, практике применяются разнообразные дозированные функциональные пробы (холодовая, тепловая, адреналиновая, инсулиновая, мезатоновая и др.) с определением в крови и моче соотношения биологически активных веществ (гормонов, медиаторов, метаболитов) и т. д.

Биофизические механизмы гомеостаза

С точки зрения хим. биофизики гомеостаз — это состояние, при к-ром все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиол, оптимуму. В соответствии с представлениями термодинамики (см.) организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биол, системе возможно установление стационарного течения физ.-хим. процессов, т. е. гомеостаза. Основная роль в установлении Г. принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками (см. Мембраны биологические).

С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования (см. Радикалы, Цепные реакции). К факторам, являющимся причиной нарушения Г., относятся также агенты, вызывающие радикалообразование,— ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т. д.

Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций (см. Антиокислители).

Возрастные особенности гомеостаза у детей

Постоянство внутренней среды организма и относительная устойчивость физ.-хим. показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста (см.) и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция Г. детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов Г. и их регуляции. Поэтому у детей значительно чаще, чем у взрослых встречаются тяжелые нарушения Г., нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций жел.-киш. тракта или дыхательной функции легких (см. Дыхание).

Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме (см. Водно-солевой обмен). Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки — главные исполнительные органы в системе волюморегуляции — не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля Г. у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона (см.), что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.

Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмомолярность внутренней среды колеблется в более широком диапазоне (+ 50 мосм/л), чем у взрослых ( + 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения Г., проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный гл. обр. с жел.-киш. заболеванием или болезнями почек. Менее изучена ионная регуляция Г., тесно связанная с деятельностью почек и характером питания.

Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых р-ров требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмомолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патол, состояниях могут резко возрастать. Поэтому при любых нарушениях Г. необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер- или гипоосмоса, гиперазотемии (Э. Керпель-Фрониуш, 1964).

Важным показателем, характеризующим Г. у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной к-ты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития «физиологического» ацидоза (см.). В связи с особенностями Г. у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.

Перестройка нейроэндокринной системы в пубертатном периоде также сопряжена с изменениями Г. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни Г. встречаются редко, чаще же речь идет

о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохим, исследовании крови. В клинике для характеристики Г. у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также pH крови, pO2 и pCO2.

Особенности гомеостаза в пожилом и старческом возрасте

Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Напр., постоянство уровня АД в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиол, функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиол, изменений Г. Сохранение относительного Г. при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, pH крови, осмотического давления, мембранного потенциала клеток и т. д.

Существенное значение в сохранении Г. в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции (см.), увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.

При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиол. функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биол, возраста.

В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения Г. увеличиваются. Такое уменьшение надежности механизмов Г. является одной из важнейших предпосылок развития патологических нарушений в старости.

Анохин П. К. Очерки по физиологии функциональных систем, М., 1975, библиогр.; Вельтищев Ю. Е., Самсыгина Г. А. и Ермакова И. А. К характеристике осморегулирующей функции почек у детей периода новорожденности, Педиатрия, № 5, с. 46, 1975; Гелльгорн Э. Регуляторные функции автономной нервной системы, пер. с англ., М., 1948, библиогр.; Гленсдорф П. и Пригожин И. Термодинамическая теория структуры» устойчивости и флуктуаций, пер. с англ., М., 1973, библиогр.; Гомеостаз, под ред. П. Д. Горизонтова, М., 1976; Дыхательная функция крови плода в акушерской клинике, под ред. Л. С. Персианинова и др., М., 1971; Кассиль Г. Н. Проблема гомеостаза в физиологии и клинике, Вестн. АМН СССР, № 7, с. 64, 1966, библиогр.; Розанова В. Д. Очерки по экспериментальной возрастной фармакологии, Л., 1968, библиогр.; Фролькис В. В. Регулирование, приспособление и старение, Л., 1970, библиогр.; Штерн Л. С. Непосредственная питательная среда органов и тканей, М., 1960; CannonW. В. Organization for physiological homeostasis, Physiol. Rev., v. 9, p. 399, 1929; Homeostatic regulators, ed. by G, E. W. Wolstenholme a. J. Knight, L., 1969; Langley L. L. Homeostasis, Stroudsburg, 1973.

Г. H. Кассиль; Ю. E. Вельтищев (пед.), Б. H. Тарусов (биофиз.), В. В. Фролькис (гер.).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *