Что обозначает единицу физической величины
ЕДИНИЦА ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
Смотреть что такое «ЕДИНИЦА ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ» в других словарях:
Единица физической величины — (единица величины) – величина, которой по определению присвоено числовое значение, равное 1. Этот термин применяется также для обозначения единицы, входящей сомножителем в значение физической величины. [СН 528 80] Рубрика термина: Экономика … Энциклопедия терминов, определений и пояснений строительных материалов
единица физической величины — fizikinio dydžio vienetas statusas T sritis fizika atitikmenys: angl. unit of physical quantity vok. Einheit der physikalischen Größe, f rus. единица физической величины, f pranc. unité de la grandeur physique, f … Fizikos terminų žodynas
Единица физической величины внесистемная — Внесистемная единица физической величины единица физической величины, не входящая в принятую систему единиц. Источник: РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ СТАНДАРТИЗАЦИИ. ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЯ. МЕТРОЛОГИЯ.… … Официальная терминология
Единица физической величины когерентная производная — Когерентная производная единица физической величины производная единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1. Источник: РЕКОМЕНДАЦИИ ПО МЕЖГОСУДАРСТВЕННОЙ… … Официальная терминология
кратная единица физической величины — кратная единица Единица физической величины, в целое число раз большая системной или внесистемной единицы. Пример. Единица длины 1 км = 103 м, т.е. кратная метру; единица частоты 1 МГц (мегагерц) = 106 Гц, кратная герцу; единица активности… … Справочник технического переводчика
дольная единица физической величины — дольная единица Единица физической величины, в целое число раз меньшая системной или внесистемной единицы. Пример. Единица длины 1 нм (нанометр) = 10 9 м и единица времени 1 мкс = 1×10 6 с являются дольными соответственно от метра и секунды … Справочник технического переводчика
внесистемная единица физической величины — внесистемная единица Единица физической величины, не входящая в принятую систему единиц. Примечание. Внесистемные единицы (по отношению к единицам СИ) разделяются на четыре группы: 1 допускаемые наравне с единицами СИ; 2 допускаемые к применению… … Справочник технического переводчика
когерентная производная единица физической величины — когерентная единица Производная единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1. [РМГ 29 99] Тематики метрология, основные понятия Синонимы когерентная единица… … Справочник технического переводчика
системная единица физической величины — системная единица Единица физической величины, входящая в принятую систему единиц. Примечание. Основные, производные, кратные и дольные единицы СИ являются системными. Например: 1 м; 1 м/с; 1 км; 1 нм. [РМГ 29 99] Тематики метрология, основные… … Справочник технического переводчика
Внесистемная единица физической величины — единица, не входящая ни в одну из систем единиц. Напр., единица длины парсек, единица времени сутки, единица давления миллиметр ртутного столба. Ср. Системная единица … Астрономический словарь
Физические величины.
Физической величиной называется физическое свойство материального объекта, процесса, физического явления, охарактеризованное количественно.
Значение физической величины выражается одним или несколькими числами, характеризующими эту физическую величину, с указанием единицы измерения.
Размером физической величины являются значения чисел, фигурирующих в значении физической величины.
Единицы измерения физических величин.
Единицей измерения физической величины является величина фиксированного размера, которой присвоено числовое значение, равное единице. Применяется для количественного выражения однородных с ней физических величин. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.
Широкое распространение получило всего лишь некоторое количество систем единиц. В большинстве случаев во многих странах пользуются метрической системой.
Основные единицы.
Измерить физическую величину – значит сравнить ее с другой такой же физической величиной, принятой за единицу.
Для каждой физической величины в системе единиц должна быть предусмотрена соответствующая единица измерения. Эталоном единицы измерения является ее физическая реализация.
Эталоном длины является метр – расстояние между двумя штрихами, нанесенными на стержне особой формы, изготовленном из сплава платины и иридия.
Эталоном времени служит продолжительность какого-либо правильно повторяющегося процесса, в качестве которого выбрано движение Земли вокруг Солнца: один оборот Земля совершает за год. Но за единицу времени принимают не год, а секунду.
За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за 1 с совершает перемещение в 1 м.
Отдельная единица измерения используется для площади, объема, длины и т. д. Каждая единица определяется при выборе того или иного эталона. Но система единиц значительно удобнее, если в ней в качестве основных выбрано всего несколько единиц, а остальные определяются через основные. Например, если единицей длины является метр, то единицей площади будет квадратный метр, объема – кубический метр, скорости – метр в секунду и т. д.
Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).
Единицы физических величин
Представлены все метрологические термины и определения понятия единицы физических величин
4.1. Единица измерения физической величины;
единица физической величины;
единица измерения;
единица величины;
единица
de Einheit (einer physikalischen Grosse) Masseinheit
en unit (of measurement)
fr unite (de mesure)
Физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин.
Примечание. На практике широко применяется понятие узаконенные единицы, которое раскрывается как «система единиц и (или) отдельные единицы, установленные для применения в стране в соответствии с законодательными актами».
4.2. Система единиц физических величин;
система единиц
de Einheitensystem
en system of units (of measurement)
fr systeme d’unites (de mesure)
Совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин. Пример. Международная система единиц (СИ), принятая в 1960 г. XI ГКМВ и уточненная на последующих ГКМВ.
4.3. Основная единица системы единиц физических величин;
de Basiseinheit
en base unit (of measurement)
fr unite (de mesure) de base Единица основной физической величины в данной системе единиц. Пример. Основные единицы Международной системы единиц (СИ): метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), моль (моль) и кандела (кд).
4.4. Дополнительная единица системы единиц физических величин;
en supplementary unit
fr unite supplementaire Примечание. Термин «дополнительная единица» был введен в 1960 г. Дополнительными единицами являлись «радиан» и «стерадиан». XIX ГКМВ это понятие упразднено.
4.5. Производная единица системы единиц физических величин;
4.6. Системная единица физической величины;
системная единица Единица физической величины, входящая в принятую систему единиц.
Примечание. Основные, производные, кратные и дольные единицы СИ являются системными. Например: 1 м; 1 м/с; 1 км; 1 нм.
4.7. Внесистемная единица физической величины;
4.8. Когерентная производная единица физической величины;
de koharente Einheit
en coherent unit (of measurement)
fr unite (de mesure) coherente
Производная единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1.
4.9. Когерентная система единиц физических величин;
когерентная система единиц
de koharentes Einheitensystem
en coherent system of units (of measurement)
fr systeme coherent d’unites (de mesure)
Система единиц физических величин, состоящая из основных единиц и когерентных производных единиц. Примечание. Кратные и дольные единицы от системных единиц не входят в когерентную систему.
4.10. Кратная единица физической величины;
de vielfaches einer Einheit
en multiple of a unit (of measurement)
fr multiple d’unite (de mesure)
Единица физической величины, в целое число раз большая системной или внесистемной единицы.
Пример. Единица длины 1 км = 10 3 м, т.е. кратная метру; единица частоты 1 МГц (мегагерц) = 10 6 Гц, кратная герцу; единица активности радионуклидов 1 МБк (мегабеккерель) = 10 6 Бк, кратная беккерелю.
4.11. Дольная единица физической величины;
4.12. Размер единицы физической величины;
размер единицы
Количественная определенность единицы физической величины, воспроизводимой или хранимой средством измерений.
Примечание. Размер единицы, хранимой подчиненными эталонами или рабочими средствами измерений, может быть установлен по отношению к национальному первичному эталону. При этом может быть несколько ступеней сравнения (через вторичные и рабочие эталоны).
Виды физических величин и их единицы измерения
Физические величины — что под этим понимается
Физические величины — это понятие в физике описывает характеристики тел или процессов, которые могут быть измерены на опыте с использованием измерительных методов и приборов.
Физическая величина — это одно из свойств материальных объектов (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но по количественной характеристике индивидуальное для каждого из них.
Значение физической величины выражается одним или несколькими числами, характеризующими необходимую физическую величину, у которой обязательно должна быть указана размерность.
Размер физической величины — это значения чисел, указанные в значении физической величины.
Описание основных физических величин в системе СИ, единицы их измерения, обозначения и формулы
Основными физическими величинами в Международной системе единиц (СИ) являются: длина, масса, время, сила электрического тока, термодинамическая температура, количество вещества, сила света.
Единицы измерения основных физических величин в системе СИ
Время в системе СИ измеряется в секундах (с).
Расчет величины секунды основан на фиксировании численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 °К, равной в точности 9 192 631 770 Гц.
Солнечные сутки разбираются на 24 часа, каждый час разбирается на 60 минут, а каждая минута состоит из 60 секунд. Таким образом, секунда — это 1 / ( 24 * 60 * 60 ) = 1 / 86400 от солнечных суток.
Единица длины по системе СИ — это метр (м). Величина метра определяется фиксацией численного значения скорости света в вакууме, равной 299 792 458 м/с.
Единицей измерения термодинамической температуры является Кельвин (K). В 1967-2019 годах Кельвин определялся как 1/273,16 части термодинамической температуры тройной точки воды. Шкала Кельвина использует тот же шаг, что и шкала Цельсия. 0 °K — это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению что такое Кельвин, 0 °C установлены таким образом, что температура тройной точки воды на фазовой диаграмме равна 0,01 °C. В итоге шкалы Цельсия и Кельвина сдвинуты на 273,15 °.
Основная физическая величина | Обозначение | Единица измерения в системе СИ |
Длина | l | метр (м) |
Масса | m | килограмм (кг) |
Время | t | секунда (с) |
Сила электрического тока | I | Ампер (А) |
Термодинамическая температура | T | Кельвин (К) |
Количество вещества | n | моль |
Сила света | I_c | Кандела (кд) |
Табл.1. Основные физические величины, их обозначения и единицы измерения.
Производные единицы СИ, имеющие собственные наименования
Производные единицы СИ — это единицы измерения, которые исходят от семи основных единиц, определенных Международной системой единиц (СИ).
Такие единицы либо безразмерные, либо могут быть выражены с помощью различных математических операций из основных единиц СИ.
Пространство и время
Единиц измерения, входящих в систему СИ и имеющих собственные названия, которые относятся к пространству и времени — нет.
Периодические явления, колебания и волны, акустика
Частота — это число колебаний совершаемых за одну секунду. Единица измерения названа в честь физика Генриха Герца и обозначается Гц.
Тепловые явления
Энергия — это физическая величина, показывающая какую работу может совершить тело. Измеряется в джоулях (Дж).
Механика
Плоский угол — это часть плоскости, ограниченная двумя лучами, выходящими из одной точки. В системе СИ измеряется в радианах (рад).
Телесный угол — часть пространства, ограниченная некоторой конической поверхностью. Измеряется в системе СИ в стерадианах (ср).
Молекулярная физика
Давление — это скалярная физическая величина равная отношению силы давления, приложенной к данной поверхности, к площади этой поверхности. Единицей измерения в системе СИ является паскаль (Па).
Активность катализатора — характеристика, показывающая насколько катализатор активен в процессе своей работы.
Электричество и магнетизм
Сила — физическая величина, которая характеризует действие на тело других тел, в результате чего у тела изменяется скорость или оно деформируется. Измеряется в ньютонах (Н).
Мощность — это физическая величина, равная отношению работы к промежутку времени, за который совершенна эта работа. В Международной системе (СИ) единицей измерения мощности является ватт (Вт).
Электрический заряд — это физическая величина, характеризующая свойство тел или частиц входить в электромагнитные взаимодействия и определяющая значение сил и энергий этих взаимодействий. Единица измерения в системе СИ — это кулон (Кл).
Разность потенциалов (напряжение) между двумя точками равна отношению работы поля при перемещении положительного заряда из начальной точки в конечную к величине этого заряда. Измеряется в вольтах (В).
Сопротивление — физическая величина, характеризующая способность проводника препятствовать прохождению тока. Единица измерения — Ом. Источник электрической энергии является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Такое сопротивление называется внутренним. Если оно очень мало, то ток короткого замыкания будет большим, что может вывести источник тока из строя.
Емкость — это физическая величина, которая характеризует способность накапливать электрический заряд на одной из металлических обкладок конденсатора, равная отношению заряда к напряжению и измеряется в фарадах (Ф).
Конденсатор — это совокупность двух проводников, находящихся на малом расстоянии друг от друга и разделенных слоем диэлектрика. На значение емкости влияют геометрические размеры и среда. Материал, из которого сделаны обкладки конденсатора, может быть разным.
Электрическая проводимость (электропроводность) — это способность веществ пропускать электрический ток под действием электрического напряжения. Электрическая проводимость — величина, обратная сопротивлению. Измеряется в сименсах (См).
Характер электропроводности может быть разный, поэтому вещества делятся на электролиты (вещества, растворы и расплавы, проводящие электрический ток) и неэлектролиты (вещества, растворы и расплавы, которые не проводят электрический ток).
Оптика, электромагнитное излучение
Световой поток — величина, измеряемая количеством энергии, которую излучает источник света за единицу времени. В системе СИ единицей измерения светового потока является люмен (лм).
Освещенность — это величина светового потока, приходящаяся на единицу площади освещаемой поверхности. Освещенность измеряется в люксах.
Магнитный поток — физическая величина, численно равная произведению модуля магнитной индукции на площадь контура и на косинус угла между нормалью к контуру и вектором магнитной индукции. Единицей измерения магнитного потока в системе СИ является вебер (Вб).
Магнитная индукция — это векторная физическая величина, модуль которой численно равен максимальной силе, действующей со стороны магнитного поля на единичный элемент тока. Единичный элемент тока — это проводник длиной 1 м и силой тока в нем 1 А. Единицей измерения магнитной индукции в системе СИ является тесла (Тл).
Индуктивность — это физическая величина, характеризующая способность проводника с током создавать магнитное поле. Единица измерения — генри (Гн).
Радиоактивность — это способность некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Различают радиоактивность естественную – для существующих в природе неустойчивых изотопов, а также искусственную — для изотопов, полученных с использованием ядерных реакций. Единицей измерения радиоактивности является беккерель (Бк).
Поглощенная доза ионизирующего излучения — величина энергии ионизирующего излучения, переданная веществу. В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм, и имеет специальное название — грей (Гр).
Эффективная доза ионизирующего излучения — величина, используемая как мера риска возникновения отдаленных последствий облучения всего человека и отдельных его органов и тканей с учетом их радиочувствительности. Единицей эквивалентной дозы является зиверт (Зв).
Собственные наименования имеют 22 производные единицы измерения, которые представлены в таблице 2.
Величина | Единица измерения | Обозначение |
Частота | герц | Гц |
Температура по шкале Цельсия | градус Цельсия | <>^оС |
Энергия | джоуль | Дж |
Плоский угол | радиан | рад |
Телесный угол | стерадиан | ср |
Давление | паскаль | Па |
Активность катализатора | катал | кат |
Сила | ньютон | Н |
Мощность | ватт | Вт |
Электрический заряд | кулон | Кл |
Разность потенциалов | вольт | В |
Сопротивление | ом | Ом |
Ёмкость | фарад | Ф |
Магнитный поток | вебер | Вб |
Магнитная индукция | тесла | Тл |
Индуктивность | генри | Гн |
Электрическая проводимость | сименс | См |
Световой поток | люмен | лм |
Освещенность | люкс | лк |
Радиоактивность | беккерель | Бк |
Поглощенная доза ионизирующего излучения | грэй | Гр |
Эффективная доза ионизирующего излучения | зиверт | Зв |
Таблица 2. Таблица с произвольными единицами измерения в системе СИ, которые имеют собственные названия.
Преобразование единиц измерения
Рассмотрим в этом пункте только способы преобразования основных единиц измерения в системе СИ, а именно длины (м), массы (кг), времени (с), силы электрического тока (А), термодинамической температуры (К), количества вещества (моль).
Длина:
1 м = 0,001 км = 10 дм =100 см = 1000 мм
1 кг = 0,001 т = 0,01 ц = 1000 г = 1000000 мг
Международная система единиц физических величин: понятие физической величины, способы определения
2018 год можно назвать судьбоносным в метрологии, потому что это время настоящей технологической революции в международной системе единиц физических величин СИ. Речь о пересмотре определений главных физических величин. Будет ли теперь килограмм картошки в супермаркете весить по-новому? C картошкой будет по-прежнему. Изменится другое.
Что было до системы СИ
Общие стандарты в мерах и весах понадобились еще в древние времена. Но особенно нужными общие правила измерений стали с вместе с появлением научно-технического прогресса. Ученым нужно было разговаривать на общем языке: один фут – это сколько сантиметров? И что такое сантиметр во Франции, когда он не совпадает с итальянским?
Вам будет интересно: «Препоны» – это что такое? Значение и синонимы
Францию вполне можно назвать почетным ветераном и победителем исторических метрологических баталий. Именно во Франции в 1791 году была официально утверждена система измерений и их единиц, а определения главных физических величин были описаны и завизированы в качестве государственных документов.
Французы первыми поняли, что физические величины должны быть привязаны к природным объектам. Например, один метр был описан как 1/40000000 часть длины меридиана с севера на юг к экватору. Он был привязан, таким образом, к размерам Земли.
Один грамм также привязали к природным явлениям: его определили как массу воды в кубическом сантиметре при уровне температуры, близкой к нулевому (плавления льда).
Но, как оказалось, Земля вовсе не является идеальным шаром, а вода в кубике может иметь самые разные свойства, если в ней есть примеси. Поэтому размеры этих величин в разных точках планеты немного отличались друг от друга.
В начале 19 века в дело вступили немцы во главе с математиком Карлом Гауссом. Он предложил обновить систему мер «сантиметр-грамм-секунда», и с тех пор метрические единицы пошли в мир, науку и были признаны международным сообществом, образовалась международная система единиц физических величин.
Длину меридиана и массу кубика воды решили заменить эталонами, которые хранились в Бюро мер и весов в Париже, с раздачей копий по странам – участницам метрической конвенции.
Килограмм, например, выглядел цилиндром из сплава платины и иридия, что в итоге тоже не стало идеальным решением.
Международная система единиц физических величин SI была образована в 1960 году. Сначала в нее входили шесть основных величин: метры и длина, килограммы и масса, время в секундах, сила тока в амперах, термодинамическая температура в кельвинах и сила света в канделах. Через десять лет к ним добавилась еще одна – количество вещества, измеряемое в молях.
Важно знать, что все остальные единицы измерения физических величин международной системы считаются производными от основных, то есть могут быть вычислены математически с помощью основных величин системы СИ.
Прочь от эталонов
Физические эталоны оказались не самой надежной системой измерений. Сам эталон килограмма и его копии по странам периодически сверяют друг с другом. Сверки показывают изменения масс этих эталонов, что происходит по разным причинам: пыль при поверке, взаимодействие с подставкой или что-то другое. Ученые заметили эти неприятные нюансы давно. Наступило время пересмотра параметров единиц физических величин международной системы в метрологии.
Поэтому некоторые определения величин постепенно менялись: ученые старались уйти от физических эталонов, которые так или иначе со временем меняли свои параметры. Лучшим способом является выведение величин через неизменные свойства, как, например, скорость света или изменения в структуре атомов.
Накануне революции в системе СИ
Принципиальные технологические изменения в международной системе единиц физических величин проводятся через голосование членов Международного бюро мер и весов на годовой конференции. При положительном решении изменения вступают в силу через несколько месяцев.
Все это чрезвычайно важно для ученых, в чьих исследованиях и экспериментах нужна предельная точность измерений и формулировок.
Новые эталоны образца 2018 года помогут достичь высочайшего уровня точности в любых измерениях в любом месте, времени и масштабе. И все это без каких-либо потерь в точности.
Переопределение величин в системе СИ
Оно касается четырех из семи действующих основных физических величин. Было решено переопределить следующие величины с единицами измерений:
В отношении остальных трех величин будет изменена формулировка определений, но их суть останется неизменной:
Изменения с ампером
То, что представляет собой ампер как единица физических величин в международной системе СИ сегодня, было предложено еще в 1946 году. Определение было привязано к силе тока между двумя проводниками в вакууме на расстоянии одного метра с уточнением всех нюансов этого сооружения. Неточность и громоздкость измерения – вот две главных характеристики этого определения с сегодняшней точки зрения.
В новом определении ампер – это электрический ток, равный потоку фиксированного числа электрических зарядов в секунду. Единица выражается в зарядах электрона.
Для определения обновленного ампера нужен всего один инструмент – так называемый одноэлектронный насос, который способен перемещать электроны.
Новый моль и чистота кремния 99,9998 %
Старое определение моля связано с количеством вещества, равным числу атомов в изотопе углерода с массой 0,012 кг.
В новой версии это количество вещества, которое содержится в точно определенном количестве специфицированных структурных единиц. Эти единицы выражаются с помощью постоянной Авогадро.
С числом Авогадро тоже немало забот. Для его вычисления было решено создать сферу из кремния-28. Данный изотоп кремния отличается своей точной до идеальности кристаллической решеткой. Поэтому в нем можно точно подсчитать число атомов с помощью лазерной системы, измеряющей диаметр сферы.
Можно, конечно, возразить в том, что нет принципиальной разница между сферой из кремния-28 и нынешним сплавом из платины и иридия. И то, и другое вещество теряет атомы во времени. Теряет, верно. Но кремний-28 теряет их с предсказуемой скоростью, поэтому в эталон будут постоянно вноситься коррективы.
Самый чистый кремний-28 для сферы получили совсем недавно в США. Его чистота составляет 99,9998 %.
А теперь кельвин
Кельвин является одной из единиц физических величин в международной системе и служит для измерения уровня термодинамической температуры. «По-старому» он равен 1/273,16 части температуры тройной точки воды. Тройная точка воды – чрезвычайно интересная составляющая. Это уровень температуры и давления, при котором вода находится сразу в трех состояниях – «пар, лед и вода».
Определение «хромало на обе ноги» по следующей причине: величина кельвина зависит в первую очередь от состава воды с теоретически известным соотношением изотопов. Но на практике получить воду с такими характеристиками было невозможно.
Новый кельвин будет определяться так: один кельвин равен изменению тепловой энергии на 1,4 × 10−23дж. Единицы выражаются с помощью постоянной Больцмана. Теперь уровень температуры можно будет измерять с помощью фиксации скорости звука в газовой сфере.
Килограмм без эталона
Мы уже знаем, что в Париже находится эталон из платины с иридием, который так или иначе изменил свой вес за время использования в метрологии и системе единиц физических величин.
Новое определение килограмма звучит так: один килограмм выражается в величине постоянной Планка, разделенной на 6,63 × 10−34 м2·с−1.
Измерение массы теперь можно производить на «ваттовых» весах. Пусть это название не вводит вас в заблуждение, это не привычные весы, а электроэнергия, которой хватит, чтобы приподнять предмет, лежащий на другой чаше весов.
Изменения в принципах построения единиц физических величин и их системе в целом нужны, прежде всего, в теоретических областях науки. Главными факторами в обновленной системе теперь являются естественные постоянные величины.
Это закономерное завершение многолетней деятельности международной группы серьезных ученых, чьи усилия в течение долгого времени были направлены на поиск идеальных измерений и определений единиц на основе законов фундаментальной физики.