Что обозначает using namespace std

Урок №53. Пространства имен

Этот урок является продолжением урока №24.

Конфликт имен

Конфликт имен возникает, когда два одинаковых идентификатора находятся в одной области видимости, и компилятор не может понять, какой из этих двух следует использовать в конкретной ситуации. Компилятор или линкер выдаст ошибку, так как у них недостаточно информации, чтобы решить эту неоднозначность. Как только программы увеличиваются в объемах, количество идентификаторов также увеличивается, следовательно, увеличивается и вероятность возникновения конфликтов имен.

Рассмотрим пример такого конфликта. boo.h и doo.h — это заголовочные файлы с функциями, которые выполняют разные вещи, но имеют одинаковые имена и параметры.

Если boo.h и doo.h скомпилировать отдельно, то всё пройдет без инцидентов. Однако, соединив их в одной программе, мы подключим две разные функции, но с одинаковыми именами и параметрами, в одну область видимости (глобальную), а это, в свою очередь, приведет к конфликту имен. В результате, компилятор выдаст ошибку. Для решения подобных проблем и добавили в язык С++ такую концепцию, как пространства имен.

Что такое пространство имен?

Пространство имен определяет область кода, в которой гарантируется уникальность всех идентификаторов. По умолчанию, глобальные переменные и обычные функции определены в глобальном пространстве имен. Например:

Глобальная переменная g_z и функция boo() определены в глобальном пространстве имен.

В примере, приведенном выше, при подключении файлов boo.h и doo.h обе версии doOperation() были включены в глобальное пространство имен, из-за чего, собственно, и произошел конфликт имен.

Чтобы избежать подобных ситуаций, когда два независимых объекта имеют идентификаторы, которые могут конфликтовать друг с другом при совместном использовании, язык C++ позволяет объявлять собственные пространства имен через ключевое слово namespace. Всё, что объявлено внутри пользовательского пространства имен, — принадлежит только этому пространству имен (а не глобальному).

Перепишем заголовочные файлы из вышеприведенного примера, но уже с использованием namespace:

Результатом будет еще одна ошибка:

C:\VCProjects\Test.cpp(15) : error C2065: ‘doOperation’ : undeclared identifier

Случилось так, что когда мы попытались вызвать функцию doOperation(), компилятор заглянул в глобальное пространство имен в поисках определения doOperation(). Однако, поскольку ни одна из наших версий doOperation() не находится в глобальном пространстве имен, компилятор не смог найти определение doOperation() вообще!

Существует два разных способа сообщить компилятору, какую версию doOperation() следует использовать: через оператор разрешения области видимости или с помощью using-стейтментов (о них мы поговорим на следующем уроке).

Доступ к пространству имен через оператор разрешения области видимости (::)

Первый способ указать компилятору искать идентификатор в определенном пространстве имен — это использовать название необходимого пространства имен вместе с оператором разрешения области видимости ( :: ) и требуемым идентификатором.

Например, сообщим компилятору использовать версию doOperation() из пространства имен Boo :

Источник

Почему с ‘using namespace std;’ в *.cpp-файлах может быть очень плохо

То, что написано ниже, для многих квалифицированных C++ разработчиков будет прекрасно известным и очевидным, но тем не менее, я периодически встречаю using namespace std; в коде различных проектов, а недавно в нашумевшей статье про впечатления от высшего образования было упомянуто, что студентов так учат писать код в вузах, что и сподвигло меня написать эту заметку.

Для чего вообще придумали пространства имен в C++? Когда какие-то две сущности (типы, функции, и т.д.) имеют идентификаторы, которые могут конфликтовать друг с другом при совместном использовании, C++ позволяет объявлять пространства с помощью ключевого слова namespace. Всё, что объявлено внутри пространства имен, принадлежит только этому пространству имен (а не глобальному). Используя using мы вытаскиваем сущности какого-либо пространства имен в глобальный контекст.

А теперь посмотрим, к чему это может привести.

Допустим, вы используете две библиотеки под названием Foo и Bar и написали в начале файла что-то типа

. таким образом вытащив всё, что есть в foo:: и в bar:: в глобальное пространство имен.

Все работает нормально, и вы можете без проблем вызвать Blah() из Foo и Quux() из Bar. Но однажды вы обновляете библиотеку Foo до новой версии Foo 2.0, которая теперь еще имеет в себе функцию Quux().

Теперь у вас конфликт: и Foo 2.0, и Bar импортируют Quux() в ваше глобальное пространство имен. В лучшем случае это вызовет ошибку на этапе компиляции, и исправление этого потребует усилий и времени.

А вот если бы вы явно указывали в коде метод с его пространством имен, а именно, foo::Blah() и bar::Quux(), то добавление foo::Quux() не было бы проблемой.

Но всё может быть даже хуже!

В библиотеку Foo 2.0 могла быть добавлена функция foo::Quux(), про которую компилятор по ряду причин посчитает, что она однозначно лучше подходит для некоторых ваших вызовов Quux(), чем bar::Quux(), вызывавшаяся в вашем коде на протяжении многих лет. Тогда ваш код все равно скомпилируется, но будет молча вызывать неправильную функцию и делать бог весть что. И это может привести к куче неожиданных и сложноотлаживающихся ошибок.

Имейте в виду, что пространство имен std:: имеет множество идентификаторов, многие из которых являются очень распространенными (list, sort, string, iterator, swap), которые, скорее всего, могут появиться и в другом коде, либо наоборот, в следущей версии стандарта C++ в std добавят что-то, что совпадет с каким-то из идентификаторов в вашем существующем коде.

Если вы считаете это маловероятным, то посмотрим на реальные примеры со stackoverflow:

Вот тут был задан вопрос о том, почему код возвращает совершенно не те результаты, что от него ожидает разработчик. По факту там происходит именно описанное выше: разработчик передает в функцию аргументы неправильного типа, но это не вызывает ошибку компиляции, а компилятор просто молча использует вместо объявленной выше функции distance() библиотечную функцию std::distance() из std:: ставшего глобальным неймспейсом.

Второй пример на ту же тему: вместо функции swap() используется std::swap(). Опять же, никакой ошибки компиляции, а просто неправильный результат работы.

Так что подобное происходит гораздо чаще, чем кажется.

Источник

Пространство имен (using namespace std;)

5 ответов 5

Зависит от традиций. Среди плюсовиков традиция «лучше перестраховаться, чем получить внезапные трудно отлаживаемые проблемы неизвестно где».

Явное указание пространства имён — это избавление от потенциальных проблем в будущем. Положим, вы подключили через using namespace два пространства имён. Всё замечательно, кратко, красиво.

А потом вышла новая версия одной из библиотек, и какие-то идентификаторы стали резолвиться по-другому, например, во второй библиотеке добавили функцию, которая к вашим аргументам подходит лучше, чем используемая вами ранее функция из первой библиотеки.

В лучшем случае ваш код не соберётся. Может упасть. А может так получиться, что ваш код перестанет работать у клиента в 1% случаев. Всё может быть.

Отлавливать и исправлять подобные проблемы мучительно больно.

Насколько это важно конкретно для вас — решать вам. Если у вас простой проектик и от силы пара сторонних библиотек (или вообще только стандартная библиотека), то можно не заморачиваться с явным указанием пространств имён. Если проект огромный, с десятками библиотек, то может оказаться более удобным (и наглядным) всегда указывать пространства имён.

Банальный пример: положим, вы пользуетесь только стандартной библиотекой и boost, поэтому решили везде писать:

. а теперь выходит новая версия стандартной библиотеки, в которой из boost перетащено много классов. И внезапно ваш код больше не компилируется.

В других языках другие традиции. Например, в C# почти всегда пишут краткие имена классов, и только в случае конфликтов явно указывают пространство имён или используют алиасы. Язык немного отличается: там нет функций вне классов. Это позволяет меньше терять читаемость и реже натыкаться на неожиданные конфликты.

Источник

Пространства имен (C++)

В следующем примере показано объявление пространства имен и продемонстрированы три способа доступа к членам пространства имен из кода за его пределами.

Использование полного имени:

Чтобы добавить в область видимости один идентификатор, используйте объявление using:

Чтобы добавить в область видимости все идентификаторы пространства имен, используйте директиву using:

Директивы using

using Директива позволяет использовать все имена в namespace для использования без using в качестве явного квалификатора. Использование директивы using в файле реализации (т. е. *. cpp) при использовании нескольких различных идентификаторов в пространстве имен; Если вы используете только один или два идентификатора, рассмотрите использование объявления using, чтобы привести эти идентификаторы в область, а не все идентификаторы в пространстве имен. Если локальная переменная имеет такое же имя, как и переменная пространства имен, то переменная пространства имен будет скрытой. Создавать переменную пространства имен с те же именем, что и у глобальной переменной, является ошибкой.

Директиву using можно поместить в верхнюю часть CPP-файла (в области видимости файла) или внутрь определения класса или функции.

Без особой необходимости не размещайте директивы using в файлах заголовков (*.h), так как любой файл, содержащий этот заголовок, добавит все идентификаторы пространства имен в область видимости, что может вызвать скрытие или конфликты имен, которые очень трудно отлаживать. В файлах заголовков всегда используйте полные имена. Если эти имена получаются слишком длинными, используйте псевдоним пространства имен для их сокращения. (См. ниже.)

Объявление пространств имен и их членов

Как правило, пространство имен объявляется в файле заголовка. Если реализации функций находятся в отдельном файле, определяйте имена функций полностью, как показано в следующем примере.

Реализации функций в контосодата. cpp должны использовать полное имя, даже если поместить using директиву в начало файла:

Пространство имен может быть объявлено в нескольких блоках в одном файле и в нескольких файлах. Компилятор соединит вместе все части во время предварительной обработки и полученное в результате пространство имен будет содержать все члены, объявленные во всех частях. Примером этого является пространство имен std, которое объявляется в каждом из файлов заголовка в стандартной библиотеке.

Члены именованного пространства имен могут определяться за его границами, если они объявлены путем явной квалификации определяемого пространства имен. Однако определение должно располагаться после точки объявления в пространстве имен, окружающем то пространство имен, где находится объявление. Пример:

Эта ошибка может возникнуть, когда члены пространства имен объявляются в нескольких файлах заголовка и эти заголовки не включены в правильном порядке.

Глобальное пространство имен

Пространство имен std

Вложенные пространства имен

Пространства имен могут быть вложенными. Обычное вложенное пространство имен имеет неполный доступ к членам родительского элемента, но родительские элементы не имеют неполного доступа к вложенному пространству имен (если только оно не объявлено как встроенное), как показано в следующем примере:

Обычные вложенные пространства имен можно использовать для инкапсуляции данных о внутренней реализации, которые не являются частью открытого интерфейса родительского пространства имен.

Встроенные пространства имен (C++ 11)

В отличие от обычных вложенных пространств имен члены встроенного пространства имен обрабатываются как члены родительского пространства имен. Эта особенность позволяет выполнять поиск перегруженных функций с зависимостью от аргументов среди функции, которые имеют перегрузки в родительском и вложенном встроенном пространстве имен. Это также позволяет объявлять специализации в родительском пространстве имен для шаблонов, объявленных во встроенном пространстве имен. В следующем примере показано, как внешний код привязывается к встроенному пространству имен по умолчанию.

В следующем примере показано, как можно объявить специализацию в родительском пространстве имен шаблона, объявленного во встроенном пространстве имен.

Встроенные пространства имен можно использовать как механизм управления версиями для управления изменениями в открытом интерфейсе библиотеки. Например, можно создать одно родительское пространство имен и инкапсулировать каждую версию интерфейса в своем собственном пространстве имен, вложенном в родительское. Пространство имен, которое содержит самую последнюю или основную версию, квалифицируется как встроенное и поэтому представляется так, будто оно является непосредственным членом родительского пространства имен. Клиентский код, вызывающий Parent::Class, автоматически привязывается к новому коду. Клиенты, которые предпочитают использовать старую версию, могут по-прежнему получить доступ к ней, используя полный путь к вложенному пространству имен, содержащему данный код.

Ключевое слово inline должно применяться к первому объявлению пространства имен в единице компиляции.

Псевдонимы пространств имен

Имена пространств имен должны быть уникальными, из-за чего зачастую они получаются не слишком короткими. Если длина имени затрудняет чтение кода или утомительно вводить файл заголовка, где нельзя использовать директивы using, можно создать псевдоним пространства имен, который служит аббревиатурой для фактического имени. Пример:

анонимные или безымянные пространства имен

Вы можете создать явное пространство имен, но не присвоить ему имя.

Это называется безымянным или анонимным пространством имен, и его можно использовать, если нужно сделать объявления переменных невидимыми для кода в других файлах (т. е. обеспечить их внутреннюю компоновку) без создания именованного пространства имен. Весь код, находящийся в том же файле, может видеть идентификаторы в безымянном пространстве имен, но эти идентификаторы, а также само пространство имен, будет невидимым за пределами этого файла или, точнее, вне блока перевода.

Источник

Пространства имен (namespaces) в C++

Что обозначает using namespace std. Смотреть фото Что обозначает using namespace std. Смотреть картинку Что обозначает using namespace std. Картинка про Что обозначает using namespace std. Фото Что обозначает using namespace std

Пространство имен в C ++ — это обобщенная область видимости. Его объявление начинается с зарезервированного слова namespace, за которым следует имя по выбору программиста, а затем блок в фигурных скобках. Блок содержит базовые объявления и / или определения объектов, функций и других сущностей C ++.

Рассмотрим следующие два скалярных оператора в глобальной области в следующей программе:

int varId = 5 ;
float varId = 2.3 ;

Попытка скомпилировать эту программу приводит к ошибке компиляции. Есть две переменные с одинаковым именем varId. Хотя это две разные переменные двух разных типов, int и float, компилятор отклоняет два объявления, потому что они имеют одно и то же имя. Следующая программа решает эту проблему, объявляя переменные с одинаковыми именами в двух разных обобщенных областях:

namespace NA
<
int varId = 5 ;
>

namespace NB
<
float varId = 2.3 ;
>

int main ( )
<
cout NA :: varId ‘ \n ‘ ;
cout NB :: varId ‘ \n ‘ ;

Результат выглядит следующим образом:

В этой статье рассматривается основная концепция пространства имен и его использование в языке программирования C ++. Чтобы следовать этой статье, вы должны иметь базовые знания языка C ++. Вы также должны знать область действия C ++, хотя она кратко объясняется в этой статье. Чтобы узнать больше о области действия C ++, найдите фразу «Область действия в C ++» (без кавычек) в поле поиска любой веб-страницы linuxhint.com и нажмите Enter. Это приведет вас к статье, написанной этим автором.

Что такое пространство имен?

Декларативная область — это самая большая часть программы, в которой допустимо имя объекта (переменной). Эта область называется областью действия. Пространство имен в C ++ — это обобщенная область видимости, основной целью которой является разрешение конфликтов имен. Пространство имен имеет базовые объявления и / или определения сущностей.

Глобальное пространство имен и его проблема

Глобальное пространство имен — это глобальная область видимости. Рассмотрим следующую короткую программу:

int ident = 55 ;
float ident = 12.17 ;

В приведенной выше программе есть две переменные, обе называемые идентификатором. Эти переменные находятся в глобальной области видимости; то есть они находятся в глобальном пространстве имен. Попытка скомпилировать эту программу завершится ошибкой. Глобальная область видимости не принимает более одной переменной с одинаковым именем, поэтому существует необходимость в настраиваемом пространстве имен.

Пользовательское пространство имен

namespace NA
<
int varInt = 6 ;
float flt ;
>

namespace NB
<
int varInt = 7 ;
float flt ;
>

int main ( )
<
cout NA :: varInt ‘ \n ‘ ;
cout NB :: varInt ‘ \n ‘ ;
NA :: flt = 2.5 ;
NB :: flt = 4.8 ;
cout NA :: flt ‘ \n ‘ ;
cout NB :: flt ‘ \n ‘ ;

Обратите внимание, что имена NA :: flt и NB :: flt в конечном итоге определены в функции main (). C ++ не допускает такого определения в глобальной области видимости.

Обратите внимание, что настраиваемое пространство имен является вложенным пространством имен для глобального пространства имен.

Директива использования

Чтобы не вводить все время «namepace :: name» вместо просто «name» после объявления пространства имен, вы можете использовать директиву using. Синтаксис использования директивы using следующий:

С помощью директивы не директива препроцессора, поэтому она заканчивается точкой с запятой (;).

Следующая программа иллюстрирует использование директивы using и др.:

namespace NB
<
int varInt = 7 ;
int func ( )
<
return varInt ;
>
>

int fn ( )
<
using namespace NB ;
int myVar2 = func ( ) ;
//other objects and functions from NB follow.
return myVar2 ;
>

int myVar3 = NB :: func ( ) ;

int main ( )
<
cout fn ( ) ‘ ‘ myVar3 ‘ \n ‘ ;

Переменная, объявленная в глобальной области (глобальном пространстве имен), просматривается от точки объявления до конца файла. Это также видно во вложенных пространствах имен (вложенных областях), таких как вложенная область видимости функции fn () выше. С помощью директивы соединяет его пространство имен из позиции, в которой он размещен в конце области, в которой он размещен.

Имя func () из пространства имен NB нельзя увидеть под определением fn (), потому что » using namespace NB;» был помещен в область действия функции (блок). При этом условии, чтобы использовать функцию » func () » вне блока (области) пространства имен NB, ему должен предшествовать » NB :: «, как в следующем операторе:

С помощью директивы присоединяется своим пространством имен с внешним гнездовым пространством именами из положения, в котором он находится на конец внешних вложенности имен. В следующей программе пространство имен NA объединено с глобальным пространством имен. Оба пространства имен затем расширяются в пространство имен определения функции fn (), в котором они объединяются с пространством имен NB. Пространство имен NB заканчивается в конце определения функции fn (), а два предыдущих пространства имен продолжаются до конца файла (считывания кода).

namespace NA
<
int varInt = 6 ;
int func ( )
<
return varInt ;
>

namespace NB
<
int varInt = 7 ;
int func ( )
<
return varInt ;
>
>

using namespace NA ;
int myVar0 = varInt ;
//other objects and functions from :: and NB follow.

int fn ( )
<
int myVar1 = varInt ;
using namespace NB ;
int myVar2 = NB :: func ( ) ;
//other objects and functions from NB follow, till end of this scope.
return myVar1 + myVar2 ;
>

//Only objects and functions from :: and NB follow.

int myVar3 = NB :: func ( ) ;

int main ( )
<
cout myVar0 ‘ ‘ fn ( ) ‘ ‘ myVar3 ‘ \n ‘ ;

На выходе будет 6, 13, 7.

Под утверждением » using namespace NA; «Переменные из глобального пространства имен и пространства имен NA могут использоваться без указания их исходного пространства имен. Следующий оператор использует varInt пространства имен NA. Область объединенного пространства имен global и NA простирается в пространство имен функции fn (). Итак, varInt первого оператора в области видимости функции fn () относится к пространству имен NA.

Поскольку область для глобального пространства имен и пространства имен NA распространяется на всю область видимости fn (), после » int myVar2 = NB :: func ();, «Любое имя из пространства имен NB может использоваться только в области fn () без предшествующего ему» NB :: «, только если оно не встречается в NA и глобальных пространствах имен (блоках). В противном случае ему должно предшествовать » NB :: «. Область объединенных пространств имен для NA и global продолжается ниже определения fn () и в функцию main () до конца файла.

Расширение пространства имен NB начинается с » int myVar2 = NB :: func (); «В блоке fn () и заканчивается в конце блока определения fn ().

Примечание: Пространства имен, регионы которых соединяются, не должны иметь одинаковые имена переменных в разных блоках пространств имен, так как это все равно вызовет конфликт.

Области пространства имен

Пространство имен — это область видимости. Помимо глобального пространства имен (глобальная область видимости), любое пространство имен должно быть объявлено в блоке. Этот блок является первой частью возможных распределенных областей пространства имен. С помощью директивы using пространство имен может быть расширено как регионы в других областях.

Объекты, объявленные в теле пространства имен, называются членами этого пространства имен, а имена, введенные этими объявлениями в декларативную область пространства имен, называются именами членов этого пространства имен.

Вложенные пространства имен

Следующая программа показывает вложенные пространства имен:

namespace A
<
int i = 1 ;
namespace B
<
int i = 2 ;
namespace C
<
int i = 3 ;
>
>
>

int main ( )
<
cout A :: i ‘ ‘ A :: B :: i ‘ ‘ A :: B :: C :: i ‘ \n ‘ ;

Обратите внимание, что доступ к трем значениям был осуществлен с помощью оператора разрешения области видимости.

Стандартное пространство имен

В C ++ есть библиотека, называемая стандартной библиотекой. Имена объектов, функций и других сущностей в этой библиотеке взяты из пространства имен, называемого стандартным пространством имен, записанного как std. Стандартная библиотека содержит подбиблиотеки, и одна из этих подбиблиотек — iostream. Библиотека iostream содержит объект cout, который используется для отправки результатов на консоль (терминал).

Имя cout должно находиться в пространстве имен std. Чтобы использовать iostream с его пространством имен std, программа должна быть следующей:

Обратите внимание на использование директивы using и std. Термин » #include » является директивой препроцессора и не заканчивается точкой с запятой. Он включает в себя «файл» iostream в позиции своей директивы.

Заключение

Пространство имен — это область видимости. Описание (определение) пространства имен содержит базовые объявления и / или определения объектов, функций и других сущностей C ++. Вне определения пространства имен доступ к имени можно получить с помощью синтаксиса » namespaceName :: name «. Помимо глобального пространства имен (глобальная область видимости), любое пространство имен должно быть объявлено в блоке. Этот блок является первой частью возможных распределенных областей пространства имен. С помощью директивы using пространство имен может быть расширено как регионы в других областях. Пространства имен, регионы которых соединяются, не должны иметь одинаковые имена переменных в разных блоках пространств имен, так как это все равно вызовет конфликт имен.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *