Что образуется если плиты раздвигаются
Теория тектоники плит: выяснилось, как на самом деле устроена поверхность Земли
Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?
Читайте «Хайтек» в
Из чего состоит поверхность Земли?
Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.
Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.
Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·10 6 атм).
Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.
Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.
В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.
Как устроены литосферные плиты?
Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.
Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.
Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.
С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.
Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.
Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.
Типы столкновений литосферных плит:
Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.
Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.
Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.
Как двигаются литосферные плиты?
Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.
При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.
Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.
Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.
Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.
Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.
Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.
Модель тектоники плит на поверхности вулканического лавового озера
Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:
Что ученые узнали о теории тектоники плит?
Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.
На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.
Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.
Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.
Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.
А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.
Какое будущее у науки тектоники?
Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.
Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.
Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.
В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.
Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.
Движение плит
Характер движения плит определяет и то, что происходит на их границах. Некоторые плиты расходятся, другие сталкиваются, а некоторые трутся боками.
Сталкивающиеся плиты
В местах, где плиты сдвигаются, возникают граничные плиты нескольких типов, в зависимости от вида сталкивающихся плит. К примеру, на границе между океанической и материковой литосферой плита, образованная океанической корой, «подныривает» под материковую, создавая на поверхности глубокую впадину, или желоб. Зона, где это происходит, называется субдуктивной. Погружаясь все глубже в мантию, плита начинает расплавляться. Кора верхней плиты сдавливается, и на ней вырастают горы. Некоторые из них представляют собой вулканы, образованные магмой, которая прорывается вверх через литосферу.
Расходящиеся плиты
Зоны, где плиты отодвигаются друг от друга, встречаются на некоторых участках океанского дна. Они характеризуются горными цепями из вулканических пород. Такие вулканы не имеют крутых склонов или конической формы. Обычно это длинные цепи гор с пологими склонами. Две цепи разделены глубокой трещиной, обозначающей границу между плитами. Трещина открывается, когда на поверхность выбрасывается магма (расплавленная порода), поднимающаяся из астеносферы. Выйдя на поверхность, магма остывает и затвердевает по краям плит, образуя новые участки океанского дна. При этом магма все дальше отталкивает плиты друг от друга. Этот процесс, известный как расширение морского дна, не имеет конца, потому что трещина открывается вновь и вновь. Место, где это происходит, называется срединным хребтом.
Океанические плиты
Глубокие впадины также образуются и на границах двух сталкивающихся плит океанической литосферы. Одна из таких плит уходит под другую и расплавляется, опускаясь в мантию. Магма устремляется вверх через литосферу, и возле границы на оказавшейся сверху плите образуется цепь вулканов.
Материковые плиты
В тех местах, где лоб в лоб сталкиваются две плиты материковой литосферы, формируются высокие горные цепи. На границе материковая кора обеих плит сжимается, трескается и собирается в гигантские складки. При дальнейшем движении плит горные хребты становятся все выше, так как вся эта тона все больше выталкивается кверху.
Океанические впадины
Впадины, образующиеся на границах плит, — самые глубокие провалы земной поверхности. Глубочайшей считается Марианская впадина в Тихом океане (11 022 метра ниже уровня моря). В ней могла бы утонуть высочайшая в мире гора Эверест (8848 метра над уровнем моря). Для исследования океанических впадин применяются вот такие глубоководные аппараты.
Трущиеся плиты
Не все плиты удаляются друг от друга или сталкиваются лоб в лоб. Некоторые из них трутся боками, двигаясь либо в противоположных направлениях, либо в одном направлении, но с разными скоростями. На границе таких плит, как на суше, так и на морском дне, новая литосфера не образуется, а уже существующая не разрушается. Когда плиты материковой литосферы движутся навстречу друг другу, вся граничная зона выталкивается кверху, образуя высокие горные цепи. Когда плиты движутся бок о бок с разными скоростями, кажется, будто они перемещаются в противоположных направлениях.
§ 20. Литосферные плиты (учебник)
§ 20. Литосферные плиты
1. Вспомните, что называют литосферой.
2. Какие типы земной коры?
Рис. Литосферные плиты прошлых эпох
Рис. Современные литосферные плиты
Движения литосферных плит. Силы, способные двигать плиты литосферы, зарождаются внутри нашей планеты. Поэтому их называют внутренними силами Земли. Они возникают при распаде радиоактивных веществ и перемещения расплава в верхней мантии. Внутренние силы толкают литосферные плиты, и они движутся вдоль разломов. Различают медленные горизонтальные и вертикальные движения земной коры.
Если плиты раздвигаются, То образуются разломы. Больше разломов возникает на дне океанов, где земная кора тоньше. Разломами расплавленная вещество мантии поднимается из недр. Она расталкивает края плит, выливается и застывает, заполняя пространство между ними. Так в местах разрывов на дне океана происходит наращивание земной коры. Там образуются новые участки земной коры в виде гигантских валоподибних поднятий, которые называют срединно-океаническими хребтами. Например, при раздвижении Южноамериканской и Африканской плит на дне Атлантического океана образовался Южноатлантические срединно-океаническими позвоночник. Итак, под океанами земная кора непрерывно обновляется.
Как видим, мантия несет на себе земную кору, как тонкий лист бумаги, двигая ее, местами разрывая или сминая в складки.
Рис. Разлом Сан-Андреас в Калифорнии образовался в результате раздвижения плит
Ученые установили, что литосферные плиты движутся, по крайней мере горизонтально, по строгим математическими законами. Зная их современное расположение, направление и скорость движения, можно смоделировать с помощью компьютера положение плит в любой момент: то ли в прошлом или в будущем. Считают, например, что из миллионы лет Австралия сместится на север, Атлантический и Индийский океаны расширятся, а Тихийуменьшится в размерах.
Вопросы и задания
1. Назовите и покажите на карте литосферные плиты Земли.
2. На которой литосферные плиты мы живем? С какими плитами она находится по соседству? Как они двигаются друг относительно друга?
3. Какие последствия стыке литосферных плит?
4. Что происходит в местах расхождения литосферных плит?
5. Что доказывает вертикальные движения поверхности Земли?
6. Какие изменения могут вызвать опускания земной коры?
7. Каким картографическим способом изображены объекты на карте «Строение земной коры»?
Что образуется если плиты раздвигаются
Литосферные плиты – крупные жесткие блоки литосферы Земли, ограниченные сейсмически и тектонически активными зонами разломов.
Более 90 % поверхности Земли покрыто 13-ю крупнейшими литосферными плитами.
Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер. На ее основе создана теория литосферных пли т. Согласно этой теории, литосфера не является монолитом, а состоит из крупных и мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами — это самые «беспокойные» области планеты.
Срединно-океанические хребты
Рифт – огромный разлом в земной коре, образующийся при ее горизонтальном растяжении (т. е. там, где расходятся потоки тепла и вещества). В рифтах происходит излияние магмы, возникают новые разломы, горсты, грабены. Формируются срединно-океанические хребты.
Срединно-океанические хребты – мощные подводные горные сооружения в пределах дна океана, занимающие чаще всего срединное положение. Близ срединно-океанических хребтов происходит раздвижение литосферных плит и возникает молодая базальтовая океаническая кора. Процесс сопровождается интенсивным вулканизмом и высокой сейсмичностью.
Континентальными рифтовыми зонами являются, например, Восточно-Африканская рифтовая система, Байкальская система рифтов. Рифты, так же как и срединно-океанические хребты, характеризуются сейсмической активностью и вулканизмом.
Тектоника литосферных плит
Тектоника плит – гипотеза, предполагающая, что литосфера разбита на крупные плиты, которые перемещаются по мантии в горизонтальном направлении. Близ срединно-океанических хребтов литосферные плиты раздвигаются и наращиваются за счет вещества, поднимающегося из недр Земли; в глубоководных желобах одна плита подвигается под другую и поглощается мантией. В местах столкновения плит образуются складчатые сооружения.
Плиты, как правило, разделены глубокими разломами и перемещаются по вязкому слою мантии относительно друг друга со скоростью 2—3 см в год. В местах схождения континентальных плит происходит их столкновение, образуются горные пояса. При взаимодействии континентальной и океанической плит плита с океанической земной корой пододвигается под плиту с континентальной земной корой, в результате образуются глубоководные желоба и островные дуги.
Движение литосферных плит связано с перемещением вещества в мантии. В отдельных частях мантии существуют мощные потоки тепла и вещества, поднимающегося из его глубин к поверхности планеты.
Теория тектоники плит объясняет возникновение землетрясений, вулканическую деятельность и процессы горообразования, по большей части приуроченные к границам плит.
Основные положения тектоники литосферных плит:
Значение тектоники плит. Тектоника плит связала различные науки о Земле, дала им предсказательную силу. Перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.
Автор: NikitaKovtunSlyudyanka — собственная работа, CC BY-SA 4.0, commons.wikimedia.org/w/index.php?curid=103450071
Тектоническая структура
Земная кора разделяется на устойчивые (платформы) и подвижные участки (складчатые области — геосинклинали). Геосинклинальные области и платформы — главнейшие тектонические структуры, находящие отчетливое выражение в современном рельефе.
Геосинклинали — подвижные линейно вытянутые области земной коры, характеризующиеся разнонаправленными тектоническими движениями высокой интенсивности, энергичными явлениями магматизма, включая вулканизм, частыми и сильными землетрясениями.
На ранней стадии развития в них наблюдаются общее погружение и накопление мощных толщ горных пород. На средней стадии, когда в геосинклиналях накапливается толща осадочно-вулканических пород мощностью 8-15 км, процессы погружения сменяются постепенным поднятием, осадочные породы подвергаются складкообразованию, а на больших глубинах — метаморфизации, по трещинам и разрывам, пронизывающим их, внедряется и застывает магма. В позднюю стадию развития на месте геосинклинали под влиянием общего поднятия поверхности возникают высокие складчатые горы, увенчанные активными вулканами; впадины заполняются континентальными отложениями, мощность которых может достигать 10 км и более.
Пройдя геосинклинальный цикл развития, земная кора утолщается, становится устойчивой и жесткой, не способной к новому складкообразованию. Геосинклиналь переходит в иной качественный блок земной коры — платформу.
Платформа (от франц. plat — плоский и forme — форма) — крупная (несколько тыс. км в поперечнике), относительно устойчивая часть земной коры, характеризующаяся очень низкой степенью сейсмичности.
Платформа имеет двухэтажное строение. Нижний этаж — фундамент — это древняя геосинклинальная область — образован метаморфизованными породами, верхний — чехол — морскими осадочными отложениями небольшой мощности, что свидетельствует о небольшой амплитуде колебательных движений.
Возраст платформ различен и определяется по времени становления фундамента. Наиболее древними являются платформы, фундамент которых образован смятыми в складки кристаллическими породами докембрия.
Фундамент более молодых платформ образован в периоды байкальской, каледонской или герцинской складчатости. Области мезозойской складчатости не принято называть платформами, хотя они и являются таковыми на сравнительно раннем этапе развития.
В рельефе платформам соответствуют равнины. Однако некоторые платформы испытали серьезную перестройку, выразившуюся в общем поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. Так возникли складчато-глыбовые горы, примером которых могут служить горы Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.
На протяжении всей геологической истории в континентальной земной коре происходило наращивание площади платформ и сокращение геосинклинальных зон.
Распространение и возраст платформ и геосинклиналей показывается на тектонической карте (карте строения земной коры).
Вы смотрели конспект по географии «Литосферные плиты. Тектоника литосферных плит». Выберите дальнейшее действие:
Урок в 7-м классе по теме «Литосфера и происхождение материков и океанов»
Разделы:
Курс: «География материков и океанов» 7 класс.
Тема: «Литосфера и происхождение материков и океанов».
Тип урока: комбинированный с элементами модульной и информационно-коммуникационной технологий.
Цель: путем применения различных учебных элементов, добиться понимания детьми происхождения на Земле материков и океанов.
I. Оргмомент
II. Узнавание темы и цели урока
III. Повторение
Учитель:Прочтите задание в ТК (технологической карте) п.1, 2. Быстро и четко выполните работу, подготовьтесь к устной проверке.
IV. Объяснение новой темы
Учитель: Прочтите задание п.3.
– Мы можем с большой уверенностью сказать, что уже, по крайней мере, миллиард лет Земля покрыта твердой оболочкой, в которой выделяются континентальные выступы и впадины океанов. Если бы мы побывали на Земле приблизительно 250 млн лет назад, то обнаружили бы только 1 материк. Но какой! (См. Приложение 2)
– Площадь суперконтинента Пангея (в переводе с греческого – «вся земля») составляла приблизительно столько же, сколько нынешняя суша. Суперконтинент и омывался лишь одним супер-океаном Панталассой.
– Но Пангея оказалась довольно непрочной и недолговечной. Приблизительно 200 млн лет назад на Земле существовало уже 2 материка: Лавразия и Гондвана, а между ними плескалось море Тэтис. На современной карте его уже нет.
– Но распад материков продолжался до тех пор, пока материки не заняли современное расположение на карте.
– Впервые о возможном движении (дрейфе) материков высказал предположение немецкий ученый Альфред Вегенер в 1912 году в книге «Возникновение материков и океанов», глядя на очертания материков, как на части одной открытки, которые могут дополнять друг друга. В доказательство своей теории Вегенер привел следующие аргументы:
а) в Африке и в Южной Америке были обнаружены одинаковые слои горных пород;
б) в Африке и в Южной Америке были обнаружены одинаковые окаменелые остатки животных.
– Но КАК материки двигаются, Вегенер объяснить не смог.
– Лишь когда появились новые приборы, в конце 40-х годов, ученые смогли это сделать. Новая теория получила название «Теория движения литосферных плит».
Остальное вы узнаете самостоятельно, используя наш путеводитель – технологическую карту.
Технологическая карта по теме «Литосфера и происхождение материков и океанов»
Цель урока для учащихся: усвоить, каким образом на Земле образовались материки и океаны.
№ задания | Учебный материал с указанием заданий | Деятельность ученика | Баллы | |||
Подготовительный этап (4 мин.) | ||||||
1. | Строение литосферы Земли. |
На заметку эрудиту:
2. Вспомни: Земная кора – это твердая верхняя оболочка Земли.
Литосфера – это земная кора и верхняя часть мантии до астеносферы.
Поверхность Мохоровичича – это граница, отделяющая земную кору от мантии.
Астеносфера – это пластичный верхний слой мантии, подстилающий литосферу.
Тип земной коры | Мощность в км | Из каких слоев состоит | Общее количество слоев | |||||||||||||||||||||||||||
Материковая | от 35 до 70 км | ……слой ………… ………… | ||||||||||||||||||||||||||||
Океаническая | от 10 до 15 км | …… слой ………… | 2 б. | |||||||||||||||||||||||||||
3. | Теория дрейфа материков. | Внимательно прослушай объяснение учителя. Приложение 2. Блок 2. Теория движения литосферных плит (15 мин.) | ||||||||||||||||||||||||||||
4. | Карта «Строение земной коры» | Открой в атласе карту «Строение земной коры». Это особая тематическая карта, на которой показаны древние платформы, складчатые области разного возраста, срединно-океанические хребты, плиты литосферы. Используй карту при просмотре видеосюжета. | ||||||||||||||||||||||||||||
5. | Плиты литосферы. Внимательно смотри видеосюжет. Проверь правильность («ключ 2») Приложение 1. | |||||||||||||||||||||||||||||
8. | Сейсмические пояса Земли. На заметку эрудиту: | Прочитай в учебнике стр.47 раздел «Сейсмические пояса». Дополни предложения: а) Пограничные области между литосферными плитами называются: ……………………………… б) Сейсмические пояса – это самые ………… участки. в) В сейсмических поясах, на границах литосферных плит происходят ………………… и …………………… Теория движения плит помогает геологам находить полезные ископаемые, в основном, рудные месторожде ния. Примерно 30 лет назад морские геологи подняли из разломов со дна Красного моря образцы горных пород, в которых нашли только что отложившиеся руды марганца, железа и других металлов. | ||||||||||||||||||||||||||||
9. | Работа по карте «Строение земной коры» | Рассмотри карту «Строение земной коры» в атласе. а) Найди самые большие плиты. Определи по физической карте полушарий, какой материк расположен на каждой плите. Заполни таблицу.
Проверь («Ключ 3») Приложение 1. | 8 б. | |||||||||||||||||||||||||||
10. | Реши тест-матрицу. Подбери к каждому пункту верное определение из таблицы (внизу) А. Плиты литосферы – Б. Материковая земная кора – В. Океаническая земная кора – Г. Сейсмические зоны – Д. Вегенер Альфред –
Проверь правильность ответов («ключ 4»). Приложение 1. |
Поставь себе оценку за урок: 15-16 баллов – «5», 14-12 баллов – «4», 11-10 баллов – «3»
- Что образуется вокруг проводника с током
- Что образуется если плиты сдвигаются