Что образуется на рибосоме в процессе биосинтеза белка
Биосинтез белка – важная часть пластического обмена всех клеток. Рассматривает данный процесс наука биология. В результате образуются специфичные вещества, характерные для данного организма. Происходит воспроизведение наследственной информации.
Последовательность процессов биосинтеза белка
Образование белка является многоступенчатым процессом.
Чтобы запустить реакции образования вещества, осуществляется целый ряд последовательных событий:
Перемещение и-РНК к месту синтеза белка.
Где происходит синтез белка
Образование высокомолекулярного соединения протекает в цитоплазме. Именно здесь находятся органоиды, на которых осуществляется данный процесс. Рибосома представляет собой две части: малую и большую. Чтобы биосинтез белка начался, необходимо доставить информацию из ядра в цитоплазму.
Ядро эукариот хранит информацию о первичной структуре природных полимеров. Её называют наследственной. Эта важная информация должна быть без искажения перенесена к месту синтеза белка.
С этой целью в ядре идут матричные реакции. На одной из цепей ДНК синтезируется и-РНК. Именно она является посредником между двумя частями клетки.
Этапы биосинтеза белка
Транскрипция
Процесс протекает в ядре. ДНК образована большим количеством нуклеотидов. Это единица макромолекулы. Она включает в свой состав 3 компонента:
углевод, представленный пентозой – дезоксирибозой;
минеральную кислоту – фосфорную;
органическое соединение, относящееся к классу азотистых оснований.
В составе ДНК могут содержаться 4 разных основания. Они имеют краткое обозначение, по первой букве названия:
Именно этими основаниями и отличаются нуклеотиды. Чередование 3 нуклеотидов образует триплет. Один триплет соответствует одной аминокислоте. Вопрос соответствия аминокислот триплетам изучен и указан в таблице генетического кода.
Последовательность триплетов в молекуле дезоксирибонуклеиновой кислоты, отвечающей за синтез одного белка, называют геном. Между разными генами расположены триплеты, которые не соответствуют аминокислотам. Их называют стоп-кодонами. Они служат сигналом начала и окончания гена.
Для осуществления транскрипции, участок макромолекулы ДНК раскручивается. Он выполняет роль матрицы. На нём выстраивается и-РНК. Осуществляется синтез по принципу соответствия. Еще его называют комплементарностью.
РНК также имеет нуклеотидное строение. Вместо дезоксирибозы присутствует углевод рибоза. Содержится остаток ортофосфорной кислоты. Третьим компонентом является азотистое основание. Три основания одинаковые – А, Г, Ц в ДНК и РНК. Четвертое основание рибонуклеиновой кислоты – урацил (У).
Комплементарными основаниями являются: Т – А, А – У, Г – Ц, Ц – Г. В парах комплементарных оснований первое соответствует ДНК, второе – РНК. Таким образом, на макромолекуле ДНК по принципу соответствия выстраивается и-РНК. В дальнейшем цепь РНК транспортируется через ядерную мембрану к месту синтеза белка.
Трансляция
Процесс идет на органоидах – рибосомах. Они нанизываются на цепь и-РНК, передвигаются по ней не плавно, а прерывисто. Располагаются таким образом, что внутри рибосомы находится полностью 1-2 триплета. На одну РНК может одновременно нанизываться большое количество рибосом.
В процессе принимают участие т-РНК. Они имеют пространственную структуру, принимают форму трилистника. Верхняя часть листа, то есть молекулы, содержит антикодон. Это триплет, распознающий кодон (один триплет) и-РНК.
Каждая т-РНК транспортирует к рибосоме строго определенную аминокислоту. Если триплет-антикодон т-РНК распознает триплет-кодон и-РНК, тогда аминокислота встраивается в макромолекулу белка. Следующая т-РНК подтаскивает другую аминокислоту, снова идет процесс распознавания. В данном случае также идет матричный процесс сборки белка. РНК служит матрицей для синтеза белка.
Как только белковая молекула синтезирована, она освобождается от рибосомы. Правильное чередование аминокислот в макромолекуле образует первичную структуру белковой молекулы. Она является определяющей, поэтому так важен матричный синтез белков. Другие структуры белковые макромолекулы приобретают самопроизвольно.
Схема биосинтеза белка
Процессы, ведущие к синтезу белка, можно кратко изобразить на схеме:
Первый этап – реакции, идущие в кариоплазме. Раскручивание ДНК. Транскрипция. Образование м-РНК.
Второй этап – транспорт м-РНК к рибосомам.
Третий этап – реакции, идущие в цитоплазме. Трансляция. Биосинтез белковой молекулы, протекающий при участии РНК, клеточных органоидов – рибосом.
Заключение
В реакциях матричного синтеза происходит реализация наследственной информации. В каждом организме синтезируются специфичные белковые молекулы. Они вместе с углеводами и жирами накапливаются в плодах растений. В организмах животных выполняют множество разнообразных функций.
Общая информация о биосинтезе белка: значение, код ДНК, процесс считывания и передачи информации
Общая информация о биосинтезе белка
Значение биосинтеза белка в клетке
Процесс биосинтез белка — наиболее значимая реакция пластического обмена. Способность синтезировать белок есть у всех клеток живых организмов: сложных и простых, грибов, растений и животных. Клетка содержит несколько тысяч различных белков. При этом, для каждого вида клеток характерны специфические белки.
Способность к синтезу собственных уникальных белков является наследственной и сохраняется на протяжении всей жизни организма. Биосинтез белков происходит наиболее интенсивно, когда клетки активно растут и развиваются.
Что такое биосинтез белка?
Процессом синтеза белка называется — процесс, состоящий из множества стадий, на которых происходит синтез белковой макромолекулы и последующее созревание (формирование) белка, и происходящий в живых организмах.
Фотосинтез связан с большими энергетическими затратами. Благодаря ему происходит обеспечение клеток так называемым строительным материалом, биологическими катализаторами (ферментами), регуляторами и средствами защиты организма.
Каково значение белков в клетке? Значение белков неоценимо. Для этого рассмотрим, что такое биосинтез подробнее.
Код ДНК
Определение места синтеза белковых макромолекул — наивысшее достижение молекулярной биологии. ДНК играет ключевую роль в определении структуры синтезируемого белка. Молекула ДНК содержит информацию о первичной структуре молекулы белка.
Геном — часть молекулы ДНК, содержащая информацию о первичной структуре одного белка.
Генетический код — единая для всех живых организмов система сохранения полной наследственной информации.
Если говорить о структуре, то она представляет собой определенную последовательность нуклеотидов в молекулах нуклеиновых кислот. Эта последовательность задает последовательность введения аминокислотных остатков в полипептидную цепь в ходе ее синтеза.
Согласно исследованиям ученых, каждая аминокислота в полипептидной цепи кодируется последовательностью, которая состоит из 3 нуклеотидов (это триплет нуклеотидов).
Всего выделяют 20 основных аминокислот. Каждая аминокислота имеет способность кодироваться несколькими разными триплетами.
Матрица — молекула ДНК, которая содержит информацию.
Процесс считывания и передачи информации
Расположение молекул ДНК — ядро клетки. Также они могут находиться в пластидах и митохондриях. В определенный момент происходит деспирализация молекулы ДНК и расхождение ее параллельных цепей.
В соответствии с принципом комплементарности, на этих цепях происходит синтез небольших молекул и-РНК (информационной РНК). Это транскрипция или считывание.
Молекула и-РНК, синтезированная таким образом, направляется к месту синтеза белка.
Трансляция — процесс переноса и-РНК из ядра к месту синтеза белка.
Механизм биосинтеза белка
Синтез белковых молекул осуществляется на мембранах ЭПС (эндоплазматическая сеть). Рибосома является органеллой, которая отвечает за синтез белка. Рибосомы, нанизываясь на молекулу и-РНК, формируют полисому. Молекула т-РНК (транспортная РНК), которая несет кислотный остаток, подходит к каждой рибосоме.
т-РНК отличается формой трилистика: верхушка — это триплет нуклеотидов или антикодон. Он формирует комплементарную пару с соответствующим триплетом и-РНК (кодоном).
Рибосома в процессе синтеза белка надвигается на нитевидную молекулу и-РНК, которая оказывается двумя ее субъединицами. Присоединение т-РНК к и-РНК происходит в определенном месте — в месте совпадения кодона и антикодона. Присоединение аминокислотных остатков к синтезируемой цепи происходит при помощи полипептидных связей. Происходит отсоединение т-РНК, после чего она покидает рибосому.
Это продолжается до завершения синтеза нити аминокислотных остатков (белковой молекулы).
Заключительный этап — приобретение синтезированным белком пространственной структуры. Благодаря соответствующим ферментам от него отщепляются лишние аминокислотные остатки, происходит введение небелковых фосфатных, карбоксильных и других групп, присоединение углеводов, липидов и т. д. Белок «созревает». Как только все эти процессы заканчиваются, молекула белка становится полностью функционально активной.
Транскрипция и трансляция
Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.
Транскрпиция (лат. transcriptio — переписывание)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.
Трансляция (от лат. translatio — перенос, перемещение)
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Биосинтез белка. №27 ЕГЭ.
ВВЕДЕНИЕ.
Перед тем как начать печатать эту статью наша группа отследила в каких заданиях ЕГЭ учащиеся совершают большинство ошибок. Этими заданиями оказались: номер 27 из второй части и несколько номеров из первой, в которых проверяется знание темы «Биосинтез белка».
Тема 1: Нуклеиновые кислоты — что это?
В состав каждого нуклеотида входят:
• Остаток фосфорной кислоты.
Строение ДНК.
ДНК — это полимерное соединение с постоянным (стабильным) содержанием в клетке. ДНК содержится почти исключительно в ядре клетки.
• По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали.
• ДНК хранит информацию о структуре белка и «храниться» в хромосомах, которые находятся в ядре.
P.S. именно белок определяет наше разнообразие.
Важно знать! Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии.
Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований: аденин (А), тимин (Т), гуанин (Г), цитозин (Ц).
Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А=Т и Г≡Ц.
Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов, или Правилом Чаргаффа.
Строение РНК.
РНК содержит 4 азотистых основания: Аденин (А), Урацил (У), Гуанин (Г), Цитозин (Ц).
По выполняемым функциям среди РНК выделяют: транспортные, информационные (матричные) и рибосомные.
Обратите внимание на схему ниже — а особенно на слово «антикодон». Что это? Антикодон — это триплет нуклеотидов на верхушке тРНК. И определённая последовательность этих нуклеотидов определяет 1 конкретную аминокислоту, которую данная молекула тРНК будет переносить. Например, если на верхушке тРНК — антикодон имеет последовательность ЦАУ (цитозин, аденин, урацил) — то эта тРНК будет переносить аминокислоту Валин.
• Информационная (матричная) РНК (иРНК, мРНК) — одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию об одной белковой молекуле к месту синтеза белка в рибосомах. О ней мы ещё подробно поговорим.
• Рибосомные РНК (рРНК) — самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка. На долю рРНК приходится около 90% от общего содержания РНК в клетке. Т.е. всё что Вы должны о ней понимать — это то что она входит в состав рибосом, т.е. образует рибосомы.
Тема 2: Биосинтез белка.
1-ый этап биосинтеза. Транскрипция.
Процесс транскрипции:
Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид Г — то в составе иРНК это будет Ц;
Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид Т— то в составе иРНК это будет А;
Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид А— то в составе иРНК это будет У (т.к. в состав РНК не входит тимин Т). и т.д.
2-ой этап биосинтеза. Введение.
Перед тем как мы перейдём к следующему этапу — стоит ввести терминологию. Вам должны быть знакомы понятия триплет, кодон и антикодон.
Антикодон — это триплет нуклеотидов на верхушке тРНК
*с ним мы уже познакомились*
Теперь потихоньку будем с Вами приходить к понятиям триплет и кодон. Полученная при транскрипции молекула иРНК служит матрицей (основой) для синтеза полипептида (белка) на рибосомах, я думаю это понятно. Теперь давайте вспомним из чего состоит белок? А белок состоит из аминокислот. Вот они:
Так вот белок состоит из последовательности этих аминокислот, выглядит это так:
Теперь мы знаем, что цель биосинтеза белка — создать вот такую цепочку аминокислот (это и есть белок). А эта цепь создаётся на матрице иРНК, которая является копией определённой нити ДНК. Понятно? Ну хорошо 🙂
Так вот, теперь суть всего этого «введения»: каждую аминокислоту кодирует три нуклеотида. Теперь обещанная терминология.
Триплет — это участок ДНК (ДНК. — запомните), который состоит из 3-ёх нуклеотидов и кодирует определённый вид аминокислоты.
Кодон — это участок иРНК (иРНК. — запомните), который состоит из 3-ёх нуклеотидов и кодирует определённую аминокислоту. Но ещё раз напомню, что иРНК — это просто копия какой-либо нити ДНК.
Посмотрите на эту схему:
2-ой этап биосинтеза. Трансляция.
Полученная при транскрипции молекула иРНК служит матрицей для синтеза белка на рибосомах. Триплеты иРНК, кодирующие определенную аминокислоту, называются кодоны, на всякий случай скажу это ещё раз.
В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону иРНК.
А теперь ещё раз напоминаю, что каждая молекула тРНК способна переносить строго определенную аминокислоту!
Вывод выше — это Ваш ключ к пониманию этой темы. Если Вы это не поняли — то перечитайте ещё пару раз и взгляните на схему ниже.
Итог 2-ой темы.
Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.
Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.
P.S. Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.
Пояснение: носителем генетической информации является ДНК, расположенная в клеточном ядре. В ходе транскрипции участок двуцепочечной ДНК «разматывается», а затем на одной из цепочек синтезируется молекула иРНК.
Информационная (матричная) РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности.
Формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включен урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК». Как и в любой другой биохимической реакции в этом синтезе участвует фермент — РНК-полимераза.
2. Трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.
Пояснение: на тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 секунды. За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК (аминокислоты доставляются к рибосомам транспортными РНК), отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота включается в растущую цепочку.
Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.
Тема 3: Практика. Порешаем несколько заданий из ЕГЭ?
Ответ:
1) Первым делом — просто перепишем эту последовательность ДНК, вот так:
*для удобства — можно разделить эту последовательность на триплеты, небольшими пробелами*
ДНК: АТГ ГЦТ ЦТЦ ЦАТ ТГГ
2) По заданию нас просят построить по этой последовательности ДНК построить иРНК, строим! *мы это умеем*
Подсказка: А будет переходить У (тимина в РНК нет), Г будет переходить Ц и наоборот, а Т будет переходить в А.
иРНК: УАЦ ЦГА ГАГ ГУА АЦЦ
3) Теперь нужно выяснить количество тРНК и нуклеотидный состав их антикодонов. Ну давайте сначала определим число тРНК — оно будет равняться числу кодонов на иРНК. Считаем… Будет 5 тРНК! А теперь составим их нуклеотидный состав по принципу комплиментарности. Отмечу, что у нас всё ещё не будет Тимина — т.к. мы составляем цепь РНК. Иво ттак легко по принципу комплиментарности мы всё составили 🙂
тРНК: АУГ, ГЦУ, ЦУЦ, ЦАУ, УГГ
!ПРАВИЛА ОФОРМЛЕНИЯ ЗАДАНИЯ №27 ЕГЭ!
2. Цепочки нужно строить строго друг под другом, буква под буквой!
3. Когда мы пишем последовательность нуклеотидов в тРНК, то мы разделяем антикодоны запятыми (т.к. каждый из них — участок отдельной структуры)!
НО! ОЧЕНЬ ВАЖНО! Если в задании сказано «петля тРНК» — то запятыми разделять ничего не нужно. Если вы этого не заметите и поставите запятые — это будет грубейшая ошибка!
Видим в задании «петля тРНК» — в тРНК запятыми антикодоны не разделяем. Например, в задании выше слова «петля» не было — поэтому я разделял антикодоны запятыми.
4. Нужно обязательно пояснять свои действия. И обязательно указать, что «все свои цепочки я строю по принципу комплиментарности, или по Правилу Чаргаффа». Если пояснения не будет — вы потеряете 1 балл!
Тема 3: Продолжение решения задач.
Ответ:
тРНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ *ставлю запятые, слово «петля» нет»
иРНК: ААУ ЦЦГ ГЦГ УАА ГЦА *без знаков препинания*
1 цепь ДНК: ТТА ГГЦ ЦГЦ АТТ ЦГТ *не забудь про то, что в ДНК есть Тимин*
2 цепь ДНК: ААТ ЦЦГ ГЦГ ТАА ГЦА *помните — нас попросили написать последовательность каждой цепи молекулы ДНК*
*Теперь считаем А, Т, Г, Ц в обоих цепях ДНК*
В молекуле ДНК А=Т=7, число Г=Ц=8.
Все свои цепи нуклеиновых кислот строил по Правилу Чаргаффа.
Задание 27. ЕГЭ.
В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.
Ответ: *он должен выглядеть так*
1) Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
2) Количество нуклеотидов с аденином составляет 24%, т.к. количество нуклеотидов с тимином 24%
3) Количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.
Ответ: *он должен выглядеть так*
Ответ: *он должен выглядеть так*
1) Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
2) Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
3) Триплет состоит из 3 нуклеотидов, значит количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.
Ответ: *он должен выглядеть так*
1) Белок содержит 52 аминокислоты, т. к. одну аминокислоту кодирует один триплет (156:3).
2) т-РНК транспортирует к месту синтеза белка одну аминокислоту, следовательно, всего в синтезе участвуют 52 т-РНК.
3) В гене первичную структуру белка кодируют 52 триплета, так как каждая аминокислота кодируется одним триплетом.
Ответ: *он должен выглядеть так*
1) Если и-РНК синтезируется на верхней цепи ДНК, то её фрагмент будет УУУ ААА ЦЦЦ ГГГ.
2) Фрагмент белка: фен–лиз–про–гли.
3) Если белок кодируется нижней цепью, то иРНК — ААА УУУ ГГГ ЦЦЦ.
4) Фрагмент белка: лиз–фен–гли−про
ЭПИЛОГ.
Очень надеюсь, что эта статья поможет Вам разобраться в этой теме. Оставляйте свои комментарии, ставьте лайки и обязательно задавайте вопросы 🙂