Что образуется в ядрышке клетки

Ядрышко в клетке

При световой микроскопии ядрышки в клетках с высоким уровнем белкового синтеза имеют довольно большие размеры и их легко рассмотреть.

Если же ядрышки мелкие и в ядре преобладает гетерохроматин, то их поиск значительно затруднен. Ядрышко — это своеобразный центр ядра, его «штаб», где собираются рибосомы и, таким образом, контролируется степень последующих процессов трансляции белков в клетке.

В ядре может быть от одного до нескольких ядрышек, но если ядрышек одно или два, то они более крупные. Они могут иметь различные размеры, форму, плотность и область распределения в зависимости от функциональной активности клетки. Более крупные ядрышки характерны для дифференцированных клеток с высокой активностью синтеза белков. Малодифференцированные клетки обычно имеют несколько мелких ядрышек. Клетки, в которых активность белкового синтеза невелика, имеют мелкие ядрышки с высокой электронной плотностью и интенсивно окрашивающиеся основными красителями.

Основная функция ядрышка — синтез рРНК и субъединиц рибосом. При исследовании ультратонких срезов в электронном микроскопе видно, что ядрышки не гомогенные структуры, а имеют вид элекронно-плотного вещества, формирующего петли. Промежутки между петлями заполнены более светлым веществом. С помощью электронной микроскопии в ядрышке можно выявить несколько компонентов.

Фибриллярный компонент — это тонкофибриллярная структура, состоящая из тончайших нитей различной электронной плотности. Она образована участками слабо конденсированной ДНК, считывающимися с нее молекулами РНК и белками, осуществляющими транскрипцию. Фибриллярный компонент занимает центральные, небольшие по размерам участки вокруг ядрышковых организаторов. В фибриллярном компоненте ядрышка происходит транскрипция рРНК.

Гранулярный (зернистый) компонент — это образующиеся субъединицы рибосом. При большом увеличении электронного микроскопа в гранулярном компоненте видно множество гранул высокой электронной плотности. Располагается между фибриллярными структурами и по периферии ядрышка.

Зону ядрышкового организатора иногда выявляют в центре фибриллярного компонента в виде светлого участка. Вокруг ядрышкового организатора в интерфазу образуется ядрышко. В период митоза зона ядрышкового организатора соответствует области вторичной перетяжки хромосомы.

Зона неактивной ДНК вокруг ядрышка отличается высокой степенью конденсации в виде околоядрышкового гетерохроматина. Предположительно эти зоны являются частями хромосом, которые образуют ядрышко.

Ядрышки значительно изменяются в различные стадии митоза. В конце профазы митоза они исчезают, а находящийся в ядрышках хроматин начинает конденсироваться. С конца профазы до середины телофазы митоза ядрышко содержит в себе только хроматин ядрышкового организатора, что указывает на его низкую активность. Затем этот хроматин деконденсируется и вокруг него формируется плотный фибриллярный материал, содержащий скопление рРНК. Рост ядрышка продолжается до конца телофазы за счет увеличения содержания фибриллярных структур, а затем вокруг них формируется гранулярный компонент. К концу телофазы строение ядрышка близко к таковому в интерфазном ядре, и проявляются признаки нарастающей синтетической активности с образованием новых рибосом.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

ЯДРЫШКО

Ядрышко (nucleolus) — составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

Ядрышко впервые описано в 1838— 1839 годы М. Шлейденом в растительных и Т. Шванном — в животных клетках.

Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) — так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) — кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом — РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рРНК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками — рибонуклеопротеидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклеопротеид.

Что образуется в ядрышке клетки. Смотреть фото Что образуется в ядрышке клетки. Смотреть картинку Что образуется в ядрышке клетки. Картинка про Что образуется в ядрышке клетки. Фото Что образуется в ядрышке клетки

Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150— 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4—8 нм. На срезах нуклеолонемы видны относительно светлые участки — так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопротеидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке — так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны — так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю. Ультраструктура клеточного ядра, с. 50, М., 1974; Воuteille М. a. Dupuy-Goin А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a. Smetana K. The nucleolus, N. Y.— L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien — N. Y., 1985, bibliogr.

Источник

Ядрышки – компонент ядра эукариотической клетки

Ядрышки – обязательный компонент ядра эукариотической клетки. Они наблюдаются в ядрах практически всех клеток, но это правило имеет небольшое количество исключений, которые лишь подчеркивают роль ядрышка в жизненном цикле клетки. К таким исключениям относятся клетки яиц, на стадии дробления, здесь ядрышки отсутствуют на ранних этапах эмбриогенеза, и клетки, которые проходят специализацию, как, например, некоторые клетки крови.

Впервые ядрышки были описаны в конце XIX столетия, когда в научных исследованиях стали активно использоваться разнообразные методы окраски ядра. Настоящий прогресс в этом направлении был достигнут при разработке и использовании в цитологии специальных ядрышковых красителей и методов, связанных с применением азотнокислого серебра [1, 2]. В шестидесятых годах прошлого столетия было показано, что ядрышко является основным местом биогенеза рибосом. С этого времени ядрышки стали объектом многих исследований.

В клеточном цикле ядрышки, присутствуют в течение всей интерфазы; в период митоза, в профазе, во время компактизации хромосом, они постепенно исчезают. В метафазе и анафазе ядрышки отсутствуют. Первые признаки новых ядрышек появляются после стадии средней телофазы, когда уже достаточно разрыхлились хромосомы дочерних ядер. В это время близ хромосом, которые деконденсируются, появляются плотные тельца – первичные ядрышки [3]. Обычно, их количество больше, чем в интерфазе. Позднее, в G1-периоде клеточного цикла первичные ядрышки растут, начинают объединяться одно за другим, их общее количество уменьшается, но возрастает объем. Общий объем ядрышка увеличивается вдвое в S- G2- периодах клеточного цикла [4].

Образование ядрышек топографически связано с определенными зонами на ядрышкообразующих хромосомах. Эти зоны называются ядрышковыми организаторами, или ядрышкообразующими районами (ЯОР) хромосом, которые локализованы в области вторичных перетяжек хромосом. В интерфазных ядрах в структуре ядрышка выделяют следующие составляющие: фибриллярные центры, плотный фибриллярный и гранулярный компоненты, ядрышковые вакуоли, и ассоциированный с ядрышком хроматин [4, 5]. Фибриллярные центры окружены плотными фибриллярными и гранулярными компонентами и содержат расплетенную рДНК и рассматриваются как интерфазные “двойники” митотических ЯОР [6]. Исследования последних лет показали, что число и размеры фибриллярных центров существенно варьирует в клетках, и зависит от их (клеток) функционального состояния, в частности, от интенсивности транскрипции рДНК [5, 7]. Что касается гранулярного компонента ядрышка, то принята точка зрения, что он, прежде всего, представлен дозревающими прерибосомами [4, 5]. В состав ядрышка входят также ферменты: РНК-полимераза-1, РНК-метилаза, топоизомераза-1; ядрышковые протеины, наиболее изученными из которых являются нуклеолин, протеины Р80 и Р105, и фосфопротеины С23 и Р100, все они локализуются преимущественно в зоне фибриллярного центра [4, 7]. На протяжении последних лет в ядрышках идентифицировано более чем 400 белков. Исследования молекулярного строения и содержимого ядрышек продолжаются сегодня и помогают понять широкий спектр ядрышковых функций.

Ядрышко представляет собой комплекс амплифицированных генов рРНК и продуктов – предшественников рибосом, и является источником основной массы цитоплазматической РНК, представленной, главным образом, рибосомной РНК.

Структурная организация ядрышка тесно связана с его функциональной активностью, и зависит от интенсивности транскрипции рДНК, скорости процессинга и выхода зрелых субъединиц рибосом из ядрышка в нуклеоплазму [4]. Поэтому, когда транскрипция и/или обработка рРНК замедлены, ядрышко частично, или полностью теряет структурную целостность. Когда транскрипция блокирована, отмечают сегрегацию ядрышковых компонентов [8]. Когда обработка и созревание рРНК ослаблены, но транскрипция рДНК все еще активна, т.е. когда утрачена связь между транскрипцией рДНК и обработкой рРНК, наблюдают рассеивание ядрышек по всей кариоплазме.

Лабильность морфологических показателей ядрышка (числа, формы, размера, микроскопического строения) считают одним из основных его функциональных свойств [4, 5]. Изменчивость морфологических и химических свойств ядрышек определяется основной их функцией – синтезом клеточной РНК, которая была отмечена Т. Касперсоном [2]. Им было показано, что количество РНК и белка в цитоплазме зависит от объема ядрышка и концентрации в нем РНК. Этот вывод позволяет связать изменения морфологических параметров ядрышек с метаболическими особенностями синтеза РНК и белка в клетке. Так, клетки, которые синтезируют большое количество белка, имеют большое ядрышко или много ядрышек [1, 6]. В малоактивных клетках ядрышко маленькое или его вообще тяжело обнаружить. При обычной функциональной нагрузке, которая отвечает нуждам определенной популяции клеток, структура ядрышка остается практически неизменной. Но в ходе клеточного цикла, в процессе дифференцирования и дедифференцирования, при угнетении или активации синтеза рРНК происходят значительные перестройки ядрышка [4].

Согласно литературным данным количество ядрышек в клетке может изменяться, но их число зависит от генного баланса клетки. Он определяется числом ядрышковых организаторов и увеличивается согласно плоидности ядра [1, 7]. Чаще всего в клетках количество ядрышек меньше, чем число ядрышковых организаторов. Это связано с тем, что при новообразовании они могут сливаться одно с другим, таким образом, в образовании одного ядрышка принимают участие несколько ядрышкообразующих районов (ЯОР) хромосом.

Ряд авторов [8-10,] считает, что увеличение количества ядрышек свидетельствует об амплификации рибосомной ДНК, а некоторые утверждают, что количество ядрышек может быть критерием дифференцирования клетки. Отмечена значительная корреляция между общим объемом ядрышек в клетках и их митотической активностью. При угнетении синтеза рРНК значительно снижается количество ядрышек на клетку, а сами ядрышки резко уменьшаются в размере и уплотняются. Подобную реакцию наблюдают, как при действии на клетки разных ингибиторов синтеза рРНК, так и в процессе естественной инактивации рыбосомных генов 11.

Чаще всего для визуализации ядрышек используется методика Ховела и Блэка [12] – она отличается от других применением коллоида желатина, который выступает в качестве стабилизатора и катализатора реакции, которая проходит в слабокислой среде. Разработаны многочисленные модификации данного метода, позволяющие использовать его при исследовании клеток и тканей, разнообразных организмов [13].

Экспериментальные исследования показали, что реакция серебрения базируется на выборочном связывании нитрата серебра с негистоновыми белками хромосом, которые образуют рибонуклеопротеиновые комплексы из только что синтезированной рРНК. Считают, что в ходе реакции происходит восстановление ионов Ag + до металлического серебра, однако при этом нет единой точки зрения относительно того, какие компоненты белков осуществляют процесс восстановления ионов. Наибольшую родственность к серебру проявляют сульфгидрильные и карбоксильные группы [14]. Есть мнение, что взаимодействие с серебром может осуществляться за счет фосфатных групп, которые связаны с серином и треонином в фосфорилированных белках [13].

При окраске препаратов интерфазных клеток методом Ховела и Блека, ядрышковые организаторы видны в виде черных точек (гранул) на желтом фоне ядер или слабоокрашенных хромосом. Сами ядрышки в интерфазных ядрах окрашиваются в коричневый цвет. Специфичность окраски достигается лишь при соблюдении определенных условий (рН, температуры, времени окрашивания и концентрации AgNO3). В связи с тем, что родственность к серебру проявляют практически все компоненты хроматина, изменение условий проведения реакции ведет к выявлению, кроме ЯОР, других структур. Так, при более продолжительном крашении азотнокислым серебром проявляются центромеры хромосом и центриоли [15].

Что образуется в ядрышке клетки. Смотреть фото Что образуется в ядрышке клетки. Смотреть картинку Что образуется в ядрышке клетки. Картинка про Что образуется в ядрышке клетки. Фото Что образуется в ядрышке клеткиМикрофотография. Ядрышки в клетках плавника рыб и в клетках гидры. Увеличение 10х100. Окраска азотнокислым серебром.

Нитратом серебра окрашиваются лишь те ядрышковые организаторы, которые в данный момент активно функционируют [14, 15]. Поэтому данный метод не только позволяет выявить ЯОР, но и дает возможность оценить функциональное состояние рыбосомных генов в клетке.

Степень аргентофильности ядрышек тесно связана с пролиферативным потенциалом клеток и уровнем их дифференцирования. Это дает возможность использовать явление аргентофильности ядрышек для изучения роста, дифференцирования и других клеточных процессов, при которых происходит изменение функционального состояния клетки, опосредствованное вариацией функциональной активности рыбосомных генов [13]. Вывод о том, что азотнокислым серебром окрашиваются лишь активные ЯОР, получил подтверждение в экспериментах по искусственному усилению и угнетению синтеза рРНК, эмбриогенеза у мышей и птиц, гаметогенеза у млекопитающих, в том числе и человека [14]. С помощью иммуноцитогенетических методов показано, что интерфазные ядрышки и хромосомные ЯОР млекопитающих, которые окрашиваются серебром, прямо отражают транскрипционную активность генов рРНК [15]. Показано, что способность определенного сайта данной хромосомы окрашиваться серебром постоянна у данного индивидуума, но существуют индивидуальные вариации в числе и распределении ЯОР, что заметно при крашении азотнокислым серебром. Установлено, что способность данного сайта окрашиваться серебром или, другими словами, способность данной хромосомы образовывать ядрышко передается наследственно. В связи с этим метод окраски азотнокислым серебром успешно применяют в кариосистематике.

Имеется много работ посвященных изучению изменения ядрышковых характеристик растительных и животных организмов в разных условиях, при влиянии естественных и антропогенных факторов [16].

Показано изменение структуры ядрышек под воздействием цитостатических препаратов в культуре клеток и в экспериментах на лабораторных животных [18]. Авторы отмечают, что данные эффекты характерны для агентов, которые угнетают транскрипцию и процессинг рРНК, блокируют обособление прерыбосом от ядрышка.

Показано увеличение объема ядрышкового материала в клетках растений при воздействии неблагоприятных экологических условий [19]. Более высокую активность ядрышкового аппарата в условиях естественной и антропогенной нагрузок связывают с действием адаптивных механизмов в условиях экстремальности, вызванной природными и антропогенными факторами.

Отмечено влияние малых доз ионизирующей радиации на ядрышковый аппарат зародышей карпа [20]. Показано стимулирующее свойство низких концентраций некоторых мутагенных факторов на гонады рыб и ооциты млекопитающих, следствием, которого является образование большого количества дополнительных ядрышек и усиление биосинтеза белка [21].

При исследовании влияния растворов солей кадмия и хрома на клетки жабр и гепатоцитов рыб Odontesthes bonariensis, показано значительное изменение объема ядрышек в этих клетках в зависимости от концентрации тяжелых металлов [22]. В экспериментах по влиянию растворов кадмия на клетки представителя миксомицет, Physarum polycephalum, отмечено изменение структуры ядрышка, описана его сегрегация, появление множественных ядрышкоподобных телец в ядре и образование кольцевидного ядрышка, при этом наблюдалось значительное снижение синтеза РНК [23]. Подобные изменения наблюдались и при влиянии кадмия на клетки корневой меристемы лука [24]

Приведенный выше обзор, позволяет заключить, что ядрышко – это обязательная структура ядра интерфазной клетки, оно занимает одно из центральных мест в синтезе белка клеткой, и отображает как уровень биосинтетической активности клетки на разных стадиях клеточного цикла, так и функциональное состояние клетки в нормальных условиях и в условиях патологии, или влияния токсичных веществ и других факторов.

Литература:

Фотоматериалы из личного архива автора.

Что образуется в ядрышке клетки. Смотреть фото Что образуется в ядрышке клетки. Смотреть картинку Что образуется в ядрышке клетки. Картинка про Что образуется в ядрышке клетки. Фото Что образуется в ядрышке клетки Веялкина Наталия Николаевна

© Наталия Веялкина, кандидат биологических наук, заведующая лабораторией экспериментальных биологических моделей

Источник

Cell Biology.ru

Справочник

Ядрышки

1% всей ДНК. Число генов рРНК постоянно в клетке

3 мкм, сод один ген рРНК.

фц: неактивные рибосомные гены, спейсерные участки.
Транскрипция пре-рРНК происходит по периферии фц, где пфк и представляет собой 45S пре-рРНК, располагающиеся в виде “елочек” на деконденсированных участках рДНК После завершения
транскрипции 45S РНК теряет связь с транскрипционной единицей на ДНК в зоне плотного фибриллярного компонента, каким-то еще непонятным образом переходит в гранулярную зону, где и происходит процессинг рРНК, образование и созревание рибосомных субъединиц.

Новые, неканонические функции ядрышек
Последние данные показывают, что кроме синтеза рРНК, ядрышко участвует во многих других аспектах экспрессии генов.
Первые намеки (1965) на признаки полифункциональности ядрышек были получены при изучении гетерокарионов. Так при слиянии человеческих клеток HeLa с эритроцитами кур были получены гетерокарионы с первоначально совершенно разными ядрами. Ядра клеток HeLa были функционально активны, в них шел синтез разнообразных РНК. Исходные ядра эритроцитов кур содержали сверхконденсированный хроматин, не содержали ядрышек и не транскрибировались. В гетерокарионе после слияния с HeLa клетками в ядрах эритроцитов кур хроматин начинал деконденсироваться, активировалась транскрипция, появлялись ядрышки. Иммуноцитохимическими методами изучалось появление в гетерокарионах белков, характерных для куриных клеток. Несмотря на то, что в клетках HeLa была готовая система функционирования рибосом и были сформированы ядрышки, появление куриных белков было отложено до тех пор
пока не возникнут ядрышки в ядрах эритроцитов. Это означало, что ядрышко куриного эритроцита как-то должно вовлекаться в образование куриных иРНК, т.е. ядрышко должно играть какую-то роль в продукции куриных иРНК.
Позднее были накоплены данные в поддержку этой возможности. Было обнаружено, что созревание (сплайсирование, см. ниже) c-myc иРНК в клетках млекопитающих происходит в ядрышках. В ядрышках обнаружены сплайсосомные малые РНК (sn РНК), факторы сплайсинга пре-иРНК.
Далее в ядрышках обнаруживаются РНК, входящие в SRP-частицы, участвующие в синтезе белков в эндоплазматическом ретикулуме. С ядрышком оказалась ассоциирована РНК теломеразы – рибонуклеопротеида (обратная транскриптаза). Много есть данных о локализации в ядрышках прцессинга малых ядерных РНК, входящих в состав сплайсосом, и даже о процессинге тРНК.
Ядрышко во время митоза: периферический хромосомный материал
В световом микроскопе ядрышко выявляется во время интерфазы,
в митотических клетках оно исчезает. При использовании цейтраферной микрокиносъемки можно наблюдать в живых клетках как по мере конденсации хромосом в интерфазе происходит исчезновение ядрышка. Сначала оно слегка уплотняется, но затем ко времени разрыва ядерной оболочки начинает быстро терять плотность, становится рыхлым и на глазах быстро исчезает, как бы тает. При этом видно, что часть ядрышкового материала растекается между хромосомами. В метафазе и анафазе ядрышки как таковые отсутствуют. Первые признаки новых ядрышек появляются после средней телофазы, когда уже достаточно разрыхлились хромосомы дочерних ядер, имеющие новую ядерную оболочку. В это время вблизи деконденсирующихся хромосом появляются плотные тельца – предъядрышки. Обычно их число выше, чем число ядрышка в интерфазе. Позднее уже в G1-периоде клеточного цикла предъядрышки растут, начинают объединяться друг с другом, их общее число падает, но суммарный объем возрастает. Общий объем ядрышка удваивается в S-G2-фазах. В некоторых случаях в профазе
(культуры клеток человека) при конденсации хромосом крупные ядрышки распадаются на более мелкие, которые в митозе исчезают.
На самом деле никакого полного исчезновения, или «растворения» ядрышка нет: происходит изменение его структуры, редукция одной части его компонентов при сохранении другой. Так было показано, что аргентофильные гранулы в интерфазных ядрышках, обнаруживаемые в световом микроскопе начинают в профазе сливаться друг с другом, одновременно уменьшаясь в объеме, минимальный размер они занимают в метафазе, локализуясь в зонах ядрышковых организаторов хромосом. В таком виде они существуют до средней телофазы, когда выявляются в виде отдельных множественных «предъядрышек», разбросанных среди деконденсированных хромосом. Уже в конце телофазы такие аргентофильные предъядрышки начинают расти. Таким образом можно видеть, что во время митоза исчезновению подвергается только часть ядрышкового компонента, в то время как аргентофильный компонент сохраняется, постоянно существует во время митоза
и переносится на хромосомах в дочерние ядра.
Радиоавтографическими исследованиями было показано, что исчезновение ядрышек совпадает с прекращением синтеза клеточной (в основном рибосомной) РНК, который возобновляется в поздней телофазе, совпадая по времени с появлением новых ядрышек.
Кроме того было обнаружено, что активность РНК-полимеразы I также исчезает на средних стадиях митоза. Это давало основание считать, что новообразование ядрышек связано с восстановление синтеза рРНК в дочерних клетках.
Но с другой стороны существуют факты, указывающие на перманентное, постоянное присутствие ядрышковых компонентов течение всего клеточного цикла. Это относится к Ag-фильному материалу ядрышек в первую очередь.

Во время митоза у животных и растений хромосомы окружены матриксом, представляющем собой скопление рыхло расположенных фибрилл и гранул рибонуклеопротеидов, сходных по составу с компонентами, входящими в состав интерфазных ядрышек.
При конденсации хромосом часть ядрышек диссоциирует и уходит в цитоплазму (большая часть РНП-частиц), в то время как другие тесно связываются с поверхностью хромосом, образуя основу «матрикса», или периферического хромосомного материала (ПХМ).
Этот фибриллярно-гранулярный материал, синтезированный до митоза, переносится хромосомами в дочерние клетки. В ранней телофазе еще в отсутствие синтеза РНК по мере деконденсации хромосом происходит структурное перераспределение компонентов ПХМ. Его фибриллярные компоненты начинают собираться в мелкие ассоциаты – предъядрышки, которые могут сливаться друг с другом, собираться в зоне ядрышкового организатора хромосом в поздней телофазе, где возобновляется транскрипция рРНК.
Ядрышковые белки, участвующие в транскрипции рРНК (РНК-полимераза I, топоизомераза I, фактор инициации транскрипции UBFи др.), аккумулируются в зоне ядрышкового организатора, в то время как белки, связанные с процессингом пре-рРНК (фибрилларин,
нуклеолин, В-23), а также некоторая часть пре-рРНК и малые ядрышковые РНП переносятся поверхностью хромосом в составе периферического хромосомного материала.
Кроме того в состав ПХМ могут входить некоторые негистоновые белки из состава ядерного интерфазного остова.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *