Что общего и в чем отличие между проекциями цилиндра и конуса

Что общего и в чем отличие между проекциями цилиндра и конуса

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конусаЧто общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конусаЧто общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конусаЧто общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конусаЧто общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

§ 19. Проекции геометрических тел

Присмотритесь к окружающим нас предметам. Многие из них имеют форму геометрических тел или их сочетаний.

Форма деталей, встречающихся в технике, также представляет собой сочетание различных геометрических тел или их частей. Например, ось (рис. 124, а) образована в результате добавления к одному цилиндру другого цилиндра, меньшего по размерам, а втулка (рис. 124, б) получилась после того, как из цилиндра удалили другой цилиндр меньшего диаметра.

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 124. Деталь как суумма или разность геометрических тел

Форма каждого геометрического тела и его изображений на чертеже имеет свои характерные признаки. Этим пользуются, чтобы облегчить чтение и выполнение чертежей.

Деталь мысленно расчленяют на отдельные составляющие ее части, имеющие изображения, характерные для известных нам геометрических тел.

Мысленное расчленение предмета на составляющие его геометрические тела называется анализом геометрической формы.

Из каких геометрических тел состоит деталь, изображенная на рис. 125?

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 125. Заготовка ключа

Форма детали состоит из усеченного конуса, цилиндра, куба, цилиндра, части шара (рис. 126, а). Из большего цилиндра удален элемент цилиндрической формы.

После такого анализа форму детали представить легче (рис. 126, б). Поэтому необходимо знать характерные особенности проекций геометрических тел.

Цилиндр и конус. Проекции цилиндра и конуса показаны на рис. 127, а и б. Круги, лежащие в основаниях цилиндра и конуса, расположены параллельно горизонтальной плоскости проекций; проекции оснований на горизонтальную плоскость будут также кругами.

Выполнение чертежей цилиндра и конуса начинают с проведения осей симметрии.

Из рис. 127, а видно, что фронтальная и профильная проекции цилиндра одинаковы. То же можно сказать о проекциях конуса. Поэтому в данном случае профильные проекции на чертеже лишние. На рисунке они даны лишь для того, чтобы показать, какую форму имеют все три проекции цилиндра и конуса.

Размеры цилиндра и конуса определяются высотой h и диаметром основания d. Для усеченного конуса указывают высоту h и диаметры обоих оснований D и d.

Знак диаметра ∅ позволяет определять форму предмета и по одной проекции (рис. 128).

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 128. Рациональное выполнение изображений цилиндра и конуса

Для построения изометрической проекции цилиндра и конуса (см. рис. 127, г и д) проводят оси х и у, на которых строят ромб со стороной, равной диаметру предмета, в ромб вписывают овал (построение овала см. рис. 96); вдоль оси z откладывают высоту предмета. Для цилиндра и усеченного конуса строят второй овал и проводят касательные к овалам.

Построение изометрической проекции куба показано на рис. 129, в.

На чертеже куба и параллелепипеда проставляют три размера: длину, высоту и ширину.

На рис. 130, а приведено наглядное изображение детали, а на рис. 130, б дан ее чертеж. Деталь состоит из двух прямоугольных параллелепипедов, имеющих по две квадратные грани. Обратите внимание, как проставлены на чертеже размеры.

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 130. Рациональное выполнение чертежа

Размеры призм определяются высотой и размерами фигуры основания. Штрихпунктирными линиями на чертежах проводят оси симметрии.

Построение изометрии призм (рис. 131, в и г) начинают с основания. Затем из каждой вершины основания восставляют перпендикуляры, откладывают на них высоту и проводят линии, параллельные ребрам основания.

Выполнение чертежей начинают также с горизонтальной проекции.

Размеры пирамиды определяются длиной b двух сторон основания и высотой h.

Построение изометрической проекции пирамиды (рис. 132, б) начинают с основания. Затем из центра полученной фигуры восставляют перпендикуляр, откладывают на нем высоту и соединяют полученную точку с вершинами основания.

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 133. Комплексный чертеж шара

Тор. На рис. 134, а даны две проекции тора (кругового кольца). На фронтальной проекции в натуральную величину изображается окружность, в результате вращения которой образуется тор. Горизонтальная проекция представляет собой две концентрические окружности. Радиус внешней окружности больше радиуса внутренней на величину, равную диаметру образующей окружности.

Ответьте на вопросы

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

1. В чем заключается анализ геометрической формы предметов? Каково его значение?

2. Что общего и в чем отличие между проекциями цилиндра и конуса?

3. Какую форму имеют проекции куба и прямоугольного параллелепипеда?

5. Какую форму имеют проекции правильной треугольной и шестиугольной призм, правильной четырехугольной пирамиды?

6. Сколькими и какими размерами определяется величина цилиндра, конуса, куба, параллелепипеда, правильных треугольной и шестиугольной призм, правильной четырехугольной пирамиды, шара, тора?

7. Для каких геометрических тел при наличии размеров можно ограничиться одной проекцией?

8. У каких геометрических тел все проекции одинаковы?

Задания к § 19

Упражнение 62

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

Запишите в рабочей тетради наименования и размеры геометрических тел, на которые можно расчленить формы деталей (рис. 135, а и б).

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Форма записи:

Упражнение 63

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

Вычертите по три проекции и выполните технические рисунки следующих геометрических тел: цилиндра, конуса, правильных треугольной и шестиугольной призм и пирамиды. При выполнении чертежей не забудьте провести осевые и центровые линии. Правильно нанести размеры, следуя примерам, данным на рис. 127, а и б; 131, а и б; 135, а. Величину деталей определите обмериванием изображений на этих рисунках. Чертежи выполните в масштабе 5 : 1.

Упражнение 64

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 136. Задания на моделирование

Упражнение 65

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 137. Задания для упражнений

1. Какие виды даны на чертеже?

2. Из каких геометрических тел состоит деталь?

3. Каковы размеры каждого геометрического тела?

4. Какова шероховатость поверхностей детали? Выполните чертежи геометрических тел, на которые можно расчленить деталь, и технический рисунок детали.

Упражнение 66

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

Начертите деталь по описанию, приведенному ниже, и нанесите на чертеж размеры.

Упражнение 67

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса

Чертежи деталей на рис. 138 содержат один, два или три вида. Запишите в рабочей тетради, какие чертежи выполнены наиболее рационально, и объясните почему.

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Форма записи:

Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть фото Что общего и в чем отличие между проекциями цилиндра и конуса. Смотреть картинку Что общего и в чем отличие между проекциями цилиндра и конуса. Картинка про Что общего и в чем отличие между проекциями цилиндра и конуса. Фото Что общего и в чем отличие между проекциями цилиндра и конуса
Рис. 138. Задания на определение рациональности чертежа

Источник

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Понятие цилиндра

Построим на некоторой плоскости α окружность L, центр которой находится в точке О, а ее радиус обозначим как r. Далее через каждую точку этой окруж-ти проведем прямую, которая будет перпендикулярна к α. Все вместе эти прямые образуют поверхность, которую принято называть цилиндрической поверхностью (может использоваться сокращение поверх-ть). Введем несколько понятий:

Примечание. Заметьте, что в стереометрии при изображении окружности на плос-ти она выглядит как эллипс (овал).

Заметим, что так как все образующие и ось цилиндрической поверх-ти перпендикулярны одной и той же плос-ти α, то они будут параллельны друг другу.

Далее проведем плос-ть β, параллельную α. Так как образующие и ось пересекали α, то они должны пересекать и β. В результате они образуют в плос-ти β какую-то плоскую линию L1. Докажем, что L1 – это также окружность.

Действительно, пусть ось цилиндрической поверх-ти пересекает плос-ти α и β в точках О и О1 соответственно. Произвольная образующая пересекает эти же плос-ти в точках А и А1:

Так как ОО1||АА1, то ОО1А1А – это плоский четырехугольник. ОО1⊥α и ОО1⊥β, поэтому углы ∠АОО1 и ∠А1О1О – прямые. АА1⊥α и АА1⊥β, поэтому прямыми будут и углы ∠ОАА1 и ∠О1А1А. Получается, что ОО1А1А – это прямоугольник, и поэтому отрезки ОА и О1А1 одинаковы:

Итак, точка А1 находится на расстоянии r от О1. Аналогично и для любой другой точки на линии L1 можно показать, что она находится на расстоянии r от О1. То есть все точки L1 равноудалены от О1, и поэтому L1 – это окруж-ть с центром в точке О1, ч. т. д.

Обратите внимание, что окруж-ти L и L1 имеют одинаковые радиусы, то есть это одинаковые окруж-ти.

Объемная фигура, образованная окруж-тями L и L1, именуется цилиндром. Рассмотрим его основные элементы:

Напомним, что отрезки параллельных прямых, заключенные между параллельными плос-тями, имеют одинаковую длину. Отсюда вытекает тот факт, что образующие цилиндра одинаковы.

Введем ещё два термина:

Отметим, что на самом деле мы рассмотрели только частный случай цилиндра – так называемый прямой круговой цилиндр. Его основания – это круги (поэтому он именуется круговым), а его образующие образуют с основаниями прямой угол(поэтому он именуется прямым). Можно построить наклонный цилиндр (его также называют косым), у которого образующие не перпендикулярны основанию. Также существуют и цилиндры, у которых основаниями являются не окруж-ти, а другие фигуры, например параболы:

В принципе любую призму (а значит и любой параллелепипед) можно считать цилиндром. Однако в дальнейшем в курсе школьной стереометрии под цилиндром будет подразумеваться исключительно прямой круговой цилиндр, если специально не оговорено иное.

В реальной жизни очень многие предметы имеют форму цилиндра. Колонны в зданиях, ножки стульев, бочки, рулоны бумаги представляют собой цилиндры. Даже дерево можно условно считать цилиндром.

Рассмотрим сечение цилиндра плос-тью, перпендикулярной его основаниям.

Пусть сечение пересекает нижнее основание цилиндра в точках А1 и В1. Тогда перпендикуляры к основанию, проходящие через эти точки, будут принадлежать этому сечению. Но эти перпендикуляры – одновременно и образующие цилиндра А1А и В1В. Значит, сечение проходит и через точки А и В. Раз АА1 и ВВ1 – перпендикуляры к обоим основаниям цилиндра, то

Итак, в четырехугольнике АВВ1А1 все углы прямые, то есть он представляет собой прямоугольник. Более того, можно утверждать, что любое сечение, проходящее через образующую цилиндра, будет прямоугольником, ведь такое сечение будет перпендикулярно основаниям, так как оно содержит перпендикуляр к ним. Сечение, проходящее через цилиндрическую ось, именуется осевым сечением. Оно также имеет форму прямоугольника.

Далее рассмотрим сечение цилиндра плос-тью, параллельной основаниям:

Пусть секущей будет плос-ть γ, а нижнее основание располагается в плос-ти α. Тогда по определению фигура, «зажатая» между этими двумя плос-тями – это цилиндр, а потому сечение должно иметь форму круга. Получается, что сечение γ разбивает цилиндр на два цилиндра.

Рассмотрим боковую поверх-ть цилиндра. Она представляет собой замкнутую поверхность. Если ее условно «разрезать» по образующей цилиндра и развернуть, то получится прямоугольник:

Длина одной стороны такого прямоугольника (он называется разверткой боковой поверх-ти цилиндра) – это длина образующей цилиндра, то есть его высота. Длина второй стороны совпадает с длиной окруж-ти, лежащей в основании цилиндра. Если радиус цилиндра обозначен как r, то длина этой окруж-ти составляет 2πr. Тогда площадь боковой поверх-ти можно рассчитать как площадь прямоугольника:

Площадь полной поверх-ти цилиндра – это сумма площадей его оснований и его боковой поверх-ти. Так как площадь круга рассчитывается по формуле

Рассмотрим ещё несколько важных понятий. В цилиндр может быть вписана прямая призма. В таком случае основания призмы находятся в тех же плос-тях, что и основания цилиндра, а её боковые грани – это образующие цилиндра.

Если плос-ть содержит образующую цилиндра, но не пересекает его основания, то такая плос-ть именуется касательной к цилиндру. Можно сказать, что касательная плос-ть – это такая плос-ть, которая имеет ровно по одной общей точке с каждым основанием цилиндром.

Если каждая боковая грань призмы – это касательная к цилиндру, а основания призмы находятся в тех же плос-тях, что и основания цилиндра, то говорят, что цилиндр вписан в призму.

Естественно, что если цилиндр вписан в призму, то его основания оказываются вписанными в те многоугольники, которые являются основаниями призмы. Если же призма вписана в цилиндр, то основания цилиндра – это уже окруж-ти, описанные около этих многоугольников.

Рассмотрим несколько задач, в которых фигурируют цилиндры.

Задание. Найдите боковую и полную площади цилиндра, если его радиус составляет 2 м, а высота – 3 м.

Задание. Какова длина диагонали осевого сечения цилиндра, с высотой 4 м и радиусом 1,5 м?

Решение. Осевое сечение цилиндра – это прямоугольник, обозначим его как АВСD. Сторона АВ – это высота цилиндра, а AD – это диаметр нижнего основания, ведь AD проходит через центр окруж-ти О. Тогда длина AD вдвое больше радиуса цилиндра:

Задание. Осевое сечение цилиндра – это квадрат, площадь которого обозначена буквой Q. Какова площадь основания цилиндра?

Решение. Обозначим сторону сечения-квадрата буквой а. Зная площадь сечения, легко найдем и сторону:

Задание. Высота цилиндра составляет 8 см, а его радиус – 5 см. Через его образующую проведено сечение, которое имеет форму квадрата. Каково расстояние между этим сечением и осью цилиндра?

Решение. Обозначим сечение как АВСD. Так как и это сечение, и ось цилиндра перпендикулярны основаниям цилиндра, то они должны быть параллельны друг другу. Расстояние между ними – это длина перпендикуляра О1К, опущенного из центра основания на сторону ВС:

Отрезок АВ имеет длину 8 см, ведь это высота цилиндра. Так как АВСD – квадрат, то и ВС имеет такую же длину. ВС – это хорда в окруж-ти с центром в точке О1. Напомним, что перпендикуляр к хорде, опущенный из центра окруж-ти, делит ее пополам, поэтому

Задание. Диаметр цилиндра равен его высоте. На верхнем основании, центр которого находится в точке О, отмечены точки А и В так, что ∠АОВ составляет 60°. Отрезок АА1 – образующая цилиндра. Найдите тангенс угла ∠ВА1А.

Решение. Рассмотрим ∆АОВ. Он равнобедренный, ведь радиусы АО и ОВ одинаковы. Но если в равнобедренном треугольнике один из углов составляет 60°, то и все углы будут также будут по 60°, то есть это равносторонний треугольник. Тогда, если радиус цилиндра обозначен как r, то

Понятие конуса

Построим на плос-ти α окруж-ть L с центром в точке О. Далее через О проведем перпендикуляр к α и отметим на нем точку Р. Если мы отрезками соединим точку Р с каждой точкой окруж-ти L, то получим поверх-ть, которая именуется конической поверхностью. При этом:

Объемное тело, ограниченное окруж-тью L и конической поверх-тью, именуется конусом. Соответственно вершина конической поверх-ти, её ось и образующие будут одновременно являться вершиной, осью и образующими конуса. Окруж-ть L – это основание конуса.

Ещё несколько терминов:

Как и в случае с цилиндром, мы в данном случае рассматриваем особый случай конуса – прямой круговой конус. В более общем случае ось конуса может не быть перпендикуляром к плос-ти основания (так называемый косой конус). Также в его основании может находиться не окруж-ть, а другая плоская фигура.

В общем случае любая пирамида может рассматриваться как частный случай конуса. Однако в рамках школьного курса под конусом подразумевается исключительно прямой круговой конус, если только не обговорено иное.

Докажем важное утверждение:

Действительно, рассмотрим две произвольные образующие РА и РВ у конуса с вершиной Р, у которой О – центр основания:

Так как ось ОР перпендикулярна основанию, то ∆РОА и ∆РОВ – прямоугольные. У них общий катет РО, а катеты АО и ОВ одинаковы как радиусы окруж-ти. Тогда ∆РОА и ∆РОВ равны, поэтому одинаковы и образующие РА и РВ, ч. т. д.

Заметим, что конус получается при вращении прямоугольного треуг-ка вокруг его катета. Так, на следующем рисунке конус получается при вращении ∆РОА с прямым углом О относительно катета РО:

Если сечение конуса проходит через его ось, то оно именуется осевым сечением. Ясно, что это сечение будет являться треуг-ком, причем две его стороны – это образующие конуса, а третья сторона диаметр основания. Образующие конуса одинаковы, поэтому осевое сечение будет равнобедренным треуг-ком.

Теперь рассмотрим сечение, параллельное плос-ти основания. Пусть оно пересекает ось РО в какой-то точке О1. Также пусть А1 – точка пересечения образующей АР исходного конуса с секущей плос-тью α:

Заметим, что раз ось РО перпендикулярна основанию, то она также будет перпендикулярна и секущей плос-ти, ведь основание и плос-ть α параллельны. Тогда ∠РО1А1 будет прямым.

Теперь рассмотрим ∠РОА и ∠РО1А1. Они прямоугольные и у них есть общие угол ∠АРО. Значит, это подобные треуг-ки. Обозначим радиус ОА как r, а длину А1О1 как r1. Тогда из подобия получаем:

Рассмотрим теперь другую образующую ВР, которая пересекает секущую плос-ть в точке В1. Отрезки АО и ОВ одинаковы. Повторяя предыдущие рассуждения, легко доказать подобие ∆РОВ и ∆РО1В1, откуда можно вычислить длину О1В1:

Получили, что точки А1и В1 находятся на одинаковом расстоянии r1 от точки О1. Мы выбрали точки А и В произвольно, поэтому для любых двух точек, принадлежащих сечению конуса, можно утверждать, что они равноудалены от точки О1. Это значит, что все точки сечения лежат на окруж-ти с центром в точке О1 и радиусом r1, то есть сечение имеет форму окруж-ти.

Как определить площадь боковой поверхности конуса? Для этого ее надо «разрезать» вдоль одной из образующих и развернуть на плос-ти. В результате получится круговой сектор.

Напомним, что площадь сектора может быть рассчитана по формуле

Теперь обозначим длину образующей буквой l, а радиус основания конуса как r. Тогда

Для вычисления полной площади конуса к боковой поверх-ти необходимо добавить ещё и площадь основания:

Усеченный конус

Ранее мы уже изучали сечение конуса плос-тью, параллельной его основанию. Такое сечение разбивает конус на две фигуры. Одна из них – это конус меньших размеров, а вторая именуется усеченным конусом:

Введем несколько понятий и отметим очевидные факты:

В предыдущем параграфе мы уже выяснили, что радиусы оснований усеченного конуса связаны с высотами исходного конуса и того конуса, который получается при проведении секущей плос-ти:

Заметим, что любые две образующие усеченного конуса одинаковы. Действительно, пусть усеченный конус с образующими АА1 и ВВ1 получен их исходного конуса с образующими АР и ВР:

Заметим, что осевое сечение усеченного конуса – это равнобедренная трапеция:

Действительно, построим осевое сечение исходного конуса, которое пройдет через образующие РА и РВ. Пусть эти образующие пересекают плос-ть верхнего основания усеченного конуса в точках А1 и В1 соответственно. Тогда АА1В1В будет осевым сечением усеченного конуса. Точки А, А1, В1 и В располагаются в одной плос-ти РАВ, то есть АА1В1В – плоский четырехугольник. Его стороны АВ и А1В1 не могут пересекаться, ведь они принадлежат параллельным основаниям, поэтому АВ||А1В1. Стороны АА1 и ВВ1 одинаковы как образующие, при этом прямые АА1 и ВВ1 непараллельны, ведь они пересекаются в точке Р. В итоге получается, что АА1В1В – равнобедренная трапеция. Отдельно отметим, что ось ОО1 делит эту равнобедренную трапецию на две прямоугольных трапеции.

Теперь выведем формулы для рассчета площади боковой поверх-ти усеченного конуса. Ясно, что развертка усеченного конуса – это часть развертки поверх-ти исходного конуса:

Нам надо найти площадь фигуры АА1А1’А’ (показана желтым цветом). Ее можно найти как разность площадей секторов РАА’и РА1А1’. Но эти площади можно вычислить по формуле боковых поверх-тей конусов:

Обозначим длину образующей АА1 как l. Далее выразим А1P через r, r1 и l. ∆АОР и ∆РА1О1 подобны, поэтому можно записать:

Подставляем полученное выражение в (1) и получаем:

Чтобы посчитать полную площадь поверх-ти усеченного конуса, необходимо к боковой поверх-ти добавить площади верхнего и нижнего основания:

Рассмотрим несколько задач про конусы.

Задание. Высота конуса составляет 15 см, а его радиус – 8 см. Вычислите длину его образующей.

Решение. Обозначим вершину конуса буквой Р, буквой О – центр основания, а буквой А – произвольную точку на окруж-ти. Тогда высотой конуса будет отрезок ОР, радиусом – отрезок ОА, а образующей окажется отрезок АР:

Высота ОР перпендикулярна плос-ти основания, поэтому ∠РОА – прямой, а ∆РОА – прямоугольный. Тогда АР можно найти по теореме Пифагора:

Задание. Угол между образующей конуса и плос-тью основания составляет 30°, а длина образующей – 12 см. Какова площадь основания конуса?

Решение. Обозначим образующую как АР, а высоту конуса как ОР. Тогда радиус ОА будет проекцией АР на плос-ть основания, то именно ∠РАО будет составлять 30°:

Для вычисления площади основания надо найти радиус АО. Это можно сделать через прямоугольный ∆РОА:

Задание. Осевое сечение конуса имеет площадь 6, а площадь основания равна 8. Вычислите его высоту.

Решение. Пусть осевым сечением будет ∆РАВ, а РО – искомая высота:

Зная площадь основания, легко найдем радиус конуса ОА, а потом и диаметр АВ:

Так как РО – высота для ∆РАВ, то площадь этого треуг-ка может быть рассчитана так:

Задание. Найдите площадь боковой и полной поверх-ти конуса, если образующая имеет длину 8, а радиус основания составляет 5.

Решение. В этой задаче надо просто применить формулу для вычисления площадей:

Задание. Дан конус. Развертка его конической поверх-ти – это сектор, чья дуга составляет 60°. Р – вершина конуса, а РAB – осевое сечение. Вычислите ∠АРВ.

Решение. Длину образующих РА и РВ обозначим как L. Сначала находим длину дуги АА’:

Теперь искомый нами ∠АРВ можно найти с помощью теоремы косинусов, записанной для ∆АРВ:

Задание. Найдите длину образующей усеченного конуса, если радиусы его оснований составляют 6 см и 3 см, а его высота – 4 см.

Решение. Обозначим искомую образующую как АВ, а буквами О и О1 обозначим центры нижнего и верхнего оснований соответственно:

При изучении осевого сечения усеченного конуса мы уже выяснили, что АВО1О – прямоугольная трапеция. Опустим в ней высоту ВН, которая будет иметь ту же длину, что и высота конуса ОО1:

Задание. Радиусы оснований усеченного конуса обозначены буквами R и r (R > r). Образующая конуса образует с нижним основанием угол 45°. Составьте формулу, по которой можно найти площадь осевого сечения этого конуса.

Решение. Осевым сечением будет равнобедренная трапеция А1АВВ1:

Проведем высоту А1Н. Вычислим АН:

Теперь площадь трапеции А1АВВ1 можно посчитать по формуле:

Задание. Основания усеченного конуса – окружности с радиусами 6 и 7 см. Длина образующей – 5 см. Вычислите площадь его боковой и полной поверх-ти.

Решение. Здесь надо просто подставить данные из условия в формулы для вычисления площадей:

Сегодня мы узнали две новые объемные фигуры – цилиндр и конус. Эти фигуры иногда называют телами вращения, ведь они получаются вращением плоских фигур вокруг одной из их сторон. Важно помнить, что у всех тел вращения есть такие элементы, как основание (иногда не одно), ось и образующие.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *