Что общего кинематика и динамика
Физика Б1.Б8.
Электронное учебное пособие по разделу курса физики Механика
Механика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение.
Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики.
Введение
Механика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение.
Механическое движение – это изменение во времени взаимного расположения тел или частей одного и того же тела. Причиной, вызывающей механическое движение тела или его изменение, является воздействие со стороны других тел.
Развитие механики началось еще в древние времена, однако, как наука она формировалась в средние века. Основные законы механики установлены итальянским физиком и астрономом Г. Галилеем (1564-1642) и английским ученым И. Ньютоном (1643-1727).
Механику Галилея-Ньютона принято называть классической механикой. В ней изучается движение макроскопических тел, скорости которых значительно меньше скорости света с в вакууме. Законы движения тел со скоростями, близкими к скорости света сформулированы А. Эйнштейном (1879-1955), они отличаются от законов классической механики. Теория Эйнштейна называется специальной теорией относительности и лежит в основе релятивистской механики. Законы классической механики неприемлемы к описанию движения микроскопических тел (элементарных частиц – электронов, протонов, нейтронов, атомных ядер, самих атомов и т.д.) их движение описывается законами квантовой механики.
Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики.
В механике для описания движения в зависимости от условий решаемой задачи пользуются различными упрощающими моделями: материальная точка, абсолютно твердое тело, абсолютно упругое тело, абсолютно неупругое тело, и т.д. Выбор той или иной модели диктуется необходимостью учесть в задаче все существенные особенности реального движения и отбросить несущественные, усложняющие решение.
Материальная точка – это тело обладающее массой, размеры и форма которого несущественны в данной задаче. Любое твердое тело или систему тел можно рассматривать как систему материальных точек. Для этого любое тело или тела системы нужно мысленно разбить на большое число частей так, чтобы размеры каждой части были пренебрежимо малы по сравнению с размерами самих тел.
Абсолютно твердое тело – это тело, расстояние между любыми точками которого остается неизменным в процессе движения или взаимодействия. Эта модель пригодна, когда можно пренебречь деформацией тел в процессе движения.
Абсолютно упругое и абсолютно неупругое тело – это два предельных случая реальных тел, деформациями которых можно и нельзя пренебречь в изучаемых процессах.
Любое движение рассматривается в пространстве и времени. В пространстве определяется местоположение тела, во времени происходит смена местоположений или состояний тела в пространстве, время выражает длительность состояния движения или процесса. Пространство и время –это два фундаментальных понятия, без которых теряется смысл понятия движения: движения не может быть вне времени и пространства.
Разница между кинематикой и динамикой
Содержание:
Изучение кинематики часто может быть спроектировано и решено как чисто математическая функция, что означает, что она не задает вопрос «как изменилась скорость тела?» а точнее, «насколько это изменилось?»
Изучение динамики идет рука об руку с изучением кинематики, потому что она имеет дело с силой, которая действует на движение. Попытки понять силы, которые заставляют объект или тела объекта двигаться. Изучая динамику, исследователи изучают, как физическая система может развиваться или изменяться с течением времени, и изучают причины этих изменений. Исследование динамики скорее задаст вопрос «почему скорость изменилась» и «как она может повлиять на объект в будущем».
Короче говоря, кинематика даст вам значения изменений, в то время как динамика обеспечит обоснование этого.
Сравнение кинематики и динамики:
кинематика
динамика
Исследование, описывающее движение точек, тел (объектов) и систем тел (групп объектов) без учета причин движения
Исследование сил и крутящего момента и его влияние на движение
Область исследования, используемая в
Прикладная математика, робототехника, машиностроение, робототехника, биомеханика и астрофизика
Прикладная математика, машиностроение
Относится только к свойствам движения, таким как скорость, смещение и ускорение
Относится к анализу сил, действующих на любое движущееся тело
Кинематика и динамика
Механика – раздел физики, в котором изучается механическое движение, причины, вызывающие это движение, и происходящие при этом взаимодействия между телами.
Механическое движение – изменение с течением времени взаимного положения тел или их частей (частиц) в пространстве.
Кинематика – раздел механики, в котором изучают геометрические свойства движения и взаимодействия тел в не связи с причинами их порождающими.
Физические модели (научные абстракции) классической механики:
1) материальная точка – протяженное тело, размерами которого в условиях данной задачи можно пренебречь, обладающее массой. Понятие применимо при поступательном движении или когда в изучаемом движении можно пренебречь вращением тела вокруг его центра масс;
2) абсолютно твердое тело – тело, расстояние между двумя любыми точками которого в процессе движения остается неизменным. Применимо, когда можно пренебречь деформацией тела;
3) сплошная изменяемая среда – понятие применимо при изучении движения изменяемой среды (деформируемого твердого тела, жидкости, газа), когда можно пренебречь молекулярной структурой среды.
Система единиц измерения физических величин – совокупность основных и производных эталонов. В настоящее время предпочтительной во всех областях науки и техники является система СИ.
В системе СИ единицами измерения являются:1) основные – единица измерения длины (L) – 1 м; единица измерения массы (M) – 1 кг; единица измерения времени (T) – 1 с; единица измерения температуры (Т) – 1 К; единица измерения силы тока (I) – 1 А; единица измерения силы света (I) – 1 св.; 2) дополнительные – единица измерения плоского угла – 1 рад; единица измерения телесного угла – 1 стерад.
Тело отсчета – произвольно выбранное, условно неподвижное тело, по отношению к которому рассматривается движение данного тела.
Система отсчета – произвольная система координат, связанная с телом отсчета, например: а) прямоугольная, трехмерная система координат, в точке пересечения осей которой помещают тело отсчета; б) полярная система координат, положение материальной точки (тела) в которой задается радиус – вектором r и углами j, q.
Траектория движения – совокупность последовательных положений материальной точки (тела) в процессе ее движения.
Поступательное движение – движение, при котором тело перемещается параллельно самому себе. При этом все точки тела описывают одинаковые траектории, смещенные относительно друг друга.
Положение материальной точки (тела) в прямоугольной системе отсчета в данный момент времени может быть определено: с помощью координат x, y, z – M(x,y,z); с помощью радиус – вектораr и естественным (траекторным) способом (рис. П1. 1).
Уравнения движения материальной точки (тела) в кинематике:
где x, y, z – координаты;
rx, ry, rz – проекции радиуса вектора rна соответствующие оси координат.
Основные понятия и определения кинематики материальной точки и твердого тела, движущегося поступательно:
1) перемещение (рис. П1.2) – вектор Dr, проведенный из начального положения материальной точки (тела) в положение этой точки в данный момент времени (приращение радиус-вектора за рассматриваемый промежуток времени):
Dr= r1 – r2.
2) элементарное перемещениеdr –бесконечно малое перемещение, которое с достаточной степенью точности совпадает с соответствующим участком траектории движения. При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения численно равен пройденному пути:
½Dr½= DS;
3) путь – расстояние, пройденное телом при его движении по траектории. В частных случаях перемещение и путь могут совпадать;
4) мгновенная линейная скорость – векторная физическая величина, характеризующая состояние движения, показывающая, как изменяется перемещение в единицу времени, равная первой производной от перемещения по времени:
;
5) средняя скорость неравномерного движения – скалярная физическая величина, численно равная отношению всего пути, пройденного телом (материальной точкой), к тому промежутку времени, в течение которого совершалось движение:
;
6) линейное ускорение – векторная физическая величина, характеризующая изменение скорости в единицу времени, равная первой производной от скорости или второй производной от перемещения по времени:
;
7) тангенциальное ускорение аt – составляющая ускорения, направленная вдоль касательной к траектории движения. Изменяет линейную скорость только по величине:
;
8) нормальное ускорение an – составляющая линейного ускорения, направленная по нормали n к вектору линейной скорости, т.е. к касательной в данной точке:
,
где R – радиус кривизны траектории движения;
n – единичный вектор нормали к траектории движения;
9) полное ускорение a:
.
10) среднее ускорение при неравномерном движении
.
Принцип относительности Галилея (в классической механике) – никакие опыты, проводимые в инерциальных системах отсчета с механическими приборами, не позволяют установить, покоится система отсчета или движется равномерно и прямолинейно по отношению к другой инерциальной системе отсчета. Предполагается, что время не зависит от относительного движения систем отсчета.
Преобразования Галилея определяют положение произвольной материальной точки в двух инерциальных системах отсчета, одна из которых движется со скоростью vo относительно другой (при условии, если направление скорости v0 совпадает с направлением ro):
где rи r ‘ – радиус-векторы, определяющие положение материальной точки в неподвижной и подвижной системе отсчета в данный момент времени;
ro – радиус вектор, определяющий положение начала координат системы К ‘ (подвижной) в системе К (неподвижной).
В проекциях на оси координат в произвольный момент времени t положение выбранной точки в системе К можно определить так:
Ковариантные или инвариантные уравнения – уравнения, обе части которых при переходе от одной системы координат к другой преобразуются одинаково и сохраняют свой вид во всех инерциальных системах отсчета.
Закон сложения скоростей в классической механике:
v= v ‘ + v0.
Относительное расстояние между выбранными точками пространства в системах отсчета определяется соотношением – они абсолютны, т.е. инвариантны:
1) в подвижной:
;
2) в неподвижной:
.
Инварианты преобразований – инвариантные величины (расстояния между телами (точками), промежутки времени между событиями, относительные скорости тел, ускорения).
Вращательное движение твердого тела вокруг неподвижной оси –движение, при котором какие-либо две его точки остаются неподвижнымив процессе движения. Прямая, проходящая через эти точки, – ось вращения; все остальные точки твердого тела описывают окружности в плоскостях, перпендикулярных к оси вращения, центры которых лежат на этой оси (рис. П1.3).
Основные кинематические характеристики вращательного движения (рис. П1.4):
1) угол поворотаDj – угол, отсчитанный между двумя последовательными положениями радиуса R;
2) угловая скорость w – векторная физическая величина, показывающая, как изменяется угол поворота Dj в единицу времени, численно равная первой производной от угла поворота по времени. Вектор угловой скорости направлен вдоль оси вращения в сторону, определяемую правилом правого винта:
.
3) угловое ускорение e – векторная физическая величина, характеризующая изменение угловой скорости в единицу времени, численно равная первой производной от угловой скорости по времени или второй производной от угла поворота по времени Направление вектора углового ускорения совпадает с направлением вектора угловой скорости в случае ускоренного вращения и противоположно – в случае замедленного:
Период вращения (T) – время, в течение которого тело совершает один полный оборот.
Частота вращения (n) – число оборотов, совершаемых в единицу времени.
Круговая (циклическая) частота ω – число оборотов, совершаемых за время, равное 2π.
Связь между периодом, частотой и круговой частотой:
ω = 2π n = 2π / T; n = 1 / T.
Связь между линейными и угловыми скоростями и ускорениями
Колебательные движения (колебания) – движения или процессы, обладающие повторяемостью во времени.
Гармонические колебания (простейший вид колебаний) – движения, при которых смещение материальной точки (тела) от положения равновесия изменяется по закону синуса или косинуса (рис. П1.5):
где x – смещение это удаление материальной точки от положения равновесия в данный момент времени t;
x0 – амплитуда колебаний это максимальное удаление материальной точки от положения равновесия;
(wt + j0) – фаза колебаний. Периодически изменяющийся аргумент функции, описывающей колебательный или волновой процесс. Определяет положение материальной точки в данный момент времени t;
j0 – начальная фаза колебаний. Определяет положение материальной точки в начальный момент времени t = 0;
w = 2p / T = 2p n – круговая (циклическая) частота колебаний;
T – период колебаний;
n – частота колебаний.
Скорость при гармоническом колебательном движении(колебательная скорость) – физическая величина, которая показывает, как изменяется смещение в единицу времени, численно равная первой производной от смещения по времени:
.
Ускорение при гармоническом колебании – физическая величина, которая показывает, как изменяется скорость в единицу времени, численно равная первой производной от скорости или второй производной от смещения по времени:
.
Знак «минус» означает, что ускорение направлено в сторону, противоположную смещению.
Сложение гармонических колебаний одного направления (рис. П1.6) с одинаковыми амплитудами и частотами (x01 = x02; w1 = w2 = = w), но разными начальными фазами (j02 ¹ j01) проводят аналитически. Уравнение результирующего колебания имеет вид
где – амплитуда результирующего колебания;
– фаза результирующего колебания.
Биениявозникают при сложение колебаний одного направления (рис. П1.7), с одинаковыми амплитудами (x02 = x01), начальными фазами j01 = j02 = 0 и круговыми частотами, мало отличающимися друг от друга (w1 » w2). Уравнения таких колебаний имеют вид
Уравнение результирующего колебания:
,
где – амплитуда результирующего колебания, которая зависит от Dw = w1 – w2 – разности частот складываемых колебаний;
– смещение результирующего колебания, изменяющееся по гармоническому закону.
Частота и период результирующего колебания:
Частота и период изменения амплитуды в этом случае:
Сложение взаимно перпендикулярных колебаний приводит к тому, что траектория движения представляет собой замкнутые фигуры, называемые фигурами Лиссажу (рис. П1.8):
1) сложение колебаний с одинаковыми частотами (w1 =w2 =w), различными амплитудами (x0 ¹ y0) с начальными фазами j1 = j2 = 0 – результирующее колебание – гармоническое. Траектория движения – прямая линия, уравнение которой имеет вид
2) сложение колебаний, начальные фазы j1 и j2 которых отличаются на p/2 (j1 – j2 = p/2) – результирующее колебание – гармоническое. Траектория движения – эллипс (при равных амплитудах x0 = y0 – траектория результирующего движения – окружность) с полуосями, равными x0 и y0, уравнение которого
3) сложение колебаний, периоды которых относятся как целые числа – через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка возвращается в начальное положение – получаются фигуры Лиссажу более сложной формы.
Динамика изучает движение и взаимодействия тел совместно с причинами, обусловливающими тот или иной характер движения и взаимодействия.
Основная задача динамики – для данного тела по известной силе найти его ускорение и, наоборот, по известному ускорению найти результирующую силу, действующую на тело.
Массаm – физическая величина, характеризующая количество вещества, инертность, гравитационные свойства и энергию материального тела. Массу тела, определяющую его инертные свойства, называют инертной массой.
Центр масс (или центр инерции) системы – воображаемая точка С, положение которой характеризует распределение массы этой системы и определяется радиус-вектором:
,
где mi и ri – соответственно масса и радиус-вектор i-й материальной точки;