Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Энергетические системы

1. Общие сведения об энергосистеме

Энергосистема – совокупность электростанций, электрических и тепловых сетей, а также потребителей электроэнергии и тепла, связанных общностью режима в непрерывности процессов производства, преобразования, передачи, распределения и потребления электрической и тепловой энергии при общем управлении этими режимами. Электрическая часть энергосистемы называется электроэнергетической системой.

Объединение электроэнергетических систем на параллельную работу дает следующие преимущества:

Единая энергетическая система России (ЕЭС России) – совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике. Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением. В настоящее время ЕЭС России включает в себя 69 энергосистем на территории 79 субъектов российской Федерации, работающих в составе шести работающих параллельно ОЭС – ОЭС Центра, Юга, Северо-Запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге). Энергосистемы Белоруссии, России, Эстонии, Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 г. Соглашения о параллельной работе энергосистем БРЭЛЛ.

Системный оператор выделяет три крупных независимых энергообъединения в Европе – Северную (NORDEL), Западную (UCTE) и Восточную (ЕЭС/ОЭС) синхронные зоны (NORDEL и UCTE в июле 2009 г. вошли в состав нового европейского объединения – ENTSO-E). Под ЕЭС/ОЭС понимается ЕЭС России в совокупности с энергосистемами стран СНГ, Балтии и Монголии.

2. Участие электростанций различного типа в покрытии суммарной нагрузки энергосистем

Суммарные графики нагрузки энергосистем неравномерны. Коэффициент заполнения графиков довольно низок – kзап= 0,5…0,7 – и имеет тенденцию к дальнейшему снижению ввиду появления в энергосистемах новых типов потребителей и изменения структуры энергопотребления.

Распределение нагрузки между отдельными электростанциями с целью покрытия суммарного графика нагрузки энергосистемы производят, исходя из особенностей технологического режима электростанций различного типа, с тем, чтобы получить в целом по системе положительный хозяйственный эффект. При этом в базовую часть графика нагрузки в непаводковый период помещают АЭС, ТЭЦ, частично КЭС, ГЭС без водохранилищ, а также частично ГЭС с водохранилищами. В полупиковую часть графика помещают КЭС, а в пиковую часть – ГЭС. Во время паводка мощность ГЭС в базовой части графика нагрузки увеличивается, с тем, чтобы после заполнения водохранилищ не сбрасывать бесполезно избыток воды через водосливные плотины. При этом большая доля мощности КЭС и частично мощности ТЭЦ вытесняется в полупиковую часть графика нагрузки.

Зная графики нагрузки электростанций, можно планировать ремонт оборудования. Агрегаты ГЭС, как правило, ремонтируют зимой, а ТЭС и АЭС – весной и летом. Изменения нагрузки и установленной мощности электростанции в системе в течение года взаимосвязаны.

В энергосистеме должны быть предусмотрены резервы: эксплуатационный (ремонтный, режимный, аварийный), составляющий примерно 10…12 % установленной мощности энергосистемы, и хозяйственный, составляющий около 3 %. Считается, что для нормального функционирования энергосистемы ее общий резерв должен составлять 13…15 % установленной мощности. На практике разность между установленной мощностью электростанций и их фактической нагрузкой в каждый данный момент не есть резервная мощность энергосистемы в обычном понимании.

С учетом устойчивости и надежности работы энергосистемы мощность наиболее крупного агрегата, как показывает опыт эксплуатации, нормально не должна превышать 1,5…3 % установленной мощности энергосистемы. Следовательно, крупные агрегаты мощностью 500, 800 и 1200 МВт могут устанавливаться только в относительно мощных энергосистемах.

3. Регулирование частоты в энергосистемах

Регулирование частоты в энергетических системах требует изменения мощности, которую выдают генераторы. Мощность генераторов и ее изменения определяются мощностью турбин, которыми эти генераторы приводятся во вращение. Поэтому, рассматривая возможности регулирования частоты в энергетических системах, необходимо проанализировать характеристики первичных двигателей тепловых и гидравлических турбин, изменяющих свою мощность под действием систем регулирования.

Турбины электростанций оснащаются автоматическими регуляторами скорости. Принцип регулирования заключается в том, что при изменении частоты регулятор изменяет отпуск энергоносителя (пара или воды) через турбину: при снижении частоты увеличивает отпуск энергоносителя, а при повышении частоты – уменьшает его. Таким образом, регуляторы скорости турбин оказывают стабилизирующее влияние на частоту в системе и поэтому часто называются первичными регуляторами частоты. Процесс изменения частоты под действием этих регуляторов называется первичным регулированием частоты.

Регулятор скорости турбины может иметь астатическую или статическую характеристику (рис. 1). Под действием регулятора либо восстановится номинальная частота, либо установится некоторая новая частота f1, близкая к fном. Реальные регуляторы скорости имеют статическую характеристику. Добиться астатической характеристики у регулятора практически очень трудно.

Наклон характеристики принято называть крутизной (К). Для тепловых станций К = 15…20 %, для гидравлических К = 25…50 %.

Первичное регулирование частоты непрерывно осуществляется всеми электростанциями автоматически, персонал станции и диспетчер энергосистемы в этот процесс не вмешиваются.

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1. Характеристики регулятора скорости турбины: а –астатическая; б – статическая

На рис. 2 в точке 0 существовал баланс Рг0 = Рн0 при fном. При увеличении нагрузки до РН1 частота по статической характеристике снизилась до f1 (точка 1). Если отсутствует регулирование скорости турбины, то баланс может установиться при частоте f1: Рг0 = Рн1, но регулятор скорости турбины увеличивает впуск энергоносителя и генератор набирает часть нагрузки: ΔР = Рг1Рг0. Устанавливается новый баланс Рг1 = Рн1 при частоте f2 (точка 2).

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 2. Первичное регулирование частоты

При первичном регулировании большую нагрузку набирают генераторы с большей мощностью и крутизной характеристики.

Если отклонение частоты f2 от fном больше допустимого, то для дополнительной корректировки частоты в системе применяется вторичное регулирование частоты. В процессе вторичного регулирования также осуществляется изменение мощности, развиваемой турбинами, в зависимости от частоты. Вторичное регулирование ведется либо автоматическими регуляторами частоты (вторичными регуляторами скорости), либо вручную обслуживающим персоналом станции, который контролирует частоту по показаниям приборов.

В отличие от первичного регулирования частоты, в котором принимают участие все станции, для вторичного регулирования выбирают одну или несколько станций с большой крутизной характеристики регулятора скорости турбины. Все остальные станции получают задание поддерживать постоянное значение РГ и участвовать в первичном регулировании частоты.

В результате вторичного регулирования статическая характеристика турбины перемещается параллельно самой себе до тех пор, пока частота не станет номинальной (на рис. 3 точка 3), мощность генератора при этом увеличивается до РГ2.

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 3. Первичное и вторичное регулирование частоты

Наилучшее качество частоты может быть достигнуто при автоматическом регулировании, если оно осуществляется совместно с экономическим распределением активных нагрузок между станциями.

Основная цель экономического распределения нагрузок между электростанциями заключается в том, чтобы требуемое количество энергии выработать с минимальными затратами. Основным критерием при эксплуатации электрических станций является себестоимость отпущенной потребителям электроэнергии, главной составляющей которой являются затраты на топливо, поэтому считают, что наивыгоднейшим режимом системы будет такой режим, который обеспечивает наименьший расход условного топлива.

При перераспределении нагрузок между станциями происходит перераспределение потоков мощности по линиям, а значит, меняются потери в линиях, следовательно, нужно выбрать такой режим, чтобы потери в сетях были наименьшими.

При выборе частоторегулирующих станций (наиболее подходящими для этой цели являются крупные ГЭС) необходимо учитывать пропускную способность линий электропередачи, связывающих электростанции энергосистемы.

В процессе работы энергосистемы все параметры переменного тока, а именно частота, величина и форма кривой напряжения, могут изменяться. Чем ближе они поддерживаются к номинальным, т. е. расчетным для оборудования, значениям, тем ближе режим к оптимальному. Таким образом, частота приобретает значение показателя, характеризующего качество продукции энергетической промышленности, качество электроэнергии. Согласно ГОСТ 13109-97 на качество электрической энергии частота в энергосистемах России в нормальном режиме должна поддерживаться с точностью ±0,2 Гц (95 % времени суток). Допускается кратковременная (не более 72 мин в сутки) работа энергосистем с отклонением частоты в пределах ±0,4 Гц.

Столь жесткие требования объясняются тем, что частота переменного тока непосредственно связана с частотой вращения агрегатов, преобразующих механическую энергию в электрическую, т. е. генераторов, и агрегатов, преобразующих электрическую энергию в механическую, т. е. двигателей. Изменение же частоты вращения, даже небольшое, существенно влияет на режим работы вращающихся механизмов. Снижение частоты приводит к падению производительности насосов и других механизмов.

Автоматическое ограничение снижения частоты должно выполняться с таким расчетом, чтобы при любых возможных дефицитах мощности энергосистемы снижение частоты ниже 45 Гц было исключено. Время работы с частотой 47 Гц – не более 20 с, а с частотой ниже 48,5 Гц – не более 60 с.

Система автоматического ограничения частоты осуществляет:

Аварии, связанные с понижением частоты, считаются наиболее опасными (тяжелыми для энергосистемы).

Снижение частоты происходит в результате:

Причем частота при снижении активной мощности генерации снижается лавинообразно. Снижение частоты ведет к еще более глубокому снижению частоты.

Другим опасным явлением при снижении частоты является возможность развития лавины напряжения, приводящей к массовому отключению потребителей.

Эти два процесса взаимосвязаны: при снижении частоты резко увеличивается потребление реактивной мощности, которое приводит к снижению напряжения в узлах потребления.

Предотвращение снижения частоты до опасных уровней, при которых возможно нарушение работы энергосистемы, может быть возложено только на действие автоматических устройств АЧР (автоматическая частотная разгрузка), поскольку процесс снижения частоты и напряжения развивается за время от нескольких секунд до десятков секунд.

Основное назначение АЧР – путем отключения части потребителей (соответственно менее ответственных) сохранить рабочее состояние энергосистемы.

4. Надежность и устойчивость работы энергосистем

Надежность любой системы – это ее свойство выполнять заданные функции в заданном объеме и требуемого качества при определенных условиях функционирования. Применительно к системам электроснабжения (СЭС) одной из основных функций является бесперебойное снабжение потребителей электроэнергией в необходимом количестве и установленного качества. Для характеристики надежности объектов энергетики определяются основные показатели надежности (параметр потока отказов, время восстановления) и вспомогательные (частота ремонтов и их продолжительность). Показатели надежности определяются для узла нагрузки главной схемы СЭС с учетом режима работы СЭС (нормальный, аварийный, послеаварийный).

Основные способы повышения надежности СЭС:

Таким образом, повышение надежности СЭС является комплексной задачей, которая может быть решена на основе технологического и экономического анализа режимов СЭС, условий ее функционирования.

Одним из основных условий функционирования электроустановок и СЭС в целом является надежная работа при воздействии условий окружающей природной среды (погодно-климатические условия) и техникотехнологических условий. Поэтому при выборе элементов СЭС необходимо учитывать как климатические условия эксплуатации (макроклимат, включая загрязнение окружающей среды), так и технико-технологические условия эксплуатации (микроклимат: температуру, влажность, запыленность, агрессивную среду и пожаро- и взрывоопасные зоны).

Безопасность СЭС – это свойство СЭС сохранять с некоторой вероятностью безопасное состояние при выполнении заданных функций в условиях, установленных нормативно-технической документацией (монтаж, эксплуатация и проведение ремонтных работ).

Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от воздействия электрического тока, электромагнитного поля и статического электричества.

На этапе проектирования СЭС предусматривается возможность ее реконструкции при развитии производства предприятия, без значительных капитальных затрат.

Показатели по надежности электроснабжения. В отношении обеспечения надежности электроснабжения электроприемники подразделяются на следующие три категории:

Электроприемники I категории – электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства. Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых, взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого, взаимно резервирующего источника питания для безаварийной остановки технологического процесса.

Электроприемники II категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции; массовым простоям рабочих, механизмов и промышленного транспорта; нарушению нормальной деятельности значительного количества городских и сельских жителей. Электроприемники II категории в нормальном режиме должны обеспечиваться электроэнергией от двух независимых, взаимно резервирующих источников питания. Перерыв электроснабжения электроприемников II категории допускается на время, необходимое для включения резервного питания действиями дежурного персонала.

Электроприемники III категории – все остальные электроприемники, не подпадающие под определения I и II категорий. Для электроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают одни сутки.

Независимые источники питания – источники, схема и конструктивное исполнение которых и питающих их электрических сетей таковы, что при отказе одного из них снижение качества электроэнергии на другом не превышает установленных пределов в любой момент времени, включая время аварийного режима.

Источник

Понятие об электроэнергетической системе

Общие сведения об электроэнергетике и электроснабжение потребителей электрической энергии.

Производство и распределение электрической энергии.

Основные понятия, термины, определения, общие принципы электроснабжения

Под электроснабжением понимается обеспечение потребителей электроэнергией (ЭЭ), рис. 1.1. [1]. Производство электрической энергии концентрируется преимущественно на крупных электростанциях, работающих совместно (параллельно). Центры потребления электрической энергии (промышленные предприятия, города, сельские районы и т. п.) удалены от её источников на десятки, сотни тысячи километров и распределены на значительной территории. Для характеристики системы передачи и распределения электрической энергии (ЭЭ) и всей структуры «генерация – передача – потребление» введём некоторые понятия, термины и определения. [6]

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1.1. Электроснабжение

Электроустановка – совокупность аппаратов, машин, оборудования и сооружений, предназначенных для производства, преобразования, передачи, распределения или потребления ЭЭ. Электроустановки (ЭУ) разделяют по величине напряжения до 1000 В (низковольтные ЭУ) и выше 1000 В (высоковольтные ЭУ).

Электростанция – электроустановка, служащая для производства (генерации) электрической энергии в результате преобразования энергии, заключённой в природных энергоносителях (уголь, газ, вода и др.) при помощи турбо- и гидрогенераторов.

Подстанция – электроустановка, предназначенная для приёма, преобразования (трансформации) и распределения электроэнергии, состоящая из трансформаторов (автотрансформаторов) и других преобразователей ЭЭ, распределительных и вспомогательных устройств. В зависимости от назначения подстанции выполняются трансформаторными или преобразовательными – выпрямительными, двигатель-генераторными и др. Подстанция может быть повышающей (повысительной), если преобразование величины напряжения переменного тока осуществляется с низшего напряжения на высшее (подстанции электростанций), и понижающей (понизительной) – в случае трансформации высшего напряжения на низшее (подстанции предприятий, городов и др.).

Центр, источник электропитания – источник ЭЭ, на сборных шинах (зажимах) которого осуществляется автоматическое регулирование режима напряжения. Наряду с электростанциями это шины подстанции с трансформаторами, оснащёнными регуляторами напряжения под нагрузкой (РПН), регулируемыми источниками реактивной мощности, линейными регуляторами и др.

Распределительное устройство (РУ) – электроустановка, входящая в состав любой подстанции; предназначена для приёма и распределения электроэнергии на одном напряжении (до 1000 В и более). РУ содержат коммутационные аппараты, устройства управления, защиты, измерения и вспомогательные сооружения.

Наряду с подстанциями электрическая энергия может распределяться на распределительных пунктах – устройствах, предназначенных для приёма и распределения ЭЭ на одном напряжении (без трансформации) и не входящих в состав подстанции.

Линия электропередачи (ЛЭП) – электроустановка, предназначенная для передачи электрической энергии на расстояние с возможным промежуточным отбором. Линии выполняют воздушными, кабельными, а также в виде токопроводов на промышленных предприятиях и электростанциях и внутренних проводок в зданиях и сооружениях.

Потребитель ЭЭ, электроприёмник (ЭП) – аппарат, агрегат, механизм (электродвигатель, преобразователь, светильник и др.), потребляющий или преобразующий ЭЭ в другие виды энергии. С позиции структурной иерархии системы передачи и распределения ЭЭ к потребителям может быть отнесена совокупность электрических нагрузок (ЭН) (дом, посёлок, завод и т. д.), получающих электропитание с шин подстанций того или иного напряжения.

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1.2. Преобразование электроэнергии в электроприемниках

В ряде случаев в качестве потребителей рассматривают подстанции, от которых осуществляется электроснабжение жилого района, промышленного предприятия и др. объектов.

Элементами системы передачи и распределения ЭЭ являются: линии электропередачи различных конструкций и напряжений (W), устройства продольной и поперечной компенсации (КУ) параметров ЛЭП (установки продольной компенсации и шунтирующие реакторы); трансформаторные подстанции (силовые трансформаторы (Т) и автотрансформаторы, выключатели, разъединители, контрольно-измерительные приборы и т. п.); источники реактивной мощности (ИРМ) (конденсаторные батареи, синхронные и статические тиристорные компенсаторы); устройства защиты и автоматики, т. е. автоматические регуляторы (АР), устройства релейной защиты (РЗ) и противоаварийной автоматики (ПА), средства диспетчерского и технологического управления (СДТУ).

Электропередача – это линия с повышающей и понижающей подстанциями, служащая для транзитной передачи электроэнергии от станции к концентрированному потребителю, получающему электроэнергию от шин низшего напряжения понижающей подстанции.

Электрическая сеть – объединение преобразующих подстанций, распределительных устройств, переключательных пунктов и соединяющих их линий электропередачи, предназначенных для передачи ЭЭ от электростанции к местам потребления и распределения её между потребителями. Электрическая сеть эквивалентна развитой высоковольтной сети электропередач. Отдельная электропередача в узком смысле представляет собой электрическую сеть. Развитая электрическая сеть, как по составу электроустановок, так и по функциональному назначению, образует систему передачи и распределения электроэнергии.

В настоящее время применяются три принципа электроснабжения:

— децентрализованный, когда обеспечение электроэнергии осуществляется за счет собственных источников (рис. 1.3);

— централизованный, при котором электроснабжение осуществляется от электроэнергетической системы (рис. 1.4);

— распределенная генерация, когда наряду с централизованным электроснабжением применяются потребительские генерирующие установки (рис. 1.5).

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1.3. Децентрализованное электроснабжение

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1.4. Централизованное электроснабжение

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1.5. СЭС с установками распределенной генерации:

ТЭС – тепловая электростанция; АЭС – атомная электростанция;

ГЭС – гидравлическая электростанция

На современном этапе развития электроэнергетики большинство потребителей получат электроэнергию от ЭЭС. Децентрализованное электроснабжение используется в удаленных и труднодоступных районах. Системы электроснабжения с установками распределенной генерации получают распространение в последние годы в связи с реализацией концепции интеллектуальных электрических сетей – smart grid.

Под системой электропитания (СЭП) понимается совокупность электроустановок, предназначенных для преобразования параметров электроэнергии первичного источника к виду, удобному потребителю, и распределения преобразованной энергии между отдельными электроприемниками (рис. 1.6).

Например, в состав СЭП для питания электронной аппаратуры могут входить следующие устройства:

— выпрямители, преобразующие переменный ток в постоянный;

— инверторы, осуществляющие обратное преобразование;

— преобразователи напряжения (конверторы), изменяющие напряжение постоянного тока;

— стабилизаторы, обеспечивающие стабильность напряжения питания электронных устройств;

— корректоры коэффициента мощности, поддерживающие высокий cos φ на входе выпрямителей;

— агрегаты гарантированного питания на базе дизельных генераторных установок (ДГУ);

— ·источники бесперебойного питания (ИБП) на основе аккумуляторных батарей (АБ).

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 1.6. ЭЭС, СЭС и СЭП

Понятие об электроэнергетической системе

Электроэнергетическая система (ЭЭС) – это совокупность устройств для выработки, передачи, распределения и потребления электроэнергии (рис. 2.1) [1]. ЭЭС включает электрическую часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 2.1. Структурная схема ЭЭС

Энергетическая система (энергосистема) – это совокупность электростанций, электрических и тепловых сетей, соединенных меду собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической энергии и теплоты при общем управлении этим режимом.

Структурная схема технологических процессов в ЭЭС и СЭС представлена на рис. 2.2.

Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Смотреть картинку Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Картинка про Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются. Фото Что общего в понятиях электроэнергетическая система и энергосистема чем они отличаются

Рис. 2.2. Схема технологического процесса выработки, передачи, распределения и потребления электроэнергии: ТЭС – тепловая электростанция; ГЭС – гидравлическая электростанция; АЭС – атомная электростанция; СЭС – система электроснабжения; РГ – установка распределенной генерации; VPP – виртуальная электростанция.

В отличие от других отраслей промышленного производства электроэнергетика обладает следующими особенностями:

— производство, транспорт, распределение и потребление электроэнергии происходит практически единовременно, поэтому ЭЭС и СЭС, отдельные звенья которые могут быть удалены друг от друга на сотни километров, объединены в единый сложный механизм;

— ЭЭС и СЭС характеризуются быстротой протекания переходных процессов: волновые процессы совершаются в тысячные доли секунды, электромагнитные процессы – в десятые доли секунд;

— электроэнергетика обеспечивает ЭЭ все отрасли промышленности, транспорт, связь, отличающиеся технологиями производства, способами преобразования ЭЭ, многообразием электроприемников;

— имеет место значительная временная неравномерность производства и потребления энергии.

Быстрота протекания процессов в ЭЭС и СЭС требует обязательного применения автоматических устройств: аппаратов релейной защиты, автоматических регуляторов, устройств автоматического управления. Правильный выбор и настройку этих устройств, возможно, выполнить только при учете работы всей системы как единого целого.

ЭЭС и СЭС (СЭП) включают элементы, которые можно подразделить на три вида:

силовые элементы — генераторные агрегаты, осуществляющие преобразование первичных ТЭР в электроэнергию; трансформаторы и выпрямительные установки, посредством которых производится изменение параметров тока и напряжения; линии электропередач (ЛЭП), выполняющие передачу электроэнергии; коммутирующая аппаратура, с помощью которой производится включение или отключение отдельных элементов ЭЭС (СЭС, СЭП);

измерительные устройства, к которым можно отнести трансформаторы тока и напряжения, на основе которых осуществляется подключение электроизмерительных приборов, а также средств контроля и управления к высоковольтным и многоамперным цепям;

средства контроля и управления, к которым относятся устройства релейной защиты, а также автоматические регуляторы, системы телемеханики и связи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *