Что общего в строении митохондрий и ядра
Митохондрии: строение и функции
Митохондрии – двомембранний органоид эукариотической клетки. Они являются важными частями наших клеток, поскольку принимают пищу и производят энергию, которую могут использовать клетки.
Животные и растения состоят из многих сложных клеток, которые называются эукариотические клетки. Внутри этих клеток расположены структуры, выполняющие особые функции для клетки, – органеллы. Органеллы, отвечающие за выработку энергии для клетки, – это и эсть митохондрии.
Различные типы клеток имеют разное количество митохондрий. Некоторые простые клетки содержат только один-два митохондрии. Однако сложные животные клетки, которым нужно много энергии, например, мышечные, могут иметь тысячи митохондрий.
Основная функция митохондрий – производить энергию для клетки. Клетки используют специальную молекулу для получения энергии под названием АТФ (аденозинтрифосфат). АТФ для клетки производится внутри митохондрий.
То есть энергетическая функция митохондрий интегрируется с окисления органических соединений, что происходит в матриксе, благодаря чему митохондрии называют дыхательным центром клеток; синтеза АТФ, что осуществляется на кристах, благодаря чему митохондрии называют энергетическими станциями клеток.
Митохондрии вырабатывают энергию в процессе клеточного дыхания. Митохондрии принимают молекулы пищи в виде углеводов и сочетают их с кислородом для получения АТФ. Они используют ферменты для получения правильной химической реакции.
Кроме выработки энергии, митохондрии выполняют и другие функции для клетки, включая клеточный метаболизм, выработки тепла, контроль концентрации кальция и выработки некоторых стероидных гормонов. А о других гормонах можно узнать благодаря онлайн уроку за 8 класс по биологии на тему «Принципы регуляции. Эндокринная система».
Митохондрии имеют четкую структуру, которая помогает им производить энергию.
Внешняя мембрана. Защищенная гладкой внешней мембраной, которая имеет форму от круглой палочки до длинного стержня.
Внутренняя мембрана. В отличие от других органелл в клетке, митохондрии также имеют внутреннюю мембрану. Она имеет множество складок и выполняет ряд функций, чтобы помочь сделать энергию.
Кристи. Это складки на внутренней мембране. Наличие всех этих складок способствует увеличению площади поверхности внутренней мембраны.
Матрикс. Это пространство внутри внутренней мембраны. Большинство белков митохондрий находятся в матриксе. Матрикс также содержит рибосомы и ДНК, которые являются уникальными для митохондрий.
Белок синтезирующей системы. В митохондрий есть своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точно как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают из цитоплазмы, поскольку эти белки кодируются ядерными генами.
Интересные факты о митохондриях:
Они могут быстро менять форму и перемещаться по клетке, когда это нужно.
Когда клетке требуется больше энергии, митохондрии могут размножаться, увеличиваясь, а затем делясь. Если клетке нужно меньше энергии, некоторые митохондрии погибнут или станут неактивными.
Митохондрии очень похожи на некоторые бактерии. По этой причине некоторые ученые считают, что сначала они были бактериями, которые поглощались более сложными клетками.
Различные митохондрии вырабатывают различные белки. Некоторые митохондрии могут производить сотни различных белков, которые используются для различных функций.
Кроме энергии в виде АТФ, они также производят небольшие количества углекислого газа.
Нужно выполнить домашнее задание по биологии в учебнике или рабочей тетради? Ищите все готовое в разделе «ГДЗ и решебниики по биологии за 8 класс».
Строение и функции митохондрий. Сходства и различия с хлоропластом
Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.
Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.
Особенности строения
Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.
Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.
Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.
Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.
Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.
Расположение в клетке и деление
Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.
В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.
Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.
Функции в клетке
Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.
Таблица: строение и функции митохондрий (кратко) | ||
---|---|---|
Структурные элементы | Строение | Функции |
Наружная мембрана | Гладкая оболочка, построена из липидов и белков | Отграничивает внутреннее содержимое от цитоплазмы |
Межмембранное пространство | Находятся ионы водорода, белки, микромолекулы | Создает протонный градиент |
Внутренняя мембрана | Образует выпячивания – кристы, содержит белковые транспортные системы | Перенос макромолекул, поддержание протонного градиента |
Матрикс | Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом | Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А. |
Рибосомы | Объединённые две субъединицы | Синтез белка |
Сходство митохондрий и хлоропластов
Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.
И митохондрии и хлоропласты могут делиться с помощью перетяжки.
Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.
Опишем кратко сходства и различия:
Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.
Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности
Содержание:
Строение клетки
Сначала элементарная единица строения организмов получила латинское название cellula, что в переводе означает «маленькая камера». Древнегреческое слово «цитос» переводится как «ячейка». «Цитология» — название современной науки о строении и функциях разных типов клеток.
Бактерии, многие виды грибов, водорослей, простейшие животные — одноклеточные существа. Гораздо больше на Земле видов многоклеточных живых организмов. Вирусы не имеют клеточного строения, поэтому не могут быть отнесены ни к одной из названых групп. Однако для жизнедеятельности и размножения вирионы должны попасть в живые клетки.
Длительная эволюция жизни привела в далеком геологическом прошлом к появлению одноклеточных организмов. Многоклеточные возникли позже в истории Земли. Клетки у таких живых организмов преимущественно специализированные, имеют разнообразные формы, размеры и другие морфологические особенности. Они выполняют определенные функции в составе тканей и органов.
Цитологические знания появлялись, накапливались и дополнялись в течение нескольких веков. К середине XIX века исследователи сформулировали основные положения клеточной теории. Выдающийся вклад в развитие учения внесли М. Шлейден, Т. Шванн, Р. Вирхов и другие ученые.
Согласно результатам исследований, для клеток характерны:
Средний диаметр структурных единиц человеческого организма — около 25 микрон (мк) или микрометров (мкм). Крупными размерами отличаются яйцеклетки — 0,15 мм. В целом, ткани тела человека содержат 200 типов «строительных блоков». Скопления клеток, сходных по структуре и функциям, образуют ткани. Последние составляют основу органов.
Органоиды клеток
Микроскопические автономные системы содержат много компонентов. Органоиды — постоянные части клетки (рис. 1). Включения возникают и исчезают в зависимости от возраста и процессов жизнедеятельности. Компоненты тесно взаимодействуют в микроскопически маленьком пространстве.
Плазматическая мембрана
Общая толщина составляет 6–10 нм. Плазматическая мембрана содержит двойной слой липидов и два слоя белков. Белковые молекулы расположены на поверхности и в толщине липидного слоя. Растительные клетки, помимо плазматической мембраны, имеют плотную клеточную стенку.
Цитоплазма
Под оболочкой клетки находится полужидкая масса, коллоид (промежуточное состояние между истинным раствором и взвесью). Цитоплазма содержит белки, липиды, углеводы, РНК, ионы. Имеются протеиновые структуры в виде микронитей и микротрубочек — цитоскелет. В цитоплазму погружены все компоненты клетки.
Ядро
Митохондрии
«Энергетические станции» клетки — овальные или округлые тельца размером от 0,5 до 7 мкм. Наружная мембрана гладкая, внутренняя образует складки (кристы), как на
Матрикс содержит рибосомы, молекулы ДНК и РНК, ферменты. Часть вырабатываемой энергии расходуется в рибосомах, где из аминокислот синтезируются белки.
Пластиды
Крупные полуавтономные органоиды клетки, обладающие собственным геномом. Пластиды покрыты 2–4 белково-липидными оболочками. Внутри имеются строма, пузырьки, кольцевая молекула ДНК, рибосомы.
Получены веские доказательства происхождения пластид в результате симбиоза древней прокариотической клетки и цианобактерий.
Эндоплазматическая сеть или ретикулум (ЭР)
Система мешочков и каналов между ними диаметром 25–30 нм, образует единое целое с плазматической мембраной и оболочкой ядра. Различают гладкий и шероховатый ЭР. Сеть предназначена для транспортировки веществ в клетке к месту использования.
Комплекс Гольджи
Органоид в виде системы мешочков и пузырьков размером 20–30 нм. Комплекс Гольджи находится вблизи ядра, необходим для образования лизосом. Последние нужны для удаления продуктов распада.
Лизосомы
Мешочки сферической формы, покрытые одной мембраной. Внутреннее содержимое богато ферментами.
Вакуоли
Мешочки и пузырьки, покрытые одной мембраной. Крупные вакуоли характерны для растительных клеток, мелкие — для животных. Содержат пигменты, питательные вещества, минеральные растворы. Различают пищеварительные, фагоцитарные и сократительные вакуоли.
Клеточный центр
Органоид, не имеющий собственной мембраны. Клеточный центр образован центросферой и двумя центриолями, содержит белки, липиды, углеводы, нуклеиновые кислоты.
Рибосомы
Мелкие немембранные органоиды клетки. Состоят из большой и малой субъединиц. Рибосомы расположены в цитоплазме свободно или связаны с мембранами. Богаты РНК и белками.
Включения клетки могут быть жидкими и твердыми. Первые — это гранулы различных веществ. Капли жира — жидкие включения.
Если ядра нет, то организмы относятся к прокариотам (доядерным). В эволюционном плане они более древние и примитивные. Генетический материал таких клеток не отделен мембраной от цитоплазмы. Внутри расположены рибосомы. Почти не встречаются мембранные органоиды. Многие одноклеточные организмы относятся к прокариотам. Клетки, в которых хотя бы на одной стадии развития появляется ядро, — эукариотические.
Функции клеточных структур
Плазматическая мембрана ограничивает и препятствует вытеканию цитоплазмы, защищает находящиеся в ней органоиды. Оболочка клетки обладает избирательной проницаемостью. Происходит пассивный и активный транспорт веществ через микроотверстия.
Другие функции плазматической мембраны:
Пассивный транспорт через мембрану протекает без затрат энергии, в направлении от большей концентрации к меньшей. Так происходит осмотический перенос молекул воды. Активный транспорт протекает с затратами энергии, в направлении от меньшей концентрации к большей. Пример — диффузия питательных, минеральных веществ.
Клетка активно поглощает различные соединения. Если это твердые частицы, то процесс называется фагоцитоз. Поглощение капелек жидкости — пиноцитоз. Наружу через мембрану выводятся остатки веществ.
Цитоплазма объединяет органоиды и включения. Благодаря коллоидным и прочим свойствам внутреннего содержимого клетки осуществляется взаимодействие всех частей. Цитоскелет выполняет опорную функцию, способствует сохранению определенного положения органоидов в цитоплазме.
В ядре хранится наследственная информация, зашифрованная в структуре ДНК. Хроматин нужен для создания специфических для данного организма нуклеиновых кислот. Благодаря транскрипции РНК и поступлению данных в рибосомы происходит синтез белка. Ферменты нуклеоплазмы регулируют обмен аминокислот, белков, нуклеотидов. Ядро осуществляет контроль процессов жизнедеятельности клетки. Функции ядрышка — синтез одного из видов РНК.
Внутренняя мембрана митохондрии — место прикрепления ферментов для синтеза АТФ. Макроэргическое вещество необходимо для процессов жизнедеятельности. В митохондрии протекает аэробный этап дыхания, который сопровождается образованием АТФ.
Зеленая окраска хлоропластов обусловлена основным пигментом фотосинтеза. Осуществление этого процесса — основная задача пластид зеленого цвета. Световые реакции протекают на мембранах, содержащих молекулы хлорофилла. Темновые реакции фотосинтеза происходят в строме, богатой ферментами.
Хромопласты придают окраску цветкам, содержатся в плодах. Этот тип пластид обеспечивает привлечение опылителей и распространителей семян растений. Лейкопласты служат для запасания питательных веществ — крахмала, белка, масла.
В рибосомах шероховатого эндоплазматического ретикулума происходит синтез белков. Гладкий ЭР содержит ферменты для синтеза, преобразований липидов и углеводов. Этот же тип трубочек и мешочков служит для образования лизосом, транспорта и обезвреживания токсических веществ. Растворение крупных молекул, переваривание старых клеточных структур происходит в лизосомах. Они принимают активное участие в фагоцитозе, гибели клеток.
Пищеварительные вакуоли участвуют в фагоцитозе, выделяют ненужные вещества в окружающую среду. Сократительные — обеспечивают поддержание водно-солевого баланса.
Рибосомы участвуют в сборке белковых молекул. Клеточный центр нужен для правильного распределения генетического материала при митотическом делении. Этот органоид служит для образования выростов клеток — жгутиков и ресничек (органоидов движения).
Включениями называют непостоянные компоненты клеток. Одни вещества в их составе являются запасом питания, другие — отходами жизнедеятельности.
Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности
Органоиды — относительно обособленные компоненты, обладающие специфическими функциями и особенностями строения. Основная часть генетического материала эукариотической клетки сосредоточена в ядре. Центральный органоид в одиночку не в состоянии обеспечить реализацию наследственной информации. Принимают участие цитоплазма и рибосомы. Они расположены в основном на шероховатой эндоплазматической сети.
Синтезированные белки транспортируются в комплекс Гольджи, после преобразований — в те части клетки, где они нужны. Благодаря лизосомам клетки не превращаются в «свалки отходов».
Митохондрии вырабатывают энергию, необходимую для осуществления процессов в клетке. Хлоропласты у растений служат для получения исходного материала, участвующего в энергетических превращениях.
Условно все органоиды клетки делят на три группы по характеру выполняемых функций. Митохондрии и хлоропласты осуществляют превращения энергии. Рибосомы, их скопления осуществляют синтез белков. Другие образования принимают участие в синтезе и обмене веществ.
Несмотря на существующие различия, все части клетки тесно взаимодействуют. Органоиды взаимосвязаны не только в пространстве, но и химически. Связывает все части клетки цитоплазма, в ней же происходят многочисленные реакции. В результате формируется единая структурная и функциональная система.
Строение растительной клетки
Рис.1 Растительная клетка
Отличие клеточного строения растений от животных — наличие стенки, состоящей из целлюлозы, пектина, лигнина.
Под прочной оболочкой находится плазматическая мембрана, имеющей типичное строение. Есть поры, через которые осуществляется связь между соседними клетками посредством плазмодесм, цитоплазматических мостиков. Нет центриолей, характерных для животных.
Важное отличие растительных организмов — наличие пластид. Крупные хлоропласты придают частям растений зеленый цвет. Фотосинтез в зеленых пластидах — процесс автотрофного питания. Растения создают органическое вещество из воды и углекислого газа при участии солнечного света.
Оранжевая и желтая окраска обусловлена присутствием других типов пластид, красная и синяя — возникает благодаря антоцианам. Лейкопласты и хромопласты специализируются на хранении веществ.
Крупная центральная вакуоль в растительной клетке заполнена клеточным соком. Органоиду принадлежит ведущая роль в поддержании тургора, хранении полезных веществ и разрушении старых белков, отживших свое органоидов.
Строение животной клетки
Это типичные эукариотические клетки. Под плазматической мембраной находятся цитоплазма и органоиды. Клеточной стенки нет. ДНК локализована в ядре и митохондриях.
Рис.2 Животная клетка
Вакуоли в клетках животных выполняют пищеварительные и сократительные функции. Центриоли состоят из пучков микротрубочек, принимающих участие в процессе деления. В качестве органелл движения могут присутствовать реснички и жгутики. Они важны для перемещения одноклеточных животных. В организме многоклеточных создают движение жидкостей или молекул твердых веществ вдоль неподвижных клеток.
Клетка — мельчайшая единица строения многоклеточных организмов. У одноклеточных это и есть тело. Любая клетка представляет собой сложную биохимическую систему. Части или органоиды действуют как единое целое, обеспечивают жизнедеятельность, а при размножении — передачу наследственных признаков.
Задания части 2 ЕГЭ по теме «Строение эукариотической клетки»
1. Что такое центриоли и центромеры? Как они связаны между собой?
1) Центриоль – компонент клеточного центра, организующего веретено деления.
2) Центромера – первичная перетяжка, в которой две хроматиды связываются между собой.
3) Во время деления нить веретена деления связывает центромеру с центриолью.
2. Объясните, почему зрелые эритроциты не могут синтезировать белки.
В зрелых эритроцитах отсутствует ядро, следовательно, у них отсутсвует наследственная информация (информация о строении белков).
3. В чем проявляется сходство и различие хлоропластов и митохондрий?
1) Сходства:
а) Они имеют двойную мембрану, наружная мембрана гладкая, внутренняя с выростами.
б) Имеют кольцевую ДНК и прокариотические рибосомы, самостоятельно синтезируют белок.
в) Размножаются внутри клетки делением.
2) Различия:
а) хлоропласты содержат хлорофилл и находятся только в растительных клетках, а митохондрии содержатся и в растительных, и в животных клетках;
б) в хлоропластах происходит фотосинтез, а митохондрии осуществляют клеточное дыхание.
4. Замороженные яблоки при оттаивании выделяют сладковатый сок. С чем это связано?
При замораживании вода превращается в лед, расширяется и разрывает клетки, цитоплазма и клеточный сок вытекают.
5. Каково строение и функции цитоплазмы?
Цитоплазма – внутренняя полужидкая среда клетки. Функции:
1) Цитоплазма связывает между собой все компоненты клетки.
2) За счет микротрубочек («белковых нитей») выполняет функцию скелета клетки, обеспечивает передвижение её частей.
3) В цитоплазме происходят основные процессы обмена веществ, например, гликолиз.
7. Рассмотрите предложенную схему классификации немембранных органоидов клетки. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
8. Найдите три ошибки в приведённом тексте «Структуры клеток». Укажите номера предложений, в которых допущены ошибки, исправьте их. (1) Цитология – это раздел биологии, изучающий живые клетки, их органеллы, строение, функционирование, процессы клеточного размножения, старения и смерти. (2) Все органеллы клетки можно разделить на три группы: одномембранные, двумембранные, трёхмембранные. (3) К двумембранным органеллам относятся митохондрии и пластиды. (4) Митохондрии можно увидеть в клетках бактерий, растений, животных, грибов. (5) У бактерий нет оформленного ядра, а генетический аппарат у них представлен кольцевой ДНК – нуклеоидом. (6) Цитоплазма, плазмолемма и рибосомы присутствуют в клетках представителей всех царств живых организмов. (7) Поверх плазмолеммы может присутствовать клеточная стенка, которая у растений в основном состоит из вещества белковой природы – клетчатки.
9. Хлоропласты и митохондрии – полуавтономные органоиды эукариотных клеток. В результате какого процесса в ходе эволюции сформировались митохондрии и хлоропласты в эукариотной клетке? Приведите соответствующее доказательство. В чем заключается полуавтономность митохондрий и хлоропластов?
1) митохондрии и хлоропласты в эукариотной клетке в ходе эволюции сформировались из древних прокариот в результате симбиогенеза;
2) сходство в строении с прокариотной клеткой: кольцевая молекула ДНК, мелкие рибосомы, наличие выростов внутренней мембраны;
3) митохондрии и хлоропласты способны к самостоятельному делению, к биосинтезу своих белков, но используют для этого ресурсы клетки, и находятся под контролем ядра