Что ограничивает применение закона гука
Сила упругости и закон Гука
теория по физике 🧲 динамика
Сила упругости — сила, которая возникает при деформациях тел в качестве ответной реакции на внешнее воздействие. Сила упругости имеет электромагнитную природу.
Деформация — изменение формы или объема тела.
Сила упругости обозначается как F упр. Единица измерения — Ньютон (Н). Сила упругости направлена противоположно перемещению частиц при деформации.
Если после окончания действия внешних сил тело возвращает прежние форму и объем, то деформацию и само тело называю упругими. Если после окончания действия внешних сил тело остается деформированным, то деформацию и само тело называют пластическими, или неупругими.
Примеры упругой деформации:
Примеры пластической деформации:
Закон Гука
При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.
Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.
x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.
Абсолютное удлинение определяется формулой:
l0 — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.
Коэффициент жесткости тела определяется формулой:
E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.
Важно! Закон Гука не работает в случае, если деформация была пластической.
Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.
Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:
Приравняем правые части формул:
Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:
Если пружину растягивают две противоположные силы, то модули силы упругости и модули этих сил равны между собой:
Если груз подвешен к пружине, сила упругости будет равна силе тяжести, действующей на это тело:
Если пружины соединены параллельно, их суммарный коэффициент жесткости будет равен сумме коэффициентов жесткости каждой из этих пружин:
Если пружины соединены последовательно, их обратное значение суммарного коэффициента жесткости будет равен сумме обратных коэффициентов жесткости для каждой из пружин:
Пример №2. Две пружины соединены параллельно. Жесткость одной из пружин равна 1000 Нм, второй — 4000 Нм. Когда к пружинам подвесили груз, они удлинились на 5 см. Найти силу тяжести груза.
Переведем сантиметры в метры: 5 см = 5∙10 –2 м.
Запишем закон Гука с учетом параллельного соединения пружин:
Модуль силы тяжести согласно третьему закону Ньютона равен модулю силы упругости. Отсюда:
На рисунке представлен график зависимости модуля силы упругости от удлинения пружины. Какова жёсткость пружины?
Сила упругости: Закон Гука формула
Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип ничто не ускользает от нее….
Именно физика является основой основ, именно эта наука лежит в истоках всех наук.
Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.
Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика тепловыми процессами, электродинамика электрическими.
Почему деформацию должна изучать механика
Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?
Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.
А раз вопрос касается сугубо движения, значит, заниматься этим будет механика.
Закон Гука и условие его выполнения
В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.
Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:
Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает срабатывать.
Важно! На вопрос: При каких условиях выполняется закон Гука?, можно дать определенный ответ: При малых деформациях.
Закон Гука, определение: деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.
Естественно, это определение подразумевает, что:
Закон Гука в математической форме
Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:
,
где изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.
Следует помнить, что закон Гука справедлив только для малых растяжений.
Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:
, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение
.
В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.
Степень применимости можно рассмотреть в таком виде:
Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.
При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.
Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:
.
Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:
К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.
Закон Гука — определение, формула и примеры применения
Пружина является выдающимся достижением человеческих технологий. Множество её разновидностей, выполняющих вариативные функции, применяются сегодня в самых разнообразных устройствах.
Для проектирования таких механизмов требуется базовое понимание того, что из себя представляют упругость, кручение и сила, поэтому инженерам необходимо знать определение и формулу закона Гука.
Свойства пружины
Пружина — это объект, который может деформироваться под воздействием силы, а после того как сила будет устранена, вернётся к своей первоначальной форме. Пружины бывают самых разных форм и являются неотъемлемой частью практически всех умеренно сложных механических устройств: от шариковых ручек до двигателей гоночных автомобилей.
В самой форме спиральной пружины нет никаких особенностей. «Пружинность», или, точнее, эластичность, является фундаментальным свойством проволоки, из которой изготовлена пружина. Длинная прямая металлическая проволока также обладает способностью «отскакивать» после растяжения или скручивания.
Смотка проволоки в пружину позволяет использовать свойства длинного куска в небольшом пространстве. Это гораздо удобнее для сборки механических устройств.
Реакция металлической проволоки на растяжение (осевая нагрузка) и скручивание (кручение) определяется различными физическими свойствами, и в конструкции конкретной пружины один вид деформации может преобладать над другим.
Кроме того, упругие свойства металлов сильно зависят от микроструктуры их зёрен. Это может быть изменено как напряжением, так и контролируемым процессом нагрева и охлаждения, известным как отжиг.
Если металлическая проволока была сформирована из прямого сечения в катушку, то, вероятно, её необходимо будет повторно отжечь для восстановления первоначальных упругих свойств.
Принципы деформации
Когда сила воздействует на материал, он растягивается или сжимается в ответ. В механике сила, приложенная на единицу площади, является тем, что называется напряжением. Степень растяжения и сжатия, возникающая, когда материал реагирует на напряжение, называется деформацией. Напряжение измеряется отношением разницы в длине к исходной длине в направлении напряжения.
Каждый материал по-разному реагирует на стресс, и детали этой реакции важны для инженеров, выбирающих материалы для своих конструкций и машин, которые должны вести себя предсказуемо при ожидаемых напряжениях.
Для большинства материалов нагрузка, испытываемая при приложении небольшого напряжения, зависит от плотности химических связей. То же самое относится к жёсткости материала, которая напрямую связана с его химической структурой.
Происходящее при снятии напряжения зависит от того, насколько далеко перемещены атомы.
В целом существует два типа деформации:
Любая пружина должна быть спроектирована точно таким образом, чтобы она испытывала только упругую деформацию при установке в машину при нормальной эксплуатации.
Суть закона
Закон назван в честь британского физика XVII века Роберта Гука, который впервые сформулировал его в 1676 году в виде анаграммы на латинском.
Он опубликовал её решение в 1678 году, утверждая, что открыл закон уже в 1660 году.
При изучении пружин и свойств их упругости, имеющих электромагнитную природу, физик отметил, что кривая зависимости напряжения от деформации для многих материалов имеет линейную область.
Вот как формулируется закон Гука: сила упругости, необходимая для растяжения упругого объекта, такого как металлическая пружина, равна или прямо пропорциональна удлинению пружины.
Несколько пружин могут воздействовать на одну и ту же точку. В таком случае закон всё ещё может применяться. Как и с любым другим набором сил, силы многих пружин могут быть объединены в одну.
Когда действует закон Гука, поведение линейно. Если оно показано на графике или рисунке, линия, изображающая силу как функцию смещения, должна показывать прямое изменение. В правой части уравнения есть отрицательный знак, потому что восстанавливающая сила, создаваемая пружиной, находится в направлении, противоположном силе, вызвавшей смещение.
Всегда важно убедиться, что направление восстанавливающей силы задаётся последовательно при приближении к механическим задачам, связанным с упругостью. Для простых задач часто можно интерпретировать расширение X как одномерный вектор, в этом случае результирующая сила также будет одномерным вектором, а отрицательный знак в законе Гука даст правильное направление силы.
Однако успешность применения принципа зависит от того, при каких условиях он выполняется. Закон Гука является лишь линейным приближением первого порядка к реальному отклику пружин (и других упругих тел) на приложенные силы и имеет границы применимости, работая только в ограниченной системе координат.
Поскольку ни один материал не может быть сжат сильнее определённого минимального размера (или растянут за пределы максимального размера) без некоторой постоянной деформации или изменения состояния, он применяется только до тех пор, пока задействовано ограниченное количество силы или деформации. Фактически многие материалы заметно отклонятся от закона Гука задолго до того, как будут достигнуты эти пределы упругости.
С другой стороны, этот закон является точным приближением для большинства твёрдых тел, пока силы деформации достаточно слабы.
По этой причине он широко используется во всех областях науки (например, в сопромате) и техники, а ещё является основой многих дисциплин, таких как сейсмология, молекулярная механика и акустика.
Это также принцип, стоящий за пружинной шкалой, манометром и колесом баланса механических часов.
Поскольку общие напряжения и деформации могут иметь несколько независимых компонентов, «коэффициент пропорциональности» может больше не быть просто одним действительным числом, а скорее линейной картой (тензором), которая может быть представлена матрицей действительных чисел.
В этом обобщённом виде закон позволяет вывести связь между деформацией и напряжением для сложных объектов, с точки зрения внутренних свойств материалов, из которых они изготовлены. Например, можно сделать вывод, что однородный стержень с равномерным поперечным сечением будет вести себя как простая пружина при растяжении, с жёсткостью K, прямо пропорциональной его площади поперечного сечения и обратно пропорциональной его длине.
Модуль Юнга
Модуль Юнга (также известный как модуль упругости) — это число, которое измеряет сопротивление материала упругой деформации. Оно названо в честь физика XVII века Томаса Юнга. Чем жёстче материал, тем выше его модуль Юнга.
Это значение обычно обозначается символом E и записывается как E = σ/ε, где:
Модуль Юнга можно определить при любом напряжении, но там, где он подчиняется закону Гука, это постоянная величина. Можно непосредственно получить постоянную пружины k из модуля материала, области A, к которой приложена сила (поскольку напряжение зависит от площади), и номинальной длины материала L.
Практическое использование
Модуль Юнга позволяет рассчитать изменение размера стержня из изотропного упругого материала при растягивающих или сжимающих нагрузках. Например, он предсказывает, насколько образец материала растягивается при растяжении или укорачивается при сжатии.
Модуль непосредственно относится к случаям одноосного напряжения, то есть растягивающего или сжимающего напряжения в одном направлении и отсутствия напряжения в других направлениях.
Он также используется, чтобы найти отклонение, которое будет появляться в статически определённом луче, когда нагрузка приложена в точке между опорами луча. Другие вычисления обычно требуют использования одного дополнительного упругого свойства, такого как модуль сдвига, модуль объёма или коэффициент Пуассона. Любые два из этих параметров достаточны для полного описания упругости в изотропном материале.
Виды материалов
Сталь, углеродное волокно и стекло среди прочих обычно считаются линейными материалами, в то время как другие материалы, такие как резина и грунты, являются нелинейными. Однако это не абсолютная классификация: если к нелинейному материалу применяется небольшое напряжение, отклик будет линейным. Например, поскольку линейная теория предполагает обратимость, было бы абсурдно использовать её для описания разрушения стального моста под большой нагрузкой.
Модуль не всегда одинаков во всех ориентациях материала. Большинство металлов и керамики, наряду со многими другими материалами, являются изотропными, и их механические свойства одинаковы во всех ориентациях. Тем не менее металлы и керамика могут быть обработаны определёнными примесями, чтобы сделать их структуры зерна направленными.
Эти материалы затем становятся анизотропными, и модуль Юнга будет меняться в зависимости от направления вектора силы. Анизотропия также наблюдается во многих композитах. Например, углеродное волокно имеет гораздо более высокий модуль Юнга, когда сила нагружена параллельно волокнам (вдоль зерна). Другие такие материалы включают дерево и железобетон. Инженеры могут использовать это явление при создании конструкций.
Поскольку производители пружинных весов ожидают, что их продукт будет использоваться вертикально (например, рыбаком, измеряющим массу своей добычи), шкала откалибрована для учёта массы пружины и крючка. Это даст неверный абсолютный результат, если использовать его для измерения горизонтальной силы.
Тем не менее закон Гука говорит, что существует линейная зависимость между силой и растяжением. Из-за этого всё ещё можно рассчитывать на шкалу относительных измерений при горизонтальном использовании. Некоторые пружинные весы имеют регулировочный винт, который позволяет калибровать нулевую точку, устраняя эту проблему.
Физика. 10 класс
Конспект урока
Перечень вопросов, рассматриваемых на этом уроке
2.Модели видов деформаций.
3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.
Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.
Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.
Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела
Основная и дополнительная литература по теме:
Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112
Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29
ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.
Основное содержание урока
В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.
Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.
Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?
Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?
Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.
Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.
Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.
Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.
При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.
При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.
При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.
При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.
Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.
Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.
F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.
k− коэффициент пропорциональности, жёсткость тела.
Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.
— единица измерения жёсткости в системе СИ.
При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.
Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.
Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:
k – коэффициент пропорциональности, жёсткость тела.
x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)
Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.
График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.
Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.
Разбор тренировочных заданий
1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?
Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:
Из формулы (1) выражаем:
Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно
Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.
2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.
1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.