Что означает 3d nand в ssd

Что означает 3d nand в ssd

Версия вашего веб-браузера устарела. Обновите браузер для повышения удобства работы с этим веб-сайтом. https://browser-update.org/update-browser.html

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssd

Что такое NAND?

NAND — это энергонезависимая флеш-память, которая может хранить данные, даже если она не подключена к источнику питания. Возможность сохранять данные при выключении питания делает NAND отличным вариантом для внутренних, внешних и портативных устройств. USB-накопители, твердотельные накопители и SD-карты используют флеш-технологию, обеспечивая память для таких устройств, как мобильные телефоны и цифровые видеокамеры.

На рынке представлены несколько типов памяти NAND. Попросту говоря, каждый из типов отличается количеством битов, которое может храниться в каждой ячейке. Биты представляют собой электрический заряд, который может содержать только одно из двух значений — 0 или 1 (вкл./выкл.).

Ключевые различия между типами памяти NAND заключаются в стоимости, емкости и сроке службы. Ресурс определяется количеством циклов программирования-стирания (P/E), которые может выдержать ячейка флеш-памяти до износа. Цикл P/E — это процесс стирания и записи ячейки, и чем больше циклов P/E может выдержать технология NAND, тем выше ресурс устройства.

Стандартные типы флеш-памяти NAND — SLC, MLC, TLC и 3D NAND. В этой статье рассматриваются различные характеристики каждого типа памяти NAND.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssd

SLC NAND

Преимущества: Высочайший ресурс — Недостатки: Высокая стоимость и низкая емкость

NAND-память в одноуровневыми ячейками (SLC) хранит только 1 бит информации на ячейку. В ячейке хранится либо 0, либо 1, и в результате запись и извлечение данных может выполняться быстрее. SLC обеспечивает самую высокую производительность и ресурс: 100 000 циклов P/E То есть такая память служит дольше других типов NAND-памяти. Однако из-за низкой плотности размещения данных SLC является самым дорогим типом NAND-памяти и поэтому обычно не используется в потребительской продукции. Ее типичные области применения — серверы и другое промышленное оборудование, требующее высокой скорости и долговечности.

MLC NAND

Преимущества: Дешевле памяти SLC — Недостатки: Быстродействие и ресурс ниже по сравнению с SLC

Технология NAND-памяти с многоуровневыми ячейками (MLC) хранит несколько битов на ячейку, хотя термин MLC обычно относится к 2 битам на ячейку. MLC имеет более высокую плотность размещения данных по сравнению с SLC, поэтому позволяет создавать носители большей емкости. Память MLC отличается хорошим сочетанием цены, производительности и долговечности. Однако память MLC, обеспечивающая 10 000 циклов P/E более чувствительна к ошибкам данных и имеет меньший ресурс по сравнению с SLC. Память MLC обычно используется в потребительской продукции, где долговечность не столь важна.

TLC NAND

Преимущества: Наименьшая цена и высокая емкость — Недостатки: Низкая долговечность

NAND-память с трехуровневыми ячейками (TLC) хранит 3 бита на ячейку. За счет увеличения числа битов на ячейку снижается цена и увеличивается емкость. Однако это отрицательно сказывается на производительности и ресурсе (всего 3000 циклов P/E). Во многих потребительских изделиях используется память TLC как самый дешевый вариант..

3D NAND

В последние десять лет одной из крупнейших инноваций на рынке флеш-памяти стала память 3D NAND. Производители флеш-памяти разработали технологию 3D NAND, чтобы устранить проблемы, с которыми они столкнулись при уменьшении размера 2D NAND в попытке достичь более высокой плотности при меньших затратах. В памяти 2D NAND ячейки, в которых хранятся данные, размещаются горизонтально, рядом друг с другом. Это означает, что объем пространства, в котором могут быть размещены ячейки, ограничен, и попытка уменьшить размер ячеек снижает их надежность.

Поэтому производители NAND-памяти решили расположить ячейки в пространстве иначе, что привело к созданию памяти 3D NAND с вертикальным расположением ячеек. Более высокая плотность памяти позволяет увеличить емкость без значительного увеличения цены. Память 3D NAND также обеспечивает более высокую долговечность и меньшее энергопотребление.

В целом, NAND — чрезвычайно важная технология памяти, поскольку обеспечивает быстрое стирание и запись данных при более низкой стоимости на бит. С ростом игровой индустрии развитие технологии NAND продолжится, чтобы удовлетворить постоянно растущие потребности потребителей в хранении данных.

Источник

реклама

Появившись намного ранее флэш-памяти, Solid State Drive стал накопителем информации, не содержащим каких-либо механических компонентов. Пионером в создании стала корпорация Dataram, представив для промышленных целей SSD Bulk Core в 1976 году. Он содержал в себе 8 планок энергозависимой RAM-памяти, каждая из которых имела объем 256 килобайт. Стоимость составляла 9700 долларов США. Работал, был востребован, но из-за уязвимости данных высокого авторитета в соответствующих кругах не заслужил.

Потребительский класс стали завоевывать в 1982 году, оснастив компьютер Apple II внешним накопителем RAM Disk, который стоил дороже самого компьютера, поэтому пользователями был принят с большой осторожностью, несмотря на агрессивную рекламу.

Далее, в силу собственного характера и темперамента, я пропущу историю создания и распространения флеш-памяти, пропущу и пересказ того, как был создан первый SSD на ее основе. Всю эту информацию с легкостью можно почерпнуть в сети, готовясь к какому-нибудь докладу или создавая презентацию по теме. А вот на видах и классификациях современных SSD мы с вами задержимся:

Память

реклама

Флеш-память различается методом соединения ячеек в массив. И имеет 2 конструкции: NOR и NAND.

NAND-тип флеш-памяти нам максимально интересен и он был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.

1. Планарный тип или 2D.

реклама

реклама

Важной особенностью линии развития памяти в цепочке SLC-MLC-TLC является увеличение уровней ячеек. Но. резко падает выносливость, грубо говоря до серьезных цифр (на порядки) падает число циклов полной перезаписи. Да и скорость падает. Прямо регресс какой-то. Успокаивает то, что цена тоже падает и, как это ни странно, падает ощутимо. Плюс растет качество контроллеров, да всегда уменьшается техпроцесс. Впрочем, чтобы глубоко не погружаться в технические джунгли самому и не замучить вас, мои читатели, скажу, что эти страшные цифры снижения выносливости с переходом применения памяти от одной к другой вряд ли будут опасны для простого пользователя. Этих цифр хватит, чтобы мы с вами пользовались своим новым SSD много лет. Другое дело сервера и рабочие станции. Тут уж не грех и про эту самую «выносливость» подумать. Но и производители не дремлют. Линейка PRO некоторых производителей, например, говорит нам о том, что диск на основе MLC прослужит долго при максимальных нагрузках, но и стоить будет значительно дороже аналога на TLC. Подведя промежуточный итог на этапе рассказа о типах памяти скажем так: SLC получила распространение в корпоративном сегменте, TLC стала безусловным монополистом в рознице, а продукция на основе MLC ориентирована, в первую очередь, на тех, кто ценит надежность и при этом хочет выжать все возможное из своей машины.

Все бы так и оставить, но потенциал двумерной NAND оказался ограничен. С этого я начал свой рассказ о памяти. Когда возможности 15-нанометрового технологического процесса были практически исчерпаны, а дальнейшее совершенствование программной части перестало обеспечивать сколь-либо заметного прироста важнейших показателей, на смену планарным микросхемам пришла флэш-память 3D NAND.

2. 3D NAND

После того, как мы поговорим чуточку о другом, к видам памяти мы еще вернемся, да и у вас, мои дорогие читатели, появится повод дочитать мои размышления до конца.

А поговорим мы о физическом интерфейсе подключения и форм-факторе, что иногда одно и тоже, в свете разговора о пропускной способности. И здесь мы начнем с маленькой, но важной закономерности. Неважно сколько лет мы подключаем свои HDD к шине для накопителей, важно, что сможет позволить этот интерфейс нашей памяти. С какой скоростью он позволяет обмениваться информацией? Вспомним азбучные вещи:

1. IDE / SATA/

Кому-то интересно будет узнать, что IDE SSD тоже были как в форм-факторе 2,5 дюйма, так и 3,5, а вот список привычных интерфейсов пользовательского уровня для внутренних носителей: SATA 2 интерфейс обратно совместим и поддерживается на SATA 1 портах. SATA 3 интерфейс обратно совместим и поддерживается на SATA 1 и SATA 2 портах. Однако максимальная скорость диска будет медленнее из-за скоростных ограничений порта.

Как эти азбучные данные применить к размышлениям о SSD? А вот как:
Например, SanDisk Extreme SSD поддерживает интерфейс SATA 6 Гбит/с и при подключении к портам SATA 6 Гбит/с может доходить до 550/520MБ/s последовательного чтения и последовательной записи соответственно. Однако, когда диск подключен к порту SATA 3 Гбит/с, она может доходить до 285/275MБ/s последовательного чтения и последовательной записи соответственно. В любом случае, это будет много быстрее, чем использование даже самого скоростного HDD.

Дальше возник совершенно простой вопрос. Поскольку память для SSD способна работать и на гораздо больших скоростях, а развитие и физические возможности интерфейса SАТА и всех его итераций исчерпали себя, то надо дать что-то другое данным носителям информацми. Дать новое или уже имеющееся и применяемое. Кстати, несмотря на то, что SАТА для HDD вполне достаточный интерфейс, задумывались о новом, как раз для HDD дисков. А применять стали для SSD. Что же нашли? А вот что:

Далее я просто приведу пример других известных форм-факторов без комментариев. Потом вернемся к обсуждению новейших видов памяти с привязкой ее к этим форм-факторам и их интерфейсам. Мне кажется, что так нам будет легче внести ясность в предмет обсуждения:

Экзотику лишь упомянем. Это, например, накопитель, который вставляют прямо в слот оперативной памяти

Еще один, который сейчас редко встретишь. SATA-Express, с интерфейсом, использующим 2 линии PCI-Express, что позволяет достигать максимальной пропускной способности в 2 ГБ. Реализации не нашел. Сейчас SSD-диски M.2 (забегая немного вперед) могут использовать 4 линии PCI-Express с пиковой пропускной способностью 4 ГБ/с. Для подключения используется специальный кабель.

2. mSATA

3. PCI-E AIC (add-in-card)

4. U.2

двигаемся дальше и поговорим о

это новый стандарт SSD-накопителей. Обычные SSD различных форм-факторов работают по интерфейсу SATA, который передает информацию медленнее, чем на это способен сам накопитель. NVMe работает по интерфейсу PCI Express, производительности которого нам за глаза хватает. Диск NVMe выдает бо́льшую скорость чтения-записи данных.

Плывя по течению простых рассуждений о твердотельных накопителях, мы приближаемся к финалу повествования и вновь вспоминаем мою короткую историю в самом начале. OPTANE+QLC. Надо разобраться. Для этого мы мысленно возвращаемся в раздел Память. Начнем с несколько противоречивого лично для меня этапа развития памяти:

3D NAND QLC.

OPTANE. Intel Optane. Optane Memory.

Что сказать? Младшая версия обойдется нам от 25000 рублей, старшая в 2 раза дороже. Еще раз подчеркну, что здесь мы имеем бескомпромиссную скорость, заявленную надежность, хорошую гарантию и тот объем, который мы захотим себе позволить (из имеющихся).

Я, начиная свой рассказ c прочтенной когда-то рекламы, и поверхностно погрузив вас в тонкости информации о SSD, принял для себя решение о том, какой SSD я бы хотел иметь в своем компьютере. И я приобрел его. Это «всего лишь»:

Безусловно пора заканчивать. В самом финале скажу следующее:

2. Мною не тестировался приобретенный накопитель. Такие тесты уже есть. Плюс, я даже не сказал, какой накопитель у меня был до этого. Не было такой цели.

3. Попытался рассказать попроще о довольно сложном. Возможно, данный материал здесь, учитывая высокий уровень теоретической и практической подготовки наших читателей, поможет кому-то ответить на еще не возникшие вопросы.

Источник

3D NAND – что это. Разбираемся с преимуществами технологии

В одном из предыдущих материалов мы «пробегались» по типам памяти, используемой в SSD-накопителях. Разбирались, в чем отличия MLC от TLC, какие у каждого типа достоинства и недостатки. Но это все была технология планарной памяти, а в тренде сейчас многослойность и третье измерение. 3D NAND – что это такое? Какие у него преимущества, перспективы и, вообще, оно нам надо? Давайте разберемся.

Почему планарная память так называется

В последние годы актуальной задачей стало создание емких, быстрых, надежных и компактных хранилищ данных. Смартфоны, планшеты, фото- и видеоаппаратура, прочая мобильная и не очень техника и, конечно же, бурно завоевывающийся рынок SSD-накопители. Требуются именно емкие и небольшие по размеру микросхемы памяти, учитывая ограничения, которые предъявляют некоторые твердотельные диски. Достаточно посмотреть на форм-фактор M.2 чтобы понять, что большого количества чипов на этой маленькой платке разместить действительно негде.

До некоторого времени увеличивать емкость можно было как минимум двумя способами:

Для увеличения емкости кристалла используют оба способа, но дело в том, что последний, 15 нм техпроцесс, действительно последний, т. к. достигнут технологический предел уменьшения физического размера ячеек, и 15 нм действительно является последним техпроцессом, по которому производят привычную NAND-память.

Что собой представляет NAND-память

Если рассмотреть архитектуру памяти, то единицей хранения информации является транзистор. Традиционно используются транзисторы с плавающим затвором, в котором и хранится один, два или три бита информации. Количество этих битов зависит от типов памяти, о которых можно прочитать в другом материале.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdУпрощенная схема NAND-памяти представлена на рисунке. Ячейки (они же транзисторы) соединяются последовательно по 16 или 32 ячеек в группе, образуя страницы, из которых формируется блок. Можно представить себе этакое плоское поле, все утыканное ячейками памяти.

Один из недостатков такой организации памяти – в необходимости оперировать не отдельными битами или байтами, а блоками данных, т. е. произвольный доступ к отдельной ячейке невозможен. Если в случае чтения это не является проблемой, то с записью возникают сложности. Для изменения одного бита приходится считывать блок данных, изменять его и записывать обратно.

Это требует выполнения определенных действий (и времени) по программированию ячеек при записи. Причем перезаписываются даже те ячейки, которые не изменялись. Отсюда и вытекает ограниченность количества циклов перезаписи, о которой часто говорят применительно к твердотельным накопителям. Особенно актуально это стало в связи с массовым распространением трехбитовых (TLC) ячеек. Что ж, ради снижения стоимости чипов памяти приходится чем-то жертвовать.

Подобное соединение ячеек позволяет плотно разместить их на кристалле, чем достигается высокая емкость чипов памяти. Чем больше информации можно разместить на единице площади кристалла, тем ниже себестоимость конечного продукта, в данном случае – SSD-диска.

Как было сказано, бесконечно уменьшать размер ячеек нельзя, как и увеличивать плотность их расположения. 15-нм техпроцесс подошел к тому пределу, когда двигаться дальше уже некуда. Ячейки настолько малы, что при дальнейшем их уменьшении заряд начнет «перетекать» из одной ячейки в другую, что, естественно, недопустимо.

3D NAND – что это, спасение?

Можно сказать, что да. Если стоимость кристалла памяти зависит от его размера, а уплотнять его уже не представляется возможным, то почему бы не перейти от двумерной (планарной) организации ячеек к трехмерной, развернув их вертикально? В этом фундаментальное отличие 3D NAND от старой, «плоской» системы размещения ячеек.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdПервой такую память сделала компания Samsung, назвав ее V-NAND (V – от слова vertical, вертикальная). Первое поколение имело 24 слоя, второе – 32, а в последнем, третьем поколении используются уже 48 слоев. Компании Micron, Toshiba представили свои чипы памяти позже, и производят их уже с 64-мя слоями.

Причем, наблюдается и разница в подходах к архитектуре этих микросхем и расположению их на кристалле.

Micron располагает управляющие элементы под NAND ячейками, что экономит место на кристалле, позволяя увеличить его емкость. Мало того, хотя Samsung и Toshiba отказались от технологии плавающего затвора, воспользовавшись технологией CTF (Charge Trap Flash), которая использует изолированную область для хранения заряда (именно изолированность позволяет снизить утечки, повысить надежность памяти), в Micron остались верны плавающему затвору.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdВ Toshiba управляющие элементы расположены в верхней части, что, по мнению компании, позволяет этим элементам меньше подвергаться нагреву. К тому же линии ячеек как бы свернуты, напоминая букву «U», а не расположены в одну линию. Все это позволяет добиться снижения количества ошибок при операциях чтения/записи. Ну и, как было сказано чуть выше, используется технология CTF. Сама Toshiba называет свою трехмерную память BiCS 3D NAND (Bit Cost Scalable).

В общем, подходы разные, и что лучше или хуже – будет ясно после того, как появится достаточное количество накопителей с чипами памяти разных производителей, которые можно будет сравнить, устроив тестирование, накопится определенная статистика использования.

Итак, трехмерная память сняла остроту необходимости утончать техпроцесс, как один из способов увеличения емкости чипов. Правда, при этом возникли некоторые другие технологические сложности, которые, судя по бодрым анонсам практически всех чипмейкеров, успешно преодолеваются. Так, SK Hynix планирует в скором времени перейти на производство 72-слойных чипов. Та же Toshiba отлаживает выпуск 64-слойных чипов, предлагая их сейчас с емкостью 256 Гб (32 ГБ), а в скором времени ожидается выпуск 3D NAND чипов с емкостью 512 Гб (64 ГБ).

Судя по всему, второе полугодие обещает быть интересным. Увеличится емкость чипов, будут предложены кристаллы с бОльшим количеством слоев.

Что такое технология CTF

В чем суть этой технологии? Разница заключается в области, в которой хранится заряд, и материала, из которого эта область выполнена. Классический транзистор с плавающим затвором, помимо обычных стока, истока, и затвора, называемого в данном случае «управляющим затвором», имеет и еще одну область – расположенный в слое диэлектрика проводник, называемый «плавающим затвором», в котором, собственно, и накапливается заряд. В нем-то и хранятся биты данных. В качестве диэлектрика используется диоксид кремния SiO2.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdТранзистор, выполненный по технологии CTF (Charge Trap Flash) сделан несколько иначе. Собственно, область, где хранится заряд, выполнена из нитрида кремния Si3N4, обладающего рядом отличительных свойств. Так, являясь, по сути, диэлектриком, этот материал способен хранить заряд, что позволяет использовать его в качестве запоминающей ячейки.

По сравнению с диоксидом кремния (SiO2), бОльшая концентрация электронных и дырочных ловушек нитрида кремния как раз и позволяет использовать материал для хранения данных.

Отсюда становится понятной аллегория, озвученная лидером в разработке 3D NAND памяти, компанией Samsung, что транзисторы с плавающим затвором – это вода, а с ловушкой заряда – это сыр. Плавающий затвор (вода) слабо препятствует перемещениям зарядов и их попыткам вообще покинуть эту область (утечка), в то время как ловушка заряда подобна «сыру», существенно ограничивающая возможность этих перемещений и попытки вырваться на «свободу».

Среди достоинств этой технологии обычно указывают:

Различают несколько вариаций изготовления слоев транзистора в зависимости от материалов:

Где предел 3D NAND?

Ну хорошо, количество слоев памяти растет, а где предел, не получится ли так, что вскорости будет достигнут лимит количества слоев, и придется искать альтернативы? Ответ кроется в технологических проблемах и способах их решения.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdЕсли вкратце, и очень упрощенно, то производство многослойной памяти заключается в напылении n-го количества слоев на кремниевую пластину, образующие линии слов (word line), а другая операция заключается в травлении огромного количества отверстий (high aspect ratio etch) через эти слои, чтобы впоследствии сформировать линии битов (bit line). В пространстве линии слов и битов ориентированы перпендикулярно друг другу, а главные сложности кроются именно в отверстиях.

Еще пару лет назад заявлялось, что есть технологические проблемы с травлением отверстий в слоях, количество которых достигает 60-70. Правда, сейчас, когда 64-слойная память – уже реальность, а на горизонте 72-слойная, и есть разговоры про более многослойные варианты, с этой проблемой удается справиться. Вопрос, как?

Один из вариантов – технология «string stacking». Если не вдаваться в технические подробности, то это установка отдельных чипов памяти (которые сами по себе многослойные) друг на друга (стекирование) с последующим соединением таким образом, чтобы этот многослойный бутерброд распознавался как единое целое, как одна микросхема. Таким образом, использовав чипы 3D NAND с 32-мя слоями, можно получить итоговый чип с 64 (2 слоя чипов), 96 (3 слоя чипов) и т. д. слоями. Но и тут есть сложности технологического порядка, в первую очередь связанные именно с соединением и коммутацией чипов, которые находятся на этапе решения.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdЕще один момент – а сколько вообще слоев может быть? Где предел, при котором микросхема не станет слишком толстой? Если рассматривать с теоретической точки зрения, то можно провести следующие грубые прикидки.

Высота слоев 32-слойной 3D NAND от Samsung составляет около 4 мкм. При этом полупроводниковые пластины, используемые в производстве микросхем, имеют толщину 625-775 мкм в зависимости от диаметра. Одним из завершающих этапов производства чипов (правда не всегда используемый) является сошлифовывание (back-grinding) обратной стороны этой пластины до толщины порядка 50-75 мкм. Это уменьшает размеры кристалла и облегчает упаковку готовой микросхемы в корпус, да и для стекирования чипов подходит как нельзя лучше.

Если взять толщину 32-слойного чипа памяти и толщину 300-мм пластины, которая составляет 775 мкм, то, в теории, можно уложить более 190 слоев чипов памяти прежде, чем их толщина превысит толщину исходной пластины (775 / 4 = 193.75).

Конечно, это только в теории, и, скорее всего, таких значений достигнуто не будет, но это иллюстрирует, что «запаса прочности» у технологии 3D NAND вполне достаточно. Главное – решить текущие технологические проблемы именно с укладкой чипов друг на друга и их соединением. Если же это будет выполнено, то количество слоев (чипов) может исчисляться десятками и сотнями, а количество слоев ячеек может достигать многих сотен. Возможную емкость подобных микросхем попробуйте посчитать самостоятельно.

Либо искать решение проблемы с травлением отверстия в многослойных кристаллах. В конце концов, подробностей о том, как выполнены представленные 64-слойные чипы, а также уже анонсированные 72-слойные, нет. Возможно, удалось все же найти разобраться с травлением, либо присутствуют какие-то другие решения.

В общем, в теории перспективы вполне радужные, что будет на практике?

Проблема параллелизма операции чтения/записи

Увеличение емкости, несомненно, благо, т. к. в небольшом форм-факторе (в том же M.2) можно получить накопители объемом в несколько терабайт. Вот только возникла одна проблема: при высокой емкости чипов становится сложным распараллелить операции чтения/записи. В первую очередь это касается накопителей небольшого объема.

Что означает 3d nand в ssd. Смотреть фото Что означает 3d nand в ssd. Смотреть картинку Что означает 3d nand в ssd. Картинка про Что означает 3d nand в ssd. Фото Что означает 3d nand в ssdЭто хорошо характеризует такой печально известный своей низкой производительностью накопитель Intel 600p. Дело в том, что в нем используются чипы памяти емкостью 384 Гб (48 ГБ) производства Micron, и для того, чтобы получить емкость накопителя в 128 ГБ, надо всего 3 такие микросхемы. Для 256-гигабайтного накопителя используются 6 микросхем и т. д.

Казалось бы, меньше микросхем – больше места для их размещения. Это так, но большинство контроллеров, особенно в сегменте производительных моделей, имеют 4 или 8 каналов, обеспечивающих параллельный доступ к памяти. Если микросхем памяти 3 (6, 9…), то как задействовать все доступные каналы? В том то и дело, что никак. Вместо использования всех 8-ми (или 4-х) каналов приходится ограничиваться использованием только шести (3-х). Получается, что контроллер работает не на полную мощь, отсюда – падение производительности.

В общем, вырисовывается некоторая проблема именно с накопителями низкой емкости. Возможно, стоимость их будет невелика, но и скоростные показатели будут там же. Получается, что если хочется скорости, то пожалуйте приобретать более емкие накопители. А стоимость?

Заключение. 3D NAND – это то, с чем нам жить

Ни для кого не секрет, что за 3D NAND будущее, и в самом ближайшее время начнется (если уже не началось) активное вытеснение планарной памяти. Все будет зависеть от стоимости решений, производственных возможностей производителей, в первую очередь Micron, Toshiba, и, возможно, SK Hynix, если дело двинется дальше анонсов. Про Samsung говорить нечего, т. к. свои чипы 3D памяти они, фактически, никому не поставляют.

Думается, бюджетные SSD-накопители продержатся еще какое-то время, а вот производительные решения, и, в первую очередь, твердотельные диски, работающие на шине PCIe, будут активно мигрировать именно на 3D NAND.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *