Что означает делитель в математике
Деление (математика)
Деле́ние (операция деления) — одно из четырёх простейших арифметических действий, обратное умножению. Деление — это такая операция, в результате которой получается число (частное), которое при умножении на делитель даёт делимое. Существует несколько символов, используемых для обозначения оператора деления.
Подобно тому, как умножение заменяет неоднократно повторенное сложение, деление заменяет неоднократно повторенное вычитание.
Рассмотрим, например, такой вопрос:
Сколько раз 3 содержится в 14?
Повторяя операцию вычитания 3 из 14, мы находим, что 3 «входит» в 14 четыре раза, и ещё «остаётся» число 2.
Результат деления также называют отношением.
Содержание
Деление натуральных чисел
Кольцо целых чисел не замкнуто относительно деления. Простым языком это означает то, что результат деления одного целого числа на другое может быть не целым. В случае, если всё-таки результат является целым числом, говорят о делении без остатка.
Деление чисел издавна считалось самой трудной из арифметических операций. В Средние века «секрет» деления знало не очень много посвящённых людей. Происходило это потому, что существовавшие алгоритмы деления были очень громоздки, сложны для исполнения и запоминания (например, деление в виде корабля (англ.) ). Появление деления столбиком радикально изменило эту ситуацию — теперь деление входит в раннюю школьную программу по математике наряду с остальными арифметическими действиями. Однако так же, как и в случае с умножением (см. быстрое умножение), в последнее время открыты более эффективные алгоритмы (см. en:Division (digital), применяющиеся в вычислительной технике.
Существуют правила, позволяющие быстро определить, делится ли число на заданный делитель без остатка (признаки делимости). Наиболее известные признаки делимости на 2, 3, 4, 5, 8, 9, 11, 25 и их производные, также существует признаки делимости на 7, 13, 1001 и другие числа.
Целое число, на которое одновременно делятся без остатка несколько чисел, называется их общим делителем.
Определение количества делителей натурального числа приводит к двум важным понятиям: составное и простое число. У простого числа есть ровно два различных делителя — 1 и само число. У составных чисел различных делителей больше двух. 1 не является ни составным, ни простым числом.
В случае, если одно натуральное число не делится на другое без остатка, можно говорить о делении с остатком. Рассмотрение остатков, их сравнение и формализация в виде вычетов привели к целой науке — теории чисел.
Обычно на остаток накладываются следующие ограничения (чтобы он был корректно, то есть однозначно, определён):
,
,
где — делимое,
— делитель,
— частное и
— остаток.
Деление целых чисел
Деление произвольных целых чисел несущественно отличается от деления натуральных чисел — достаточно поделить их модули и учесть правило знаков.
Однако деление целых чисел с остатком определяется неоднозначно. В одном случае, (так же как и без остатка) рассматривают сначала модули и в результате остаток приобретает тот же знак, что делитель или делимое (например, с остатком (-1)); в другом случае понятие остатка напрямую обобщается и ограничения заимствуются из натуральных чисел:
.
Деление рациональных чисел
Замыкание множества целых чисел по операции деления приводит к расширению его до множества рациональных чисел. Это приводит к тому, что результатом деления одного целого числа на другое всегда является рациональное число. Более того, полученные числа (рациональные) уже полностью поддерживают операцию деления (замкнуты относительно неё).
Правило деления обыкновенных дробей:
Деление вещественных чисел
Деление также замкнуто в поле ненулевых вещественных чисел. Дедекиндово сечение позволяет однозначно определить результат деления.
Деление комплексных чисел
Комплексные числа опять замкнуты относительно операции деления.
Деление в алгебре
В отличие от простейших арифметических случаев на произвольных множествах и структурах деление может быть не только не определено, но и обладать множественностью результата.
Обычно в алгебре деление вводится через понятие единичного и обратного элементов. Если единичный элемент вводится однозначным образом (обычно аксиоматически или по определению), то обратный элемент часто может быть как левым (), так и правым (
). Эти два обратных элемента могут по отдельности существовать или не существовать, равняться или не равняться друг другу.
К примеру, отношение матриц определяется через обратную матрицу, при этом даже для квадратных матриц может быть:
.
Отношение тензоров в общем случае не определено.
Деление многочленов
В общих чертах оно повторяет идеи деления натуральных чисел, ибо натуральное число есть не что иное, как значения многочлена, у которого коэффициенты — цифры, а вместо переменной стоит основание системы счисления:
.
Поэтому аналогично определяются: частное, делитель, делимое и остаток (с той лишь разницей, что ограничение накладывается на степень остатка). Поэтому к делению многочленов также применимо деление столбиком.
Отличие же заключается в том, что при делении многочленов основной упор делается на степени делимого и делителя, а не на коэффициенты. Поэтому обычно считается, что частное и делитель (а следовательно и остаток) определены с точностью до постоянного множителя.
Деление на ноль
По правилам стандартной арифметики деление на число 0 запрещено.
Другое дело — деление на бесконечно малую функцию или последовательность. Деление конечных функций на бесконечно малые приводит к появлению бесконечно больших, а отношение двух бесконечно малых называется неопределённостью 0/0, которую можно преобразовать (см. раскрытие неопределённостей) с тем, чтобы получить определённый результат.
Операции деления ненулевого числа на ноль не соответствует никакое действительное число.
Результат этой операции считается бесконечно большим и равным бесконечности: , где
Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным a или приближается к нему, то частное неограниченно увеличивается(по модулю).
Делитель
Делимость — одно из основных понятий арифметики и теории чисел, связаное с операцией деления.
Содержание
Определение
Обозначения
Связанные определения
Свойства
Число делителей
Обобщения
Понятие делимости обобщается на произвольные кольца, например кольцо многочленов.
См. также
Полезное
Смотреть что такое «Делитель» в других словарях:
ДЕЛИТЕЛЬ — ДЕЛИТЕЛЬ, делителя, муж. (мат.). В действии деления число, на которое делят делимое. Общий наибольший делитель (наибольшее целое число, на которое без остатка делится ряд данных чисел). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
делитель — дивизор Словарь русских синонимов. делитель сущ., кол во синонимов: 5 • делильщик (3) • дивизор … Словарь синонимов
делитель — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] делитель [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и электроэнергетике. 2 е издание М.: РУССО, 1995 616 с.] Тематики электросвязь, основные понятия EN… … Справочник технического переводчика
ДЕЛИТЕЛЬ — ДЕЛИТЕЛЬ, я, муж. Число или величина, на к рую делится делимое. Наибольший общий д. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ДЕЛИТЕЛЬ — (1) мощности устройство, распределяющее мощность поступающего на его вход сигнала между несколькими каналами в заданном отношении; (2) напряжения устройство, позволяющее использовать только часть постоянного или переменного напряжения… … Большая политехническая энциклопедия
делитель — блок деления; отрасл. делитель Блок, на выходе которого образуется величина, пропорциональная частному от деления одного входного сигнала на другой … Политехнический терминологический толковый словарь
делитель — dalytuvas statusas T sritis automatika atitikmenys: angl. divider vok. Dividierer, m; Dividierwerk, n; Divisor, m; Teiler, m rus. делитель, m; делительное устройство, n pranc. diviseur, m; démultiplicateur, m … Automatikos terminų žodynas
делитель — daliklis statusas T sritis automatika atitikmenys: angl. divider; divisor vok. Dividierer, m; Divisor, m; Teiler, m rus. делитель, m pranc. diviseur, m … Automatikos terminų žodynas
делитель — dalytuvas statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas, tam tikru santykiu dalijantis į jį patenkančio dydžio vertę. atitikmenys: angl. divider vok. Divisor, m; Teiler, m rus. делитель, m pranc. diviseur, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
делитель — dalytuvas statusas T sritis fizika atitikmenys: angl. divider vok. Divisor, m; Teiler, m rus. делитель, m pranc. diviseur, m … Fizikos terminų žodynas
Общее представление о делении натуральных чисел
В рамках этого материала мы разберем важное действие, называемое делением. Дав общее представление о нем и объяснив его смысл, мы введем основные термины и обозначения на письме. В последнем пункте мы расскажем, для решения каких задач нам пригодится умение делить натуральные числа.
Что такое деление натуральных чисел
Само по себе понятие деление неразрывно связано с процессом разъединения некоторого множества предметов на несколько отдельных множеств.
Объясним на примере.
В быту мы часто употребляем слова»делиться», «поделиться», например, поделиться угощением с друзьями. Это слово означает, что угощение мы поделили на некоторые части и отдали часть одним людям, а часть другим (или оставили себе). С помощью этого простого примера деление можно представить как последовательное вычитание из одного большого множества. Что такое вычитание и как его выполнять, мы уже разбирали с вами ранее.
Основной смысл процесса деления
На основе того, что мы озвучили, можно придать определенный смысл делению одного натурального числа на другое (отдельно выделим число, которое делят, и то, на которое делят). Мы помним, что понятие натуральных чисел проще всего соотнести с количеством некоторых предметов. То число, которое необходимо поделить, выражает число предметов исходного множества. В зависимости от того, какой смысл мы придаем второму числу (т.е. тому, на которое делят), можно выделить два основных подхода к пониманию смысла деления. Возможны такие варианты:
Разделить одно натуральное число на другое без остатка возможно далеко не всегда. Так, 10 конфет мы можем ровно разделить на 2 или 5 кучек, а на 3 нет, потому что в одном из множеств окажется отличное от других число конфет. Разложить 10 конфет по 15 или 20 кучкам мы также не в состоянии. Смысл таких действий объясняется в материале про деление с остатком.
Если мы можем поделить одно натуральное число на другое, то получившееся в итоге число также будет натуральным.
Основные понятия процесса деления
В этом пункте мы укажем основные обозначения и понятия, используемые в делении натуральных чисел.
Чтобы обозначить деление в записи, обычно используют знак двоеточия: « : ». Иногда можно встретить вместо него знак « ÷ », который означает то же самое. Первым мы записываем число, которое будем делить, потом знак деления, а потом число, на которое делим. Числовое выражение вида 10 : 5 означает, что мы делим десять на пять.
То число, которое делим, называем делимым. То, на которое делим – делителем. Итог вычислений правильно называть частным. Само числовое выражение, состоящее из делимого, делителя и знака деления, тоже называется частным.
Когда мы говорим о том, что нужно определить число, являющееся результатом деления одного натурального числа на другое, нужно использовать выражения «найти частное» или «вычислить частное».
Запись читается как «тридцать разделить на шесть равно пяти» или «частное от деления тридцати на шесть равно пяти».
Схематично процесс деления можно отобразить как » делимое : делитель = частное.».
Задачи с применением деления
Приведем примеры задач, для которых нужно уметь делить одно натуральное число на другое.
1. Первый тип задач – это те, в которых нужно найти, сколько множеств получится после деления исходного множества на равные части, а также близкие к ним задачи на вычисление количества предметов в каждом множестве после деления. Ранее мы уже приводили примеры таких задач. Добавим еще несколько.
Допустим, у нас есть 40 ручек, которые нужно распределить поровну между 4 коробками. Как вычислить, сколько ручек положить в каждую из них?
Ответ: 10
На ужин было приготовлено 12 котлет. Каждому члену семьи должно достаться по две. Сколько всего человек будут ужинать?
2. Второй тип задач очень схож с первым, однако в них необходимо вычислить не количество предметов, а изменения физических величин (времени, температуры, длины и др.)
Например, у нас есть полная бочка молока объемом 100 л. Сколько надо взять двухлитровых бутылок, чтобы перелить туда все имеющееся молоко?
Ответ: 100
Ответ: 3
3. Третий тип задач – это те, где нужно найти, во сколько раз уменьшилось исходное количество чего-либо, или выяснить, во сколько одно множество предметов или величина больше, чем другое. Например:
Планировалось построить дом площадью 120 кв м., но в итоге построили в два раза меньше. Какую площадь имеет в итоге построенный дом?
Ответ: 60
Делимость чисел в математике с примерами решения
Содержание:
Делимость чисел
Делители натурального числа
18 конфет можно разделить поровну между 3 детьми, дав каждому ребенку по 6. Это же количество конфет, не разрезая их, нельзя разделить поровну между 4 детьми. Если каждому ребенку дать по 4 конфеты, то останется 2. Запишем:
Число 18 делится на число 3 без остатка (еще говорят: 18 делится на 3). Число 3 называют делителем числа 18. Число 18 не делится без остатка на 4 (еще говорят: 18 не делится на 4). Число 4 не является делителем числа 18.
Любое натуральное число, на которое делится данное натуральное число, называют делителем этого числа.
Запишем все натуральные числа, на которые делится число 18 Такими числами являются 1,2,3,6,9, 18. Итак, число 18 имеет 6 делителей: 1,2, 3,6,9 и 18.
Число 1 имеет только один делитель — 1. Любое другое число, например, 23, обязательно имеет по крайней мере два делителя — число 1 и само число (23), причем I — наименьший делитель, само число (23) — наибольший.
Пример:
Найти все делители числа 36.
Решение:
Чтобы найти все делители числа 36, будем делить его на натуральные числа, начиная с 1: 36 : 1 = 36; 36 : 2 = 18; 36 : 3 = 12; 36 : 4 = 9; 36 : 5 = 7 (ост. 1); 36 : 6 = 6; 36 : 7 = 5 (ост. 1); 36 : 8 = 4 (ост. 4) и т. д.
Количество делений можно уменьшить. Найдя один делитель, сразу можем записать еще один, который является частным от деления числа 36 на этот делитель. Делители удобно записать так:
Итак, делителями числа 36 являются: 1, 2, 3,4, 6, 9, 12, 18, 36.
Признаки делимости на 2, 5 и 10
Как известно из изученного в пятом классе, чтобы умножить натуральное число на 10, нужно к записи этого числа дописать справа один нуль, например, 137 • 10 = 1370. Поскольку 10 является делителем числа 1370, то число 1370 делится на 10. В общем, на 10 делятся все числа, запись которых оканчивается цифрой 0.
Число, запись которого не оканчивается цифрой 0, например, 457, на 10 не делится.
Натуральное число, запись которого оканчивается цифрой 0, делится на 10.
Натуральное число, запись которого не оканчивается цифрой 0, не делится на 10.
Это правило называют признаком делимости на 10.
Найдем признак делимости на 5. Для этого разделим на 5 некоторые числа, например, 19, 82, 140, 245, 344, 515, 630, 1027.
Запишем в первый столбик те числа, которые делятся на 5, а во второй — те, которые не делятся на 5.
Какую вы заметили особенность чисел, которые делятся на 5; не делятся на 5?
Натуральное число, запись которого оканчивается цифрой 0 или 5, делится на 5.
Натуральное число, запись которого оканчивается цифрой, отличной от 0 или 5, не делится на 5.
Числа, которые делятся на 2, называют четными, а числа, которые на 2 не делятся, — нечетными. Например, 24 — число четное, поскольку оно делится на 2, а число 25 — нечетное, поскольку оно не делится на 2.
Однозначные числа 0, 2,4, 6, 8 являются четными, а числа 1, 3, 5, 7, 9 — нечетными.
Запись каждого числа, которое делится на 2, оканчивается однозначным четным числом. Если запись числа оканчивается однозначным нечетным числом, то оно не делится на 2.
Натуральное число, запись которого оканчивается однозначным четным числом, делится на 2.
Натуральное число, запись которого оканчивается однозначным нечетным числом, не делится на 2.
Для тех, кто хочет знать больше
Зная последнюю цифру в записи натурального числа, можно установить, делится ли оно на 2, 5 или 10.
Зная две последние цифры в записи натурального числа, можно ответить на вопрос, делится ли число на 4, на 25. А именно:
Натуральное число делится на 4, если число, образованное двумя его последними цифрами, делится на 4.
Натуральное число не делится на 4, если число, образованное двумя его последними цифрами, не делится на 4
Натуральное число делится на 25. если число, образованное двумя его последними цифрами, делится на 25.
Натуральное число не делится на 25, если число, образованное двумя его последними цифрами, не делится на 25.
Признаки делимости на 9 и на 3
Найдем признак делимости на 9. Для этого разделим на 9 некоторые числа, например, 288, 361,441, 814. 917, 8919.
Запишем в первый столбик те числа, которые делятся на 9, а во второй — те, которые не делятся на 9.
Какую вы заметили особенность чисел которые делятся на 9; не делятся на 9?
Воспользуйтесь такой подсказкой: найдите сумму цифр каждого из этих чисел.
Какое свойство имеет сумма цифр тех чисел, которые делятся на 9?
Какое свойство имеет сумма цифр тех чисел, которые не делятся на 9?
Натуральное число делится на 9, если сумма его цифр делится на 9.
Натуральное число не делится на 9, если сумма его цифр не делится на 9.
Признак делимости на 3 аналогичен признаку делимости на 9.
Натуральное число делится на 3, если сумма его цифр делится на 3.
Натуральное число не делится на 3, если сумма его цифр не делится на 3.
Для тех. кто хочет знать больше
Признак делимости на 9, например, для числа 468, следует из таких преобразований:
Число — 9 делится на 9. Сумма 4+6+8 является суммой цифр числа 468. Если она делится на 9, то и число 468 делится на 9. Так как сумма 4 + 6 + 8 = 18 делится на 9, то и число 468 делится на 9.
Простые и составные числа
Возьмем несколько натуральных чисел и найдем все их делители.
Мы видим, что числа имеют разное количество делителей. Число 1 имеет только один делитель — само это число. Числа 2, 3, 17 имеют по два делителя: 1 и само себя. Числа 4, 12,21 и 30 имеют больше, чем два делителя.
Натуральное число называют простым, если оно имеет только два разных делителя: единицу и само это число. Число, имеющее более двух делителей, называют составным.
Итак, числа 2, 3, 17 — простые, а числа 4, 12, 21, 30 — составные. Число 1 не является ни простым, ни составным числом.
Если число имеет делитель, отличный от I и самого себя, то это число имеет более двух делителей и поэтому является составным. Число 12 475 — составное, так как имеет среди делителей, например, число 5.
Наименьшим простым числом является число 2. Наибольшего простого числа не существует. Все простые числа, кроме числа 2, являются нечетными.
Таблица простых чисел, которые не превышают 1000, находится на форзаце учебника.
Интересные рассказы
История математики знает имена ученых, которые приложили немало усилий для составления таблиц простых чисел. Первые такие попытки были сделаны еще в Древней Греции.
Если «высеять» все простые числа, не превышающие 30, то получим:
2, 3, 5, 7, II, 13, 17, 19, 23, 29 — первые 10 простых чисел.
Эратосфенов метод «высевания» простых чисел называют еще «решетом Эратосфена». Это связано с тем, что древние греки писали на папирусе или табличках, покрытых воском, и числа не вычеркивали, а выкалывали иголкой, после чего папирус или табличка напоминали решето.
В 1603 году итальянский математик Пьетро Катальди опубликовал в Болонье первую известную нам таблицу простых чисел меньше 750. Позже математики продвигались все дальше в глубь натурального ряда чисел, открывая все новые и новые простые числа.
Уже в 1770 голу немецкий математик Иоанн Генрих Ламберт (1728- 1777) опубликовал таблицу наименьших делителей всех чисел меньше 102 000, которые не делятся на 2, 3 и 5. Это была огромная работа. Не зря, призывая ученых продолжить составление таблицы, Ламберт гарантировал бессмертие тому, кто получит таблицу делителей до 1 000 000.
В середине XIX века в прессе появились сообщения, которые казались совершенно невероятными: Венская академия наук получила рукопись пражского математика Якуба Филиппа Кулика, содержащую таблицу деятелей чисел, не делящихся 2, 3 и 5, которую ученый расширил до 100 миллионов.
Редактор таблиц простых чисел Лемер посетил Вену и убедился, что в библиотеке академии хранится семь больших томов рукописных таблиц «Большой канон делителей всех чисел, которые не делятся на 2, 3 и 5, и простых чисел между ними до 100 330 201 Якуба Филиппа Кулика, публичного ординарного профессора высшей математики Пражского университета».
Якуб Филипп Кулик (1793 1863) родился во Львове. Окончив местную гимназию, он изучал философию, право и математику во Львовском университете, ас 1814 гола преподавал математику в лицее. С 1826 года Кулик стал профессором высшей математики Пражского университета. Много сил ученый отдал развитию культуры, науки и образования в родном крае. Он подарил много книг галицким гимназиям и Львовскому университету. Кулик является автором многих научных работ, но в историю математики он вошел как непревзойденный вычислитель и составитель математических таблиц.
Разложение натуральных чисел на простые множители
Составное число 24 можно записать как произведение двух множителей, например, 24 = 6•4. Говорят, что число 24 разложили на два множителя — 6 и 4. Числа 6 и 4 тоже можно разложить на множители: 6 = 3•2; 4 = 2•2. Теперь число 24 можно записать так: 24 = 3 • 2 • 2 • 2. В произведении 3 • 2 • 2 • 2 все множители являются простыми числами. Итак, число 24 разложили на простые множители.
Разложить число на простые множители означает записать его в виде произведения простых чисел. Любое составное число можно разложить на простые множители. Например:
Раскладывая числа на простые множители, надо найти простые делители этого числа. При этом можно использовать признаки делимости чисел. Чтобы разложить на множители большие числа, пользуются специальной схемой.
Пусть надо разложить на простые множители число 630.
Записываем это число и проводим справа вертикальную черту Наименьшим простым делителем этого числа является 2; записываем 2 справа or черты. Делим 630 на 2 и записываем частное 315 слева от черты под числом 630. Находим теперь наименьший простой делитель числа 315. Им является число 3, записываем его справа от черты. Делим 315 на 3, частное 105 записываем слева. Делим 105 на 3, получаем 35; 35 делим на 5, получаем 7. Число 7 простое, разделив его на 7, получим I. Разложение закончено.
Итак,
Пример:
Найти все делители числа 126.
Решение:
Разложим число 126 на простые множители:
Делителями числа 126 являются: 1, простые числа 2, 3, 7 в полученном разложении и всевозможные произведения чисел 2, 3, 3, 7, то есть:
И так, делителями числа 126 являются:
Запишем все делители в порядке их возрастания:
Интересные рассказы
Расположение простых чисел
Утверждение о том, что каждое отличное от 1 натуральное число можно записать в виде произведения простых множителей и притом единственным способом, если не принимать во внимание порядок расположения сомножителей, является так называемой основной теоремой арифметики — одной из древнейших математических наук (в переводе с греческого «арифметика» — «искусство чисел»).
В соответствии с основной теоремой арифметики простые числа являются как бы кирпичами, из которых «строятся» натуральные числа. Этим и объясняется внимание к простым числам со стороны математиков всех времен. Еще древнегреческий математик Эвклид (ок. 365 ок. 300 г. до н. э.) доказал, что простых чисел есть бесконечно много, поэтому наибольшего простого числа не существует. Но еще до сих пор не изучены закономерности расположения простых чисел в натуральном ряду.
Талантливые математики многих стран стремились найти закон расположения простых чисел.
О свойствах простых чисел выдвинуто много интересных гипотез. Среди них самой интересной является гипотеза члена Петербургской академии наук Кристиана Гольдбаха (1690 1764), сформулированная так: любое натуральное число больше 5 является суммой трёх простых чисел
Свойства простых чисел можно наглядно представить так:
Перед нами откроется следующая картина.
Наибольший общий делитель
Выпишите все делители чисел 18 и 24 и подчеркните их общие делители
Общими делителями (они подчеркнуты) чисел 18 и 24 являются числа 1, 2, 3, 6, наибольшим из них является 6. Число 6 является наибольшим натуральным числом, на которое делятся и 18, и 24.
Наибольшее натуральное число, на которое делится каждое из данных чисел, называют наибольшим общим делителем этих чисел.
Итак, наибольшим общим делителем чисел 18 и 24 являегся число 6. Сокращенно это записывают так: НОД( 18; 24) 6.
В рассмотренном примере мы легко нашли наибольший общий делитель чисел, записав все делители каждого из них. Если числа большие и имеют много делителей, то нахождение наибольшего общего делителя этим способом является достаточно сложным.
Рассмотрим еще один способ нахождения наибольшего общего делителя, взяв числа 210 и 294. Разложим каждое из этих чисел на простые множители:
Подчеркнем все общие простые множители в разложении данных чисел: 2, 3, 7. Числа 210 и 294 делятся на каждое из чисел 2, 3, 7 и на их произведение: 2•3•7 =42. Число 42 является наибольшим общим делителем чисел 210 и 294:
Назовите последовательность шагов при нахождении НОД двух чисел.
Для нахождения наибольшего общего делителя двух чисел можно разложить эти числа на простые множители и найти произведение их общих множителей.
По такому правилу можно находить наибольший общий делитель трёх и более чисел. Найдем, например, наибольший общий делитель чисел 45, 75 и 90. Разложим эти числа на простые множители и подчеркнем общие для всех чисел множители:
Итак,
Если среди данных чисел есть число, на которое делятся другие из данных чисел, то это число является наибольшим обидим делителем данных чисел. Например:
Два числа, наибольший общий делитель которых равен 1, называют взаимно простыми числами. Например, числа 16 и 27 являются взаимно простыми, так как их наибольшим общим делителем является 1.
Взаимно простые числа вообще имеют только один общий делитель — число 1. Поэтому, если два числа имеют общий делитель, отличный от 1, то они не взаимно простые. Например, числа 18 и 45 не являются взаимно простыми, так как имеют общий делитель 3.
Пример:
Какое наибольшее количество одинаковых букетов можно составить из 24 васильков и 32 ромашек, использовав все цветы?
Решение:
Из данных цветов можно, например, составить 2 букета. в каждом из которых будет 12 васильков и 16 ромашек. Нельзя составить три букета, так как 32 ромашки нельзя разделить на 3 одинаковые части. Можно составить четыре одинаковых букета, так как и 24 василька, и 32 ромашки можно разделить на 4 одинаковые части. Очевидно, что для решения задачи нужно найти наибольшее число, на которое можно разделить 24 василька и 32 ромашки, то есть найти наибольший общий делитель чисел 24 и 32. Поскольку НОД(24; 32) = 8, то можно составить самое большее 8 одинаковых букетов. Каждый такой букет будет состоять из 24 : 8 = 3 васильков и 32 : 8 = 4 ромашек.
Кратные натурального числа. Наименьшее общее кратное
Числа 36, 72, 180 делятся на 18. Говорят, что числа 36, 72, 180 кратны числу 18.
Любое натуральное число, которое делится на данное натуральное число, называют кратным данного числа.
Все числа, кратные числу 18, можно получить, умножая число 18 последовательно на числа 1,2, 3,4, 5.
18, 36, 54, 72, 90. — числа, кратные 18.
Каждое натуральное число имеет бесконечно много чисел, кратных ему, наименьшим из которых является само это число.
Запишите числа, кратные 9. и числа, кратные 12, и подчеркните их общие кратные.
Наименьшим общим кратным двух натуральных чисел называют наименьшее натуральное число, которое делится на каждое изданных чисел.
То, что наименьшим общим кратным чисел 9 и 12 является число 36, сокращенно записывают так: НОК(9; 12) = 36.
Разложим числа 9, 12 и их наименьшее общее кратное 36 на простые множители:
Мы видим, что разложение числа 36 можно получить, если разложение числа 9 умножить на 2 • 2. Числа 2 и 2 — это такие множители из разложения числа 12, которых нет в разложении числа 9
Назовите последовательность шагов при нахождении НОК двух чисел.
Чтобы найти наименьшее общее кратное двух чисел, можно каждое из них разложить на простые множители и разложение одного из чисел умножить на те множители другого числа, которых нет в разложении первого.
Найдем наименьшее общее кратное чисел 90 и 210.
Если одно из чисел делится на другое, то большее из них является наименьшим общим кратным этих чисел. Например, НОК(21; 63) = 63.
Наименьшим общим кратным двух взаимно простых чисел являегся произведение этих чисел. Например, НОК(8; 9) = 72.
Наименьшее общее кратное можно найти не только для двух, но и для трех и более чисел.
Например, для чисел 12, 18, 24 имеем:
Пример:
Найти наименьшее четырехзначное число, кратное 27.
Решение:
1000 — наименьшее четырехзначное число. Разделим его на 27: 1000: 27 = 37 (ост. 1).
27 • 38 = 1026 — наименьшее четырехзначное число, кратное 27.
Пример:
Шаг отца равен 72 см, а шаг сына — 54 см. Найти наименьшее расстояние, которое нужно пройти как отцу, так и сыну, чтобы каждый из них сделал при этом целое число шагов.
Решение:
Искомое расстояние в сантиметрах должно выражаться таким наименьшим числом, которое делится на 72 и на 54. Таким числом являемся наименьшее общее кратное этих чисел. Найдем НОК(54; 72):
Итак, искомое расстояние равно 216 см. На таком расстоянии отец сделает 216 : 72 = 3 шага, а сын — 216 : 54 = 4 шага.
Пример:
Найти наименьшее общее кратное чисел 15 и 12.
Решение:
Находим кратные большего из чисел и проверяем, делятся ли они на меньшее число: 15 не делится на 12; 15 • 2 = 30 — не делится на 12; 15 • 3 = 45 не делится на 12; 15 • 4 = 60 — делится на 12. Итак, НОК( 15; 12) = 60.
Памятка:
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.