Π§ΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° Π½Π°Π·ΡΠ²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(b^<2>-4ac\), Π³Π΄Π΅ \(a, b\) ΠΈ \(c\) β ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π°.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(3x^2+2x-7\), Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \(2^2-4\cdot3\cdot(-7)=4+84=88\). Π Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π΅Π½Π° \(x^2-5x+11\), ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½ \((-5)^2-4\cdot1\cdot11=25-44=-19\).
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
— Π΅ΡΠ»ΠΈ \(D\) ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½ β ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ;
— Π΅ΡΠ»ΠΈ \(D\) ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ β ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ;
— Π΅ΡΠ»ΠΈ \(D\) ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½ β ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»Π΅Π½
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π½Π΅Π³ΠΎ β ΡΡΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, Π° Π·Π½Π°ΡΠΈΡ \(x_<1>\) ΠΈ \(x_<2>\) Π±ΡΠ΄ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½Ρ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π²Π΅Π΄Ρ Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅ \(\sqrt
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2+2x-3=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠΎΡΠ½Ρ ΠΈΠ·-Π·Π° ΡΠ°Π·Π½ΡΡ
Π·Π½Π°ΠΊΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄ \(\sqrt
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ
Π ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π±ΡΠ΄Π΅Ρ, Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ? ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ.
Π’ΠΎ Π΅ΡΡΡ, Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π±ΡΠ΄ΡΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π²ΡΡΠΈΡΠ°Π½ΠΈΠ΅ Π½ΡΠ»Ρ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2-4x+4=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΠΊΠΎΡΠ½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π½Π΅Ρ ΡΠΌΡΡΠ»Π° ΠΏΠΈΡΠ°ΡΡ ΠΈΡ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΡΡΠΈ β Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½.
ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΠ·Π²Π»Π΅ΡΡ Π½Π΅Π»ΡΠ·Ρ (Ρ.ΠΊ. ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° β Π½Π΅Π²ΡΡΠΈΡΠ»ΠΈΠΌ), Π° Π·Π½Π°ΡΠΈΡ ΠΈ ΠΊΠΎΡΠ½ΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΡ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ.
ΠΡΠΈΠΌΠ΅Ρ: ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ \(x^2+x+3=0\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ \(D=b^2-4ac\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΡΠ½ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠ±Π° ΠΊΠΎΡΠ½Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Ρ Π½Π΅Π²ΡΡΠΈΡΠ»ΠΈΠΌΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(\sqrt<-11>\), Π·Π½Π°ΡΠΈΡ, ΠΈ ΡΠ°ΠΌΠΈ Π½Π΅ Π²ΡΡΠΈΡΠ»ΠΈΠΌΡ
Π’ΠΎ Π΅ΡΡΡ, ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ β Π½Π΅ ΡΡΡ-ΡΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½Π°Ρ ΠΏΡΠΈΠ΄ΡΠΌΠΊΠ°. ΠΡΠΎ Π½Π΅ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Β«Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅ ΡΠ°ΠΊ Π½Π°ΠΏΠΈΡΠ°Π½ΠΎΒ», Π° Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠ°Π²Π΄Π°: Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΡΠΎΠ± ΠΏΡΠΈ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π΅Π³ΠΎ Π²ΠΌΠ΅ΡΡΠΎ ΠΈΠΊΡΠ° Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ \(x^2+x+3\) ΠΏΠΎΠ»ΡΡΠΈΠ»ΡΡ Π½ΠΎΠ»Ρ.
ΠΠ°ΡΡ Π°ΠΊ: Π·Π°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π²Ρ ΡΠ΅ΡΠ°Π΅ΡΠ΅ ΠΎΠ±ΡΡΠ½ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΠ΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ, ΡΡΠΎΠΈΡ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΅ΡΠ΅ ΡΠ°Π·, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ Π½Π΅ ΡΠ°ΡΡΠ°Ρ ΡΠΈΡΡΠ°ΡΠΈΡ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΌ ΠΊΡΡΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΡ, Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ°Ρ Π²ΡΠ΅ ΠΏΡΠΎΡΡΠΎ: Π½Π΅Ρ ΠΊΠΎΡΠ½Π΅ΠΉ β Π½Π΅Ρ ΡΠΎΡΠ΅ΠΊ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ ΠΈΠΊΡ!
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΡ ΡΠΆΠ΅ ΡΠ°Π·ΠΎΠ±ΡΠ°Π»ΠΈ, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π’Π΅ΠΏΠ΅ΡΡ Π΄Π°Π²Π°ΠΉΡΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π½Π°ΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 β 4ac Β», ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ, ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π±ΡΠΊΠ²ΠΎΠΉ Β« D Β».
ΠΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ, ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π΅ΡΡΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½ Β«ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΒ» ΠΏΡΠΎΠΈΠ·ΠΎΡΠ΅Π» ΠΎΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ discriminantis, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ».
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΠΊΠ° Β« D Β» (Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°) ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠ΅ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ.
I ΡΠ»ΡΡΠ°ΠΉ
D > 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ)
x1;2 =
βb Β± β D |
2a |
x1;2 =
β5 Β± β 81 |
2 Β· 2 |
x1;2 =
β5 Β± 9 |
4 |
x1 =
| x2 =
| ||||
x1 =
| x2 =
| ||||
x1 = 1 | x2 = β3
| ||||
x1 = 1 | x2 = β3
|
ΠΡΠ²Π΅Ρ: x1 = 1; x2 = β3
1 |
2 |
II ΡΠ»ΡΡΠ°ΠΉ
D = 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β8) 2 β 4 Β· 16 Β· 1
D = 64 β 64
D = 0
x1;2 =
βb Β± β D |
2a |
x1;2 =
β (β8) Β± β 0 |
32 |
x1;2 =
8 Β± 0 |
32 |
x =
8 |
32 |
x =
1 |
4 |
ΠΡΠ²Π΅Ρ: x =
1 |
4 |
III ΡΠ»ΡΡΠ°ΠΉ
D
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β6) 2 β 4 Β· 9 Β· 2
D = 36 β 72
D = β36
D
x1;2 =
βb Β± β D |
2a |
x1;2 =
β (β6) Β± β β36 |
32 |
ΠΡΠ²Π΅Ρ: Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ
ΠΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, Π½Π°Ρ ΠΎΠ΄ΡΡΠ΅Π΅ΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ | Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ | Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° |
---|---|---|
ax 2 + bx + c = 0 | b 2 β 4ac | |
ax 2 + 2kx + c = 0 | k 2 β ac | |
x 2 + px + q = 0 | ||
p 2 β 4q |
ΠΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΡΠΎΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
ΠΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ | Π€ΠΎΡΠΌΡΠ»Π° |
---|---|
ax 2 + bx + c = 0 | |
ax 2 + 2kx + c = 0 | |
x 2 + px + q = 0 | |
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΈΠΌΠ΅Π΅Ρ Π»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΈ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡ , Π½Π΅ ΡΠ΅ΡΠ°Ρ ΡΠ°ΠΌΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΎΡΠΌΡΠ» Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΠ΅ΡΠ²ΡΡ:
ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Π΅Π³ΠΎ Ρ Π½ΡΠ»ΡΠΌ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°, Π»ΠΈΠ±ΠΎ ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅, Π»ΠΈΠ±ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
D = b 2 β 4ac = (-6) 2 β 4 Β· 1 Β· 9 = 36 β 36 = 0, D = 0
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
D = b 2 β 4ac = (-4) 2 β 4 Β· 1 Β· (-5) = 16 + 20 = 36, D > 0
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ. Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΠ΅ΡΠ°.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°
,
a,b,c β ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠ΅ (ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅) ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°: |
Π ΠΊΠΎΡΠ½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ΄ΠΈΡΡ ΠΏΠΎ Π·Π½Π°ΠΊΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° (D) :
ΠΡ ΡΠΆΠ΅ ΡΠ°Π·ΠΎΠ±ΡΠ°Π»ΠΈ, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π’Π΅ΠΏΠ΅ΡΡ Π΄Π°Π²Π°ΠΉΡΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π½Π°ΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 β 4ac Β», ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ, ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π±ΡΠΊΠ²ΠΎΠΉ Β« D Β».
ΠΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ, ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π΅ΡΡΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½ Β«ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΒ» ΠΏΡΠΎΠΈΠ·ΠΎΡΠ΅Π» ΠΎΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ discriminantis, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ».
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΠΊΠ° Β« D Β» (Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°) ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠ΅ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ.
I ΡΠ»ΡΡΠ°ΠΉ
D > 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ)
x1 = |
β5 + 9 |
4 |
II ΡΠ»ΡΡΠ°ΠΉ
D = 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β8) 2 β 4 Β· 16 Β· 1
D = 64 β 64
D = 0
III ΡΠ»ΡΡΠ°ΠΉ
D
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β6) 2 β 4 Β· 9 Β· 2
D = 36 β 72
D = β36
D
ΠΡΠ²Π΅Ρ: Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ (Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΡΠΈ ΠΈΡ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ Π² ΠΏΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + 4 = 12. ΠΡΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΈ Π»Π΅Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π²Π΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, ΡΠΎ Π΅ΡΡΡ 12 = 12.
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ 8 + x = 12, Ρ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ°ΠΊΠΈΠΌ, ΡΡΠΎΠ±Ρ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° Π±ΡΠ» ΠΎΠΏΡΠ°Π²Π΄Π°Π½, ΠΈ Π»Π΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΠ°Π²Π½ΡΠ»Π°ΡΡ ΠΏΡΠ°Π²ΠΎΠΉ.
Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΎΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅. ΠΡΠ»ΠΈ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΡΠΎΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, Π·Π½Π°ΡΠΈΡ, ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ.
ΠΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ β ΡΡΠΎ ax 2 + bx + c = 0, Π³Π΄Π΅ a β ΠΏΠ΅ΡΠ²ΡΠΉ ΠΈΠ»ΠΈ ΡΡΠ°ΡΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, Π½Π΅ ΡΠ°Π²Π½ΡΠΉ Π½ΡΠ»Ρ, b β Π²ΡΠΎΡΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, c β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΡΠ»Π΅Π½.
ΠΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΠΎΠ½ΡΡΠΈΠ΅ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π² ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ β ΠΎΡΠ»ΠΈΡΠ½ΡΠΉ ΠΏΠΎΠΌΠΎΡΠ½ΠΈΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠ½Π΅ΠΉ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π ΡΡΠΎΠΌ ΠΊΠ»ΡΡΠ΅ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΡΠ° ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠΎ Π΅ΡΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ β Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΠΈΠ΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π§ΡΠΎΠ±Ρ Π² Π½ΠΈΡ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ, ΡΠΎΡ ΡΠ°Π½ΡΠΉΡΠ΅ ΡΠ°Π±Π»ΠΈΡΠΊΡ ΠΈΠ»ΠΈ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΠΉΡΠ΅ Π΅Π΅ ΠΈ Ρ ΡΠ°Π½ΠΈΡΠ΅ Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ΅.
ΠΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
Π 8 ΠΊΠ»Π°ΡΡΠ΅ Π½Π° Π°Π»Π³Π΅Π±ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΏΠΎ ΠΏΠΎΠΈΡΠΊΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π²Π°ΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ» Π½Π°ΠΉΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΠ±Π΅Π΄ΠΈΡΡΡΡ, ΡΡΠΎ ΠΎΠ½ Π½Π΅ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ. Π’ΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ. ΠΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ, Π·Π½Π°ΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ax 2 + bx + c = 0:
Π Π²ΠΎΡ ΠΈ Π΅ΡΠ΅ ΠΎΠ΄Π½Π° ΡΠ°Π±Π»ΠΈΡΠΊΠ°: Π² Π½Π΅ΠΉ Π²Ρ Π½Π°ΠΉΠ΄Π΅ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
Π§ΡΠΎΠ±Ρ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ Ρ Π»Π΅Π³ΠΊΠΎΡΡΡΡ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, Π²Π°ΠΆΠ½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ. ΠΠΏΠ΅ΡΠ΅Π΄!
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°
ΠΡΠ²Π΅Ρ: ΠΊΠΎΡΠ΅Π½Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 3.
Π Π°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Ρ ΠΊΠ»Π°ΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart.
Π§ΡΠΎ Π΄Π΅Π»Π°ΡΡ Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ
ΠΡ ΡΠΆΠ΅ ΡΠ°Π·ΠΎΠ±ΡΠ°Π»ΠΈ, ΠΊΠ°ΠΊ ΡΠ΅ΡΠ°ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. Π’Π΅ΠΏΠ΅ΡΡ Π΄Π°Π²Π°ΠΉΡΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ Π½Π°ΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½Ρ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Β« b 2 β 4ac Β», ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ, ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π±ΡΠΊΠ²ΠΎΠΉ Β« D Β».
ΠΠΎ-Π΄ΡΡΠ³ΠΎΠΌΡ, ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π΅ΡΡΠΈΠΉ ΡΠ΅ΡΠΌΠΈΠ½ Β«ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΒ» ΠΏΡΠΎΠΈΠ·ΠΎΡΠ΅Π» ΠΎΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ discriminantis, ΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΒ» ΠΈΠ»ΠΈ Β«ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΠΉΒ».
Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΠΊΠ° Β« D Β» (Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°) ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠ΅ ΡΡΠΈ ΡΠ»ΡΡΠ°Ρ.
I ΡΠ»ΡΡΠ°ΠΉ
D > 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ)
x1 = |
β5 + 9 |
4 |
II ΡΠ»ΡΡΠ°ΠΉ
D = 0
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β8) 2 β 4 Β· 16 Β· 1
D = 64 β 64
D = 0
III ΡΠ»ΡΡΠ°ΠΉ
D
(Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ)
D = b 2 β 4ac
D = (β6) 2 β 4 Β· 9 Β· 2
D = 36 β 72
D = β36
D
ΠΡΠ²Π΅Ρ: Π½Π΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ, Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠΎΡΠΎΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½:
ΠΡΠΈΠΌΠ΅Ρ 42.4. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: .
.
Π’ΠΎΠ³Π΄Π°
.
ΠΡΠ²Π΅Ρ:
ΠΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»Π΅Π½, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠΈΡΠ΅Π». Π ΠΎΡΠ²Π΅ΡΠ΅ ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ Π΄Π²Π° ΡΠΎΠΏΡΡΠΆΠ΅Π½Π½ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠΈΡΠ»Π°. ΠΡΠΎ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ: ΡΠ΅ΠΏΠ΅ΡΡ ΠΌΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎ Π»ΡΠ±ΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° ΠΊΠΎΡΠ½Ρ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΡΠΈΡΠ΅Π».
ΠΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΠΏΠΎΠ΄ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ «ΠΎΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠ΅ΠΎΡΠ΅ΠΌΠ° Π°Π»Π³Π΅Π±ΡΡ», Π±ΡΠ»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΠ°ΡΡΡΠΎΠΌ Π² ΠΊΠΎΠ½ΡΠ΅ XVIII Π²Π΅ΠΊΠ°: Π»ΡΠ±ΠΎΠ΅ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏ-ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ ΠΏ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΊΠΎΡΠ½Π΅ΠΉ (ΠΏΡΠΈ ΡΡΠΎΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠΎΡΠ½ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΊΡΠ°ΡΠ½ΡΠΌΠΈ). ΠΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ΄ΡΠ΅ΡΠΊΠΈΠ²Π°ΡΡ ΡΡ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΎΠ»Ρ, ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ³ΡΠ°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π° Π² ΡΠ΅ΠΎΡΠΈΠΈ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
ΠΠ°ΡΠ° Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΡ: 2014-12-27 ; ΠΡΠΎΡΠΌΠΎΡΡΠΎΠ²: 12919 ; ΠΠ°ΡΡΡΠ΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΡΡΠΊΠΈΡ ΠΏΡΠ°Π²? ;
ΠΠ°ΠΌ Π²Π°ΠΆΠ½ΠΎ Π²Π°ΡΠ΅ ΠΌΠ½Π΅Π½ΠΈΠ΅! ΠΡΠ» Π»ΠΈ ΠΏΠΎΠ»Π΅Π·Π΅Π½ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»? ΠΠ° | ΠΠ΅Ρ
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, Π½Π°Ρ ΠΎΠ΄ΡΡΠ΅Π΅ΡΡ ΠΏΠΎΠ΄ ΠΊΠΎΡΠ½Π΅ΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ D.
ΠΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ | Π€ΠΎΡΠΌΡΠ»Π° ΠΊΠΎΡΠ½Π΅ΠΉ | Π€ΠΎΡΠΌΡΠ»Π° Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ° |
---|---|---|
ax 2 + bx + c = 0 | b 2 β 4ac | |
ax 2 + 2kx + c = 0 | k 2 β ac | |
x 2 + px + q = 0 | ||
p 2 β 4q |
ΠΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΡΠΎΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°:
ΠΠΈΠ΄ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ | Π€ΠΎΡΠΌΡΠ»Π° |
---|---|
ax 2 + bx + c = 0 | |
ax 2 + 2kx + c = 0 | |
x 2 + px + q = 0 | |
ΠΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΠΈΠΌΠ΅Π΅Ρ Π»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½ΠΈ ΠΈ ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡ , Π½Π΅ ΡΠ΅ΡΠ°Ρ ΡΠ°ΠΌΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΎΡΠΌΡΠ» Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½ΡΠ°, ΡΠ°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΠ΅ΡΠ²ΡΡ:
ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠ°Π½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»Π° ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ Π½Π΅ΠΏΠΎΠ»Π½ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄ΠΈΡΠΊΡΠΈΠΌΠΈΠ½Π°Π½Ρ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Π΅Π³ΠΎ Ρ Π½ΡΠ»ΡΠΌ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°, Π»ΠΈΠ±ΠΎ ΠΈΡΠΊΠ°ΡΡ ΠΊΠΎΡΠ½ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅, Π»ΠΈΠ±ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄, ΡΡΠΎ ΠΊΠΎΡΠ½Π΅ΠΉ Π½Π΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 1. Π Π΅ΡΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
D = b 2 β 4ac = (-6) 2 β 4 Β· 1 Β· 9 = 36 β 36 = 0, D = 0
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΠ΅Π³ΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡΠ΅Π½Ρ:
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ:
D = b 2 β 4ac = (-4) 2 β 4 Β· 1 Β· (-5) = 16 + 20 = 36, D > 0