Что означает несовпадение порядка и молекулярности реакции примеры
Молекулярность и порядок химической реакции.
Порядком реакции называют сумму показателей степени концентрационных множителей, определяющих закон изменения скорости реакции.
Для кинетического уравнения в виде (8) порядок реакции равен:
В сложных реакциях не всегда возможно определить порядок реакции, учитывающий влияние всех реагентов. В этом случае пользуются понятием порядка реакции по веществу, например, порядок реакции по веществу А.
Отсюда следует, что константа скорости всегда численно равна скорости реакции при единичных концентрациях, а ее размерность зависит от порядка реакции.
Молекулярность химической реакции определяется числом молекул (частиц), участвующих в элементарном акте реакции.
Различают одно- (А = В; А = В + С; А = В + С + Д), двух- (2А = В; А + В = С) и трехмолекулярные (А + 2В = С; 3А = С) реакции.
Причины несовпадения порядка и молекулярности реакции.
Порядок и молекулярность совпадают лишь для простых одностадийных реакций. Существует две причины несовпадения порядка и молекулярности:
1. Постоянство концентрации одного или нескольких участников реакции (реакции в атмосфере).
2. Ступенчатый характер реакции (если реакция 2А + В = С идет в две стадии, то порядок второй, а молекулярность равна трем).
Если скорости отдельных стадий сильно различаются, то скорость реакции в целом и ее порядок определяются скоростью и порядком самой медленной стадии.
Не все кинетические уравнения имеют форму уравнения (8) в них могут входить более сложные функции концентраций исходных веществ, продуктов реакции, катализаторов, ингибиторов. Если реакция может осуществляться двумя путями, например каталитическим и некаталитическим, то кинетическое уравнение должно включать два слагаемых, соответствующих этим путям. В полном кинетическом уравнении должно содержаться выражение для константы равновесия, т.е. в него должны входить положительные и отрицательные члены, так что если скорость реакции принять равной нулю, то получиться уравнение для константы равновесия. Однако многие равновесия настолько сдвинуты в сторону образования продуктов, что можно найти кинетическое уравнение только для прямой реакции.
Кинетика реакций в статических условиях
Реакции обычно характеризуют кинетическим уравнением, которое позволяет рассчитать константу скорости в любой момент времени от ее начала, и периодом полупревращения t1/2., который определяет момент уменьшения начальной концентрации реагирующих веществ вдвое.
Периодом полупревращения называют промежуток времени в течение, которого начальная концентрация реагирующего вещества уменьшается вдвое.
Реакция нулевого порядка
Существуют реакции, скорость которых не меняется с изменением концентрации одного или нескольких реагирующих веществ, поскольку она определяется не концентрацией, а некоторыми другими ограничивающими факторами, например поглощением света в фотохимических реакциях или количеством катализатора в каталитических реакциях. Также к подобным реакциям относится горение в атмосфере. Тогда
(10)
Каталитическая реакция может иметь первый порядок по катализатору и нулевой порядок по реагирующему веществу.
(11)
Постоянную интегрирования находят из начальных условий, при t = 0, с = с0. Тогда const = c0 и уравнение приобретает вид:
(12)
Из (11) получают кинетическое уравнение для реакции нулевого порядка
(13)
Размерность константы скорости моль/л·с.
По уравнению (13) можно получить выражения для периода полупревращения для реакции нулевого порядка.
Период полупревращения реакции нулевого порядка прямо пропорционален исходной концентрации вещества.
Реакции первого порядка
Скорость реакции первого порядка описывается следующим кинетическим уравнением:
(15)
(16)
Постоянную интегрирования найдем из условия: при t =0 с = с0. Тогда
(17)
Это уравнение можно записать иначе
(18)
Из уравнения видно, что размерность k1 не зависит от способа выражения концентрации. Если построить график зависимости ln c от t, то тангенс угла наклона определит константу скорости.
Период полупревращения для реакции первого порядка
(19)
и не зависит от начальной концентрации реагирующих веществ.
Реакции второго порядка
Скорость реакции второго порядка определяется кинетическим уравнением:
(20)
Если концентрации равны
(21)
(21)
Разделив переменные и проинтегрировав, имеем
(22)
Постоянную интегрирования находим из условия: при t=0 с=с0
(23)
Линейная зависимость для реакций второго порядка наблюдается в координатах 1/с – t. Тангенс угла наклона равен константе скорости.
Период полупревращения для реакции второго порядка:
(24)
Период полупревращения для реакций второго порядка обратно пропорционален начальной концентрации веществ.
Реакции третьего и более высокого порядка встречаются редко.
Лекция № 3 Химическая кинетика
ЛЕКЦИЯ № 3 Химическая кинетика.
Целью исследований химической кинетики является:
1. экспериментальное определение скорости реакции и её зависимости от различных факторов,
2. выявление механизма реакции, т. е. числа стадий и природы образующихся в этих стадиях промежуточных веществ.
Скорость реакции измеряется количеством вещества, реагирующего в единице объёма в единицу времени – (гомогенные реакции) или на единице поверхности раздела фаз (гетерогенные реакции). Отсюда размерности скоростей реакции гомогенной ; гетерогенной
.
Практически скорость гомогенной реакции может быть измерена изменением концентрации исходного вещества или продукта реакции в единицу времени. Этим процессам отвечают диаграммы:
Следует отметить, что даже в самом малом ограниченном участке приведённых кривых скорость реакции непостоянна и, поэтому, истинной скоростью реакции называется скорость в данный момент времени. Она представляет собой первую производную от концентрации по времени
Факторы, влияющие на скорость химических реакций
6. Степень измельчённости – для гетерогенных процессов
Остановимся на некоторых из них.
С наибольшей скоростью реагируют вещества (неорганические и органические) с ионными, полярными ковалентными связями. Взаимодействия органических веществ с ковалентными малополярными связями протекают значительно медленнее.
2. Концентрация реагентов.
Количественная связь между скоростью и концентрацией реагирующих веществ описывается законом действия масс (, П. Вааге, 1864-1867 г. г.), современная трактовка которого такова: при постоянной температуре скорость реакции прямо пропорциональна произведению концентраций реагирующих веществ, в степенях, равных порядку реакции по этим веществам. Порядок реакции по каждому из реагентов определяют экспериментально.
Для гомогенной реакции
кинетическое уравнение в соответствии с законом действия масс имеет вид
,
где k – константа скорости реакции, которая численно равна скорости реакции при концентрации каждого из реагентов равной 1 моль/л. Константа скорости характеризует скорость данного процесса при данной температуре; не зависит от концентрации реагентов, зависит от температуры – возрастает с ростом температуры. б и в – порядок реакций по веществам соответственно A и B.
Только для одностадийных реакций, при которых исходные вещества без каких-либо промежуточных соединений превращаются в продукты реакции величины б и в равны стехиометрическим коэффициентам.
Например ;
;
В случае гетерогенных реакций в уравнения закона действия масс вводятся концентрации только веществ, которые находятся в газовой фазе или в растворе. Например, для реакции C(тв) + O2 CO2
, при этом величина k’ характеризует свойства твёрдой фазы.
Порядок и молекулярность реакции.
Порядок реакции – число, равное сумме показателей степеней концентраций реагентов в кинетическом уравнении.
Порядок реакции может принимать значения от 0 до 3, включая дробные величины.
Для простоты рассмотрим только реакции целочисленного порядка.
Реакции нулевого порядка – такие реакции, скорость которых не зависит от концентрации реагента. Большая часть из них являются гетерогенными реакциями, протекающими на поверхности металла. Например, реакция разложения аммиака на H2 и N2 на поверхности вольфрама является реакцией нулевого порядка, т. е. её скорость на протяжении всего процесса не зависит от концентрации NH3.
=k, т. е.
=const; T= const
Реакции первого порядка
2H2O2 2H2O + O2
= kC(H2O2)
4AsH3 As4 + 6H2
= kC(AsH3)
Несоответствие между кажущейся молекулярностью и порядком реакции объясняется тем, что в многостадийных реакциях промежуточные превращения осуществляются с несопоставимыми скоростями. Наиболее медленная стадия определяет скорость реализации процесса превращения исходных веществ в конечные продукты. Эта стадия называется лимитирующей.
Например, 2N2O5 4NO2 + O2
Реакция протекает в две стадии:
N2O5 N2O3 + O2 – медленная
N2O5 + N2O3 4NO2 – быстрая
Скорость второй бимолекулярной реакции несравненно выше скорости первой – мономолекулярной, следовательно, скорость превращения N2O5 в NO2 определяется первой стадией, чему соответствует уравнение
= kC(N2O5)
Важной величиной является время полупревращения (ф1/2) реакции, т. е. время, в течение которого концентрация реагента уменьшается в 2 раза по сравнению с исходным значением. В фармакинетике это обозначается термином “период полуэлиминации”.
Распределение лекарственного препарата, введенного в кровоток, подчиняется кинетике первого порядка.
Подставляя значение и переходя к десятичным логарифмам, получаем
k1 – константа скорости реакции
Реакции второго порядка – самый распространённый тип реакций. Вот примеры таких реакций
2NO2 2NO + O2
H2 + I2 2HI
CO + Cl2 COCl2
2N2O 2N2 + O2
Реакции третьего порядка крайне редки.
Исходя из всего вышесказанного, можно определить размерности констант реакций различных порядков.
мольл-1
время-1
лмоль-1
время-1
л2 моль-2
время-1
Под молекулярностью реакции понимают число молекул, которые одновременно взаимодействуют, осуществляя элементарный акт химического превращения. В отличие от порядка реакции молекулярность не может быть ни нулевой, ни дробной.
Мономолекулярные – в элементарном акте химического превращения участвует одна молекула:
н-C4H10 и-C4H10
цикло-C3H6 CH2=CH–CH3
Ca(HCO3)2 CaCO3 + H2O + CO2
Бимолекулярные – реакции, в которых химическое превращение осуществляется путём взаимодействия двух молекул:
CO + Cl2 COCl2
H2 + I2 2HI
PH3 + B2H6 PH3.BH3 + BH3
Тримолекулярные реакции – их известно очень немного. Очевидно, что вероятность одновременного соударения трёх молекул в реакционном пространстве очень мала и, поэтому, тримолекулярные реакции идут крайне медленно.
Примеры тримолекулярных реакций:
2NO + O2 2NO2
2NO + Cl2 2NOCl
Реакций более высокой молекулярности не существует.
Влияние температуры на скорость химических реакций упрощённо описывается правилом Вант-Гоффа (1884 г.): при повышении температуры на каждые 10 градусов скорость гомогенной реакции возрастает примерно в 2-4 раза. Математически это правило записывается так:
,
где – скорость при температуре t1
– скорость при температуре t2
г – температурный коэффициент Вант-Гоффа
4. Энергия активации.
Более строгую математическую зависимость скорости реакции от температуры описывает уравнение С. Аррениуса (1889 г.), который исходил из предположения, что не всякое столкновение молекул в реакционном объёме заканчивается результативно, т. е. с образованием нового вещества. По С. Аррениусу продукт реакции образуется только при столкновении молекул, обладающих некоторым избытком кинетической энергии, т. е. активных (реакционноспособных) молекул.
ррениуса:
k – константа скорости реакции
A – коэффициент пропорциональности (предэкспоненциальный
множитель), который указывает долю активных молекул
e – основание натурального логарифма; e ≈ 2.718
Ea – энергия активации – избыточная энергия молекул, которой они должны обладать, чтобы их столкновение приводило к химическому взаимодействию
R – универсальная газовая постоянная;
T – абсолютная температура; Т=273 + toC
Наблюдаемые на опыте значения энергии активации находятся в пределах 0 – 400 кДж/моль. Величина Ea может служить критерием скорости протекания химического процесса:
Ea 120 – очень медленные реакции
Первой стадией практически любого химического процесса является образование непрочного промежуточного соединения – активированного комплекса.
Активированный комплекс не является химическим соединением в привычном понимании этого слова. В нём не исчезли первоначально существовавшие в молекулах исходных веществ связи между атомами и не до конца сформировались новые. Однако электронные оболочки атомов во взаимодействующих молекулах определённым образом деформированы в направлении формирования новых химических связей, а прежние связи ослаблены.
Это можно схематично изобразить на примере реакции
H2 + I2 2HI
Образование короткоживущего активированного комплекса требует меньших затрат энергии, чем разрыв связей в молекулах исходных веществ, т. к. этому разрыву содействует взаимное влияние реагентов и наметившееся образование новых связей. В итоге образование непрочного активированного комплекса приводит к уменьшению высоты энергетического активационного барьера.
Особенности каталитических реакций.
а. Катализаторы вводятся в реакцию в очень низких концентрациях.
б. Состав катализатора остаётся неизменным до и после реакции.
в. Катализаторы обладают специфичностью действия, т. е. катализаторы активны по отношению к одним процессам и инертны по отношению к другим. Например:
г. Катализаторы ускоряют как прямую, так и обратную реакции.
д. Катализаторы не влияют на величину константы равновесия, а только ускоряют достижение состояния равновесия.
е. Катализаторы снижают энергию активации.
При введении катализатора в реакционный объём происходят два последовательных процесса – образование промежуточного соединения катализатор–реагент и второй процесс – взаимодействие образованного соединения со вторым реагентом с образованием продукта реакции и освобождением катализатора.
Схематично это можно записать так:
A + B AB (без катализатора, Ea1)
A + K AK (промежуточное соединение реагент–катализатор, Ea2)
AK + B AB + K (образование конечного продукта с
возвращением катализатора в цикл, Ea3)
Одной из наиболее интересных областей химической кинетики является исследование закономерностей ферментативного катализа. Реакции, катализируемые ферментами, характеризуются высоким ускорением (104 – 105 раз) и высокой специфичностью, т. е. способностью ферментов ускорять реакции только между определёнными веществами и быть абсолютно инертными по отношению к другим.
Для веществ, участвующих в ферментативных реакциях применимы следующие термины: субстрат (S) – индивидуальное химическое вещество, реакции которого катализируются ферментами (энзимами, E), фермент (E) – каталитически активное вещество, ускоряющее какие-либо превращения субстрата.
Михаэлис и Ментен (1913 г.) установили, что промежуточной стадией практически любой ферментативной реакции является присоединение по месту активных центров фермента молекул субстрата с образованием фермент–субстратного комплекса ES, который распадается с образованием продукта P и освобождением фермента E, чему соответствует схема:
Результатами их исследований стал вывод формулы – уравнения Михаэлиса-Ментен
– скорость ферментативного процесса
– максимальная скорость при условии, что весь субстрат
находится в составе фермент-субстратного комплекса
C(S) – концентрация субстрата
Km – константа Михаэлиса
Уравнение имеет два предельных случая. При низкой концентрации субстрата KmC(S) Скорость описывается уравнением первого порядка относительно C(S):
. При высокой концентрации субстрата C(S)
Km,
, т. е. скорость реакции имеет нулевой порядок относительно C(S).
Графически это выглядит так:
а. первый порядок отн. C(S)
б. нулевой порядок отн. C(S)
Из графика зависимости скорости процесса от концентрации субстрата можно получить также значение Km, т. к. при имеем
, что приводит к равенству Km=C(S)
Температурная зависимость скорости ферментативных реакций описывается кривой с максимумом. Восходящая часть кривой отражает обычную для всех химических реакций закономерность. Нисходящая часть показывает снижение активности фермента вследствие тепловой денатурации белковой молекулы, сопровождающейся нарушением её структуры, определяющей активность фермента.
Исследование зависимости скорости ферментативных реакций в температурном интервале, когда не наблюдается тепловой денатурации фермента, даёт возможность оценивать энергетическую характеристику процесса.
Это позволяет сделать общий вывод – высокая каталитическая активность ферментов объясняется как существенным снижением энергии активации, так и значительным благоприятным изменением энтропии в ходе реакции.