Что означает общая биология
Общая биология
Следует отметить, что по мнению ученых, в современной науке, результаты которой обычно публикуют в журналах с высоким импакт-фактором, такой науки как «Общая биология» (General Biology), аналогично «общей физике», не существует. Однако в ведущих университетах читаются курсы для бакалавров первого года обучения, то есть «Общая биология» существует лишь как вводный в биологию учебный курс.
Содержание
История
В 1832 году издается книга «Allgemeine Biologie der Pflanzen» («Общая биология растений») (Гpeйфcв., 1832), является переводом книги «Lärobok i botanik» Карла Агара.
Общую биологию как отдельный курс начали преподавать в первой половине XX века, что было связано с успехами в изучении клетки, микробиологическими исследованиями, открытиями генетики, словом — превращением биологии из вспомогательной, частной, описательной науки (зоология, ботаника, систематика) в самостоятельную и чрезвычайно востребованную область знаний.
В 1940 году академиком И. И. Шмальгаузеном основан «Журнал общей биологии».
Как учебная дисциплина общая биология преподаётся в старших классах средней школы с 1963 года, а в 1966 году была опубликована книга «Общая биология» под редакцией Ю.И.Полянского, используемая в качестве учебного пособия.
Основные разделы
Значение общей биологии
Теоретическое и гуманитарное значение общей биологии состоит в формировании материалистического мировоззрения, формировании экологического мышления. Развитие системного подхода позволило избавится о механицизма с одной стороны, и витализма с другой. В рамках общей биологии стали говорить о сложных системах, где количественный уровень сложности переходит в качественный. Именно уровень сложности делает материю живой, хотя внутри неё действуют физические и химические законы. По уровню сложности и разграничиваются естественные науки: атомы — исследует физика, молекулы — объект изучения химии, а с уровня макромолекул начинается биология. С уровня макромолекул появляются качественно новые свойства, характеризующие живую материю. Таким образом, живые системы не ограничиваются физическими и химическими законами, как это представлял физикализм или механицизм, и в то же время нет необходимости говорить о неком духе (витализм) для объяснения биологического уровня сложности. [8] [неавторитетный источник? 618 дней] [9] [нет в источнике 618 дней]
Связанные науки
Теоретическая биология
См. также
Примечания
Литература
Ссылки
Полезное
Смотреть что такое «Общая биология» в других словарях:
БИОЛОГИЯ — БИОЛОГИЯ. Содержание: I. История биологии. 424 Витализм и машинизм. Возникновение эмпирических наук в XVI XVIII вв. Возникновение и развитие эволюционной теории. Развитие физиологии в XIX в. Развитие клеточного учения. Итоги XIX века … Большая медицинская энциклопедия
БИОЛОГИЯ — (греч., от bios жизнь, и logos слово). Наука о жизни и ее проявлениях у животных и растений. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИОЛОГИЯ греч., от bios, жизнь, и logos, слово. Учение о жизненной силе.… … Словарь иностранных слов русского языка
БИОЛОГИЯ — уч. предмет в школе; основы знаний о живой природе. Отражает совр. достижения наук, изучающих строение и жизнедеятельность биол. объектов всех уровней сложности (клетка, организм, популяция, биоценоз, биосфера). Шк. курс Б. включает разделы:… … Российская педагогическая энциклопедия
Общая теория систем — (теория систем) научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был… … Википедия
Биология — I Биология (греч. bios жизнь + logos учение) совокупность естественных наук о жизни как особом явлении природы. Предметом изучения служат строение, функционирование, индивидуальное и историческое (эволюция) развитие организмов, взаимоотношения их … Медицинская энциклопедия
БИОЛОГИЯ — (от греч, bios жизнь и logos учение), совокупность наук о живой природе. Предмет изучения все проявления жизни: строение и функции живых организмов, их распространение, происхождение, развитие, связи друг с другом и с неживой природой. Термин… … Ветеринарный энциклопедический словарь
Биология — учебный предмет в школе; основы знаний о живой природе. Отражает современные достижения наук, изучающих строение и жизнедеятельность биологических объектов всех уровней сложности (клетка, организм, популяция, биоценоз, биосфера). Школьный… … Педагогический терминологический словарь
Биология общая — – часть биологии, изучающая и объясняющая общее, верное для всего многообразия организмов на Земле … Словарь терминов по физиологии сельскохозяйственных животных
Дисперсия (биология) — У этого термина существуют и другие значения, см. Дисперсия. Дисперсия термин, обозначающий разнообразие признаков в популяции. Одна из количественных характеристик популяции. Для описания бесполой и гермафродитной популяции кроме дисперсий по… … Википедия
Общая биология
Общая биология — наука о закономерностях, единых для всего живого. Она изучает общие законы жизни и те особенности, которые характерны для всех видов живых существ независимо от их систематического положения. Чем отличается живое от неживого, каковы основные и общие для всех организмов закономерности жизненных явлений — ответ на эти вопросы составляет задачу общей биологии.
Обмен веществ и энергии между организмом и средой, способность к размножению, наследственность и изменчивость — неотъемлемые свойства всех организмов. Эти свойства — основа эволюции — необратимого исторического развития живой природы, которое сопровождается приспособлением организмов к условиям существования, образованием и вымиранием видов, преобразованием биогеоценозов и биосферы в целом. В результате эволюции возник многообразный мир живых существ.
Различают несколько структурно-функциональных уровней организации жизни (живой материи). Нижний, наиболее древний — суборганизменный. Это уровень молекулярных структур, где проходит граница между живым и неживым. Следующий уровень — клеточный. Клетка, ее структуры и основные биохимические процессы сходны у всех организмов. За ним следует уровень целостного организма. Неотъемлемые свойства всех организмов — способность к размножению, наследственность и изменчивость. Более сложный уровень организации жизни — популяционно-видовой. Высший уровень — экосистемный, биосферно-биогеоценотический, на котором сообщества популяций животных и растений вместе с их средой обитания образуют функционально-структурное единство. Целостность экосистем (биогеоценозов, биосферы) обусловлена обменом веществ и энергии между ее компонентами.
Общая биология изучает законы, характерные для всех уровней организации жизни. Значение этой дисциплины исключительно велико как в формировании материалистического мировоззрения, так и в ряде жизненно важных областей человеческой деятельности. Она приобретает все возрастающее практическое значение для сельского хозяйства, лесной и рыбной промышленности, биотехнологии, медицины, для рационального использования естественных ресурсов и охраны природы.
Биология служит теоретической базой сельскохозяйственного производства. Многие ее разделы непосредственно связаны с растениеводством и животноводством. Обеспечение все увеличивающегося населения земного шара продовольствием невозможно без создания новых высокоурожайных сортов сельскохозяйственных культур и продуктивных пород домашних животных. Достичь этого можно лишь зная законы наследственности и изменчивости. Благодаря открытиям в молекулярной биологии развивается биотехнология — производство ферментов, гормонов, кормовых белков, аминокислот с помощью микроорганизмов. Повышение плодородия земель, создание условий для получения устойчивых программированных урожаев — эти экологические задачи должны решать агрономы-биологи.
Изучая биологию паразитических организмов на основе общебиологических закономерностей и межвидовых отношений, агрономы и животноводы разрабатывают научно обоснованные мероприятия по борьбе с заболеваниями растений и животных. Разработка стратегии защиты растений от болезней, вредителей и сорняков должна быть основана на глубоком понимании законов экологии, только тогда можно ожидать снижения потерь урожая. Действенные меры по охране природы, рациональное освоение и приумножение природных богатств, создание искусственных биоценозов невозможны без изучения экологии и биоценологии.
Некоторые особенности общей биологии и ее взаимосвязи с другими науками
Биология изучает биологическую форму движения материи, т. е. совокупность организмов, живущих на планете Земля, в том числе человека. Из-за огромного разнообразия представителей живого на Земле биология представляет собой комплекс различных биологических наук и включает ботанику, микологию (науку о грибах), зоологию, комплекс наук о человеке как биологическом объекте, общую биологию и другие науки. Ниже рассмотрены общие представления о биологии и ее составляющих.
Биология — комплекс наук, изучающих все живое вещество и организмы, им образуемые.
Какие науки включает в себя биология:
Зоология — наука, изучающая царство Животные.
Совокупность всех животных, населяющих Землю, называют фауной Земли. Принято говорить о фауне той или иной области, того или иного региона и т. д.
Биологические особенности человека изучает целый комплекс наук: анатомия, физиология, гигиена человека (несмотря на то что человек является структурной единицей царства Животные, он относится к типу хордовых, классу млекопитающих, отряду приматов, семейству человекообразных обезьян, роду человек, виду человек разумный).
Общая биология — особый раздел биологии, изучающий наиболее общие закономерности биологической формы существования материи.
На современном этапе развития биологии общая биология представляет собой комплекс наук, состоящий из отдельных, достаточно самостоятельных, но тесно взаимосвязанных наук: молекулярной биологии, цитологии, теории развития и размножения, генетики, селекции, эволюционной теории, экологии. В предмете Общая биология эти науки представлены в виде разделов, которыми в курсе Общая биология с основами экологии и природоохранной деятельности являются следующие:
1. Цитология — раздел, изучающий клетку, ее химический состав, биохимические процессы, протекающие в клетке, строение и функции отдельных органоидов клетки.
2. Учение об индивидуальном развитии — онтогенезе — раздел, включающий учение о размножении и развитии организмов (тесно связан с цитологией).
3. Генетика с основами селекции — раздел, рассматривающий закономерности наследственности, изменчивости, их материальные носители (генетика), принципы и методы выведения новых пород животных, сортов растений и штаммов микроорганизмов (селекция); теоретической основой селекции является генетика.
4. Эволюционное учение (теория) — раздел, изучающий филогенез (историческое развитие видов); составной частью этого учения является дарвинизм; основой данного учения (теории) — генетика, селекция и другие биологические науки.
5. Экология с основами природоохранной деятельности — раздел, рассматривающий вопросы взаимосвязи организмов друг с другом, средой обитания, а также воздействие человека на Природу и пути преодоления негативных последствий этого воздействия.
Общая биология тесно взаимосвязана с комплексом медицинских и сельскохозяйственных наук, являясь, с одной стороны, их базой, а с другой — эти науки дают богатый фактический материал для иллюстрации общебиологических закономерностей. Знание и понимание вопросов общей биологии невозможно без владения знаниями математики, химии, физики, геологии, астрономии, философии и других наук естественного и гуманитарного циклов. Так, без знания основ органической химии невозможно понять ни молекулярную биологию, ни проблемы обмена веществ, лежащих в основе экологии, ни вопросы цитологии. Все это делает необходимым глубокое усвоение знаний как общебиологического характера, так и знаний других и естественно-математических и гуманитарных наук.
Знания общебиологических понятий и закономерностей имеют огромное значение для каждого человека, поскольку они являются базой для понимания основных проблем экологии (как специальной отрасли знаний), без овладения которыми современный человек не сможет выжить в постоянно усложняющейся экологической обстановке на нашей планете.
Что изучает общая биология и ее поддисциплины?
Что такое наука биология? Говоря простым языком, это изучение жизни во всем ее разнообразии и величии. От микроскопических водорослей и бактерий до больших слонов и гигантских синих китов, жизнь на нашей планете представляет невероятное многообразие. Беря это во внимание, откуда мы заем, что является живым? Живые ли вирусы? Каковы основные характеристики жизни? Все это очень важные вопросы с одинаково важными ответами!
Характеристики жизни
К живым существам относиться, как видимый мир животных, растений и грибов, так и невидимый мир бактерий и вирусов. На базовом уровне мы можем сказать, что жизнь упорядочена. Организмы имеют чрезвычайно сложную организацию. Мы все знакомы с замысловатыми системами основной единицы жизни – клеткой.
Жизнь может «работать». Имеется введу не ежедневное разнообразие работы, а поддержание метаболических процессов, путем получения энергии в виде пище из окружающей среды.
Жизнь растет и развивается. Это означает больше, чем просто копирование или увеличение размера. Живые организмы также имеют возможность восстанавливаться при определенных типах повреждений.
Жизнь может воспроизводиться. Вы когда-нибудь видели размножение грязи или камней? Вероятней всего нет! Жизнь способна происходить только от других живых существ.
Жизнь может реагировать. Вспомните о том, как в последний раз вы ударялись какой-нибудь частью своего тела. Почти мгновенно следует болевая реакция. Жизнь характеризуется реакцией на различные стимулы и внешние раздражители.
Наконец, жизнь может адаптироваться и отвечать требованиям, предъявляемым окружающей средой.
Существует три основных типа приспособлений, которые могут возникать у высших организмов:
Таким образом, жизнь организована, «работает», растет, размножается, реагирует на стимулы и приспосабливается. Эти характеристики лежат в основе изучения науки общей биологии.
Основные принципы современной биологии
Фундамент науки биологии, которая существует сегодня, основан на пяти основных принципах. Это теория клеток, теория генов, эволюция, гомеостаз и законы термодинамики.
Разделы биологии
Область науки биологии очень широка и может быть разделена на несколько дисциплин. В самом общем смысле эти дисциплины классифицируются по типу изучаемого организма. Например, зоология занимается исследованиями животных, ботаника занимается изучением растений, а микробиология изучает микроорганизмы. Эти области исследований, также можно разбить на несколько специализированных поддисциплин. Некоторые из них включают анатомию, клеточную биологию, генетику и физиологию.
Общая биология: конспект лекций
Конспект лекций по общей биологии предназначен для студентов медицинских ВУЗов или колледжей. В нем освещены вопросы строения клетки, даны характеристики всех ее компонентов, описаны основные классы возбудителей заболеваний, рассмотрены проблемы экологии. Используя данный конспект при подготовке к экзамену, студенты смогут в сжатые сроки систематизировать знания по данному предмету, сформулировать план ответов на вопросы экзаменатора.
Оглавление
Приведённый ознакомительный фрагмент книги Общая биология: конспект лекций предоставлен нашим книжным партнёром — компанией ЛитРес.
ЛЕКЦИЯ № 1. Введение
1. Клеточная теория (КТ) Предпосылки клеточной теории
Предпосылками создания клеточной теории были изобретение и усовершенствование микроскопа и открытие клеток (1665 г., Р. Гук — при изучении среза коры пробкового дерева, бузины и др.). Работы известных микроскопистов: М. Мальпиги, Н. Грю, А. ван Левенгука — позволили увидеть клетки растительных организмов. А. ван Левенгук обнаружил в воде одноклеточные организмы. Сначала изучалось клеточное ядро. Р. Браун описал ядро растительной клетки. Я. Э. Пуркине ввел понятие протоплазмы — жидкого студенистого клеточного содержимого.
Немецкий ботаник М. Шлейден первым пришел к выводу, что в любой клетке есть ядро. Основателем КТ считается немецкий биолог Т. Шванн (совместно с М. Шлейденом), который в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». Его положения:
1) клетка — главная структурная единица всех живых организмов (как животных, так и растительных);
2) если в каком-либо образовании, видимом под микроскопом, есть ядро, то его можно считать клеткой;
3) процесс образования новых клеток обусловливает рост, развитие, дифференцировку растительных и животных клеток. Дополнения в клеточную теорию внес немецкий ученый Р. Вирхов, который в 1858 г. опубликовал свой труд «Целлюлярная патология». Он доказал, что дочерние клетки образуются путем деления материнских клеток: каждая клетка из клетки. В конце XIX в. были обнаружены митохондрии, комплекс Гольджи, пластиды в растительных клетках. После окрашивания делящихся клеток специальными красителями были обнаружены хромосомы. Современные положения КТ
1. Клетка — основная единица строения и развития всех живых организмов, является наименьшей структурной единицей живого.
2. Клетки всех организмов (как одно-, так и многоклеточных) сходны по химическому составу, строению, основным проявлениям обмена веществ и жизнедеятельности.
3. Размножение клеток происходит путем их деления (каждая новая клетка образуется при делении материнской клетки); в сложных многоклеточных организмах клетки имеют различные формы и специализированы в соответствии с выполняемыми функциями. Сходные клетки образуют ткани; из тканей состоят органы, которые образуют системы органов, они тесно взаимосвязаны и подчинены нервным и гуморальным механизмам регуляции (у высших организмов).
Значение клеточной теории
Отало ясно, что клетка — важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент. Клетка — это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.
2. Определение жизни на современном этапе развития науки
Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков, учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь — это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.
Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».
Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь — это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.
Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.
3. Фундаментальные свойства живой материи
Эти свойства в комплексе характеризуют любую живую систему и жизнь вообще:
1) самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;
2) самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;
3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;
4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;
5) поддержание гомеостаза (от гр. homoios — «подобный, одинаковый» и stasis — «неподвижность, состояние») — относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;
6) структурная организация — определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой — биогеоценозов;
7) адаптация — способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;
8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;
9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации).
Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;
10) изменчивость — свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;
11) индивидуальное развитие (процесс онтогенеза) — воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;
12) филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это до-клеточные, одноклеточные и многоклеточные организмы вплоть до человека.
При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);
13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.
4. Уровни организации жизни
Живая природа — это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что весьма удобно при из-учении жизни как сложного природного явления. Можно выделить три основные ступени живого: микросистемы, мезосистемы и макросистемы.
Микросистемы (доорганизменная ступень) включают в себя молекулярный (молекулярно-генетический) и субклеточный уровни.
Мезосистемы (организменная ступень) включают в себя клеточный, тканевый, органный, системный, организменный (организм как единое целое), или онтогенетический, уровни.
Макросистемы (надорганизменная ступень) включают в себя популяционно-видовой, биоценотический и глобальный уровни (биосферу в целом). На каждом уровне можно выделить элементарную единицу и явление.
Элементарная единица (ЭЕ) — это структура (или объект), закономерные изменения которой (элементарные явления, ЭЯ) составляют ее вклад в развитие жизни на данном уровне.
1) молекулярно-генетический уровень. ЭЕ представлена геном. Ген — это участок молекулы ДНК (а у некоторых виру-сов-молекулы РНК), который ответствен за формирование какого — либо одного признака. Информация, заложенная в нуклеиновых кислотах, реализуется посредством матричного синтеза белков;
2) субклеточный уровень. ЭЕ представлена какой-либо субклеточной структурой, т. е. органеллой, которая выполняет свойственные ей функции и вносит свой вклад в работу клетки в целом;
3) клеточный уровень. ЭЕ — это клетка, которая является самостоятельно функционирующей элементарной биологической системой. Только на этом уровне возможны реализация генетической информации и процессы биосинтеза. Для одноклеточных организмов этот уровень совпадает с организменным. ЭЯ — это реакции клеточного метаболизма, составляющие основу потоков энергии, информации и вещества;
4) тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань (ЭЕ). Уровень возник с появлением многоклеточных организмов с более или менее дифференцированными тканями. Ткань функционирует как единое целое и обладает свойствами живого;
5) органный уровень. Образован совместно с функционирующими клетками, относящимися к разным тканям (ЭЕ). Всего четыре основные ткани входят в состав органов многоклеточных организмов, шесть основных тканей образуют органы растений;
6) организменный (онтогенетический) уровень. ЭЕ — это особь в ее развитии от момента рождения до прекращения ее существования в качестве живой системы. ЭЯ — это закономерные изменения организма в процессе индивидуального развития (онтогенеза). В процессе онтогенеза в определенных условиях среды происходит воплощение наследственной информации в биологические структуры, т. е. на основе генотипа особи формируется ее фенотип;
7) популяционно-видовой уровень. ЭЕ — это популяция, т. е. совокупность особей (организмов) одного вида, населяющих одну территорию и свободно скрещивающихся между собой. Популяция обладает генофондом, т. е. совокупностью генотипов всех особей. Воздействие на генофонд элементарных эволюционных факторов (мутаций, колебаний численности особей, естественного отбора) приводит к эволюционно значимым изменениям (ЭЯ);
8) биоценотический (экосистемный) уровень. ЭЕ — биоценоз, т. е. исторически сложившееся устойчивое сообщество популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации (круговоротами), которые и представляют собой ЭЯ;
9) биосферный (глобальный) уровень. ЭЕ — биосфера (область распространения жизни на Земле), т. е. единый планетарный комплекс биогеоценозов, различных по видовому составу и характеристике абиотической (неживой) части. Биогеоценозы обусловливают все процессы, протекающие в биосфере;
10) носферный уровень. Это новое понятие было сформулировано академиком В. И. Вернадским. Он основал учение o ноосфере как сфере разума. Это составная часть биосферы, которая изменена благодаря деятельности человека.