Что означает отрицательный дискриминант

Дискриминант

Дискриминантом квадратного трехчлена называют выражение \(b^<2>-4ac\), где \(a, b\) и \(c\) – коэффициенты данного трехчлена.

Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
— если \(D\) положителен – уравнение будет иметь два корня;
— если \(D\) равен нулю – только один корень;
— если \(D\) отрицателен – корней нет.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит \(x_<1>\) и \(x_<2>\) будут различны по значению, ведь в первой формуле \(\sqrt\) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения \(x^2+2x-3=0\)
Решение:

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед \(\sqrt\)

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения \(x^2-4x+4=0\)
Решение:

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения \(x^2+x+3=0\)
Решение

Вычисляем дискриминант по формуле \(D=b^2-4ac\)

Находим корни уравнения

Оба корня содержат невычислимое выражение \(\sqrt<-11>\), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение \(x^2+x+3\) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Источник

Как найти дискриминант квадратного уравнения

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие квадратного уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 8 + 4 = 12. При вычислении левой части получается верное числовое равенство, то есть 12 = 12.

Уравнением можно назвать выражение 8 + x = 12, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени, значит, такое уравнение является квадратным.

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Есть три вида квадратных уравнений:

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, которое находится под корнем в формуле нахождения корней квадратного уравнения. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Чаще всего для поиска дискриминанта используют формулу:

В этом ключе универсальная формула для поиска корней квадратного уравнения выглядит так:

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Эта формула подходит даже для неполных квадратных уравнений.

Но есть и другие формулы — все зависит от вида уравнения. Чтобы в них не запутаться, сохраняйте табличку или распечатайте ее и храните в учебнике.

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Как решать квадратные уравнения через дискриминант

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный. Только после этого вычисляем значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

А вот и еще одна табличка: в ней вы найдете формулы для поиска корней квадратных уравнений при помощи дискриминанта:

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, важно практиковаться. Вперед!

Примеры решения квадратных уравнений с помощью дискриминанта

Ответ: корень уравнения 3.

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Разобраться в решении квадратных уравнений на практике с классным преподавателем можно на курсах по математике в Skysmart.

Источник

Если дискриминант отрицательный то сколько корней

Например, для трехчлена (3x^2+2x-7), дискриминант будет равен (2^2-4cdot3cdot(-7)=4+84=88). А для трехчлена (x^2-5x+11), он будет равен ((-5)^2-4cdot1cdot11=25-44=-19).

Дискриминант и корни квадратного уравнения

Значение дискриминанта показывает количество корней квадратного уравнения:
– если (D) положителен – уравнение будет иметь два корня;
– если (D) равен нулю – только один корень;
– если (D) отрицателен – корней нет.

Если дискриминант положителен

В этом случае корень из него – это некоторое положительное число, а значит (x_ ) и (x_ ) будут различны по значению, ведь в первой формуле (sqrt ) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

Пример: Найдите корни уравнения (x^2+2x-3=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Найдем корни уравнения

Получили два различных корня из-за разных знаков перед (sqrt )

На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения. И это логично. Вдумайтесь – если уравнение (x^2+2x-3=0) имеет корни (x_ =1) и (x_ =-3), значит при подстановке (1) и (-3) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию (y=x^2+2x-3) получим (y=0). То есть, функция (y=x^2+2x-3) проходит через точки ((1;0)) и ((-3;0)) (подробнее смотри статью Как построить график функции ).

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Если дискриминант равен нулю

А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

Пример: Найдите корни уравнения (x^2-4x+4=0)
Решение:

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс. Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция (y=x^2-4x+4) будет выглядеть вот так:

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Если дискриминант отрицателен

В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

Пример: Найдите корни уравнения (x^2+x+3=0)
Решение

Вычисляем дискриминант по формуле (D=b^2-4ac)

Находим корни уравнения

Оба корня содержат невычислимое выражение (sqrt ), значит, и сами не вычислимы

То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение (x^2+x+3) получился ноль.

Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

Как решать квадратные уравнения?

1. Дискриминант положительный. Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю. Тогда у вас одно решение. Строго говоря, это не один корень, а два одинаковых.

Основные формулы

Графическая интерпретация

Ниже приводятся примеры таких графиков.

Полезные формулы, связанные с квадратным уравнением

Вывод формулы для корней квадратного уравнения

Выполняем преобразования и применяем формулы (f.1) и (f.3):

Итак, мы получили формулу для многочлена второй степени в виде:
.
Отсюда видно, что уравнение

Примеры определения корней квадратного уравнения

Пример 1

Отсюда получаем разложение квадратного трехчлена на множители:

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

График функции y = 2 x 2 + 7 x + 3 пересекает ось абсцисс в двух точках.

Пример 2

Тогда разложение трехчлена на множители имеет вид:
.

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

График функции y = x 2 – 4 x + 4 касается оси абсцисс в одной точке.

Построим график функции
.
График этой функции является параболой. Она касается оси абсцисс (ось ) в одной точке:
.
Эта точка является корнем исходного уравнения (2.1). Поскольку этот корень входит в разложение на множители два раза:
,
то такой корень принято называть кратным. То есть считают, что имеется два равных корня:
.

Пример 3

Можно найти комплексные корни:
;
;
.

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

График функции не пересекает ось абсцисс. Действительных корней нет.

Построим график функции
.
График этой функции является параболой. Она не пересекает ось абсцисс (ось ). Поэтому действительных корней нет.

Действительных корней нет. Корни комплексные:
;
;
.

Источник

Дискриминант
квадратного уравнения

Мы уже разобрали, как решать квадратные уравнения. Теперь давайте более подробно рассмотрим, что называют дискриминантом квадратного уравнения.

Вернемся к нашей формуле для нахожденя корней квадратного уравнения.

Выражение « b 2 − 4ac », которое находится под корнем, принято называть дискриминантом и обозначать буквой « D ».

По-другому, через дискриминант формулу нахождения корней квадратного уравнения можно записать так:

По одной из версий термин «Дискриминант» произошел от латинского discriminantis, что означает «отличающий» или «различающий».

В зависимости от знака « D » (дискриминанта) квадратное уравнение может иметь два, один или ни одного корня. Рассмотрим все три случая.

I случай
D > 0
(дискриминант больше нуля)

x1;2 =

−b ± √ D
2a

x1;2 =

−5 ± √ 81
2 · 2

x1;2 =

−5 ± 9
4

x1 =

−5 + 9
4
x2 =

−5 − 9
4
x1 =

4
4
x2 =

−14
4
x1 = 1x2 = −3

2
4
x1 = 1x2 = −3

1
2

Ответ: x1 = 1; x2 = −3

1
2

II случай
D = 0
(дискриминант равен нулю)

D = b 2 − 4ac
D = (−8) 2 − 4 · 16 · 1
D = 64 − 64
D = 0

x1;2 =

−b ± √ D
2a

x1;2 =

− (−8) ± √ 0
32

x1;2 =

8 ± 0
32

x =

8
32

x =

1
4

Ответ: x =

1
4

III случай
D
(дискриминант меньше нуля)

D = b 2 − 4ac
D = (−6) 2 − 4 · 9 · 2
D = 36 − 72
D = −36
D

x1;2 =

−b ± √ D
2a

x1;2 =

− (−6) ± √ −36
32

Ответ: нет действительных корней

Источник

Нахождение дискриминанта, формула, сравнение с нулём

Квадратный многочлен, как искать его корни

Как это значение показывает наличие вещественных корней:

Варианты расчётов для закрепления материала

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Использование дискриминанта в вычислении корней

Эта вспомогательная конструкция не только показывает количество вещественных решений, но и помогает их находить. Общая формула расчёта для уравнения второй степени такова:

Результат приравнивания квадратного выражения к нулю вычисляется согласно алгоритму:

Некоторые частные случаи

В зависимости от коэффициентов решение может несколько упрощаться. Очевидно, что если коэффициент перед переменной во второй степени равен нулю, то получается линейное равенство. Когда коэффициент перед переменной в первой степени нулевой, то возможны два варианта:

Если свободный член нулевой, то корни будут

Но есть и другие частные случаи, упрощающие нахождение решения.

Приведенное уравнение второй степени

Что означает отрицательный дискриминант. Смотреть фото Что означает отрицательный дискриминант. Смотреть картинку Что означает отрицательный дискриминант. Картинка про Что означает отрицательный дискриминант. Фото Что означает отрицательный дискриминант

Важно отметить, что i * w ^ 2 + j * w + k = 0 удастся привести путём деления на «i». Результат будет: w ^ 2 + j1 * w + k1 = 0, где j1 равно j / i и k1 равно k / i.

Чётный второй множитель

Более высокий порядок дискриминанта

Рассмотрим i * w ^ 3 + j * w ^ 2 + k * w + m = 0.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *