Что означает площадь фигур
Площади фигур
Площадь фигуры — это аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Содержание:
Понятие площади
Площадь — это тоже величина. Каждой плоской геометрической фигуре соответствует своя площадь. У пространственных фигур тоже есть соответствующая им площадь, называемая площадью поверхности.
Площадь фигур мы будем обозначать буквой S. Запись читается как «площадь фигуры F».
Определение. Измерить площадь фигуры — это значит сравнить ее с площадью некоторой фигуры, принятой за единицу измерения площади.
Измерить площадь фигуры в Древней Греции означало построить квадрат, площадь которого равна площади данной фигуры. С тех пор всякое вычисление площади принято называть квадратурой.
Если за единицу длины принимается 1 мм, то единицей площади является 1 (квадратный миллиметр); при единице длины 1 см единицей площади является 1
(квадратный сантиметр). Если единицей измерения длины является 1 м, ему соответствует единица площади 1
(квадратный метр).
Любую площадь S можно выразить через единицу измерения площади в виде , где k — числовой множитель, который показывает, сколько раз единичный квадрат укладывается в данной фигуре.
Пусть, например, за единицу измерения площади принят квадратный сантиметр (т. е. ). Тогда запись
означает, что площадь фигуры равна
, т. е. в данной фигуре квадрат со стороной 1 см укладывается 15 раз.
Можно сфорулировать свойства измерения площади.
1. Всякий многоугольник F имеет площадь . Площадь является величиной, численное значение которой неотрицательно, т. е.
для любой фигуры F.
Площадь фигуры зависит только от ее размеров и формы и не зависит от места расположения фигуры в пространстве. Это формулируется так.
2. Если две фигуры равны, то равны и их площади.
Пусть дана фигура F, которая является объединением двух фигур , причем эти фигуры пересекаются не более чем по конечному числу отрезков и точек. Тогда
Есть случаи, когда фигура является объединением двух других фигур, но данное равенство не выполняется. На рисунке 2.138 изображены два треугольника Фигура R — их объединение. В этом случае
(при сложении площадь ромбовидной области в центре рисунка войдет в сумму дважды).
Еще одно свойство площади формулируется следующим образом.
3. За единицу измерения площади принимают площадь квадрата, сторона которого равна единице измерения длины отрезка.
Для фигуры, разбитой на части, справедливо следующее свойство.
4. Если фигура разбита на части, то площадь фигуры равна сумме площадей частей фигуры.
Свойство измерения площади квадрата.
5. Площадь квадрата со стороной равна
.
В геометрии различают фигуры равные и равновеликие.
Определение. Две фигуры называются равновеликими, если они имеют одинаковую площадь.
Площади прямоугольника и прямоугольного треугольника
Теорема 33. Площадь прямоугольника равна произведению его основания на высоту.
где — стороны прямоугольника.
Проведя диагональ АС прямоугольника ABCD (рис. 2.139), можно легко доказать, что она разбивает этот прямоугольник на два равных треугольника ABC и CDA, а тогда нетрудно доказать теорему 34.
Теорема 34. Площадь прямоугольного треугольника равна половине произведения его катетов (рис. 2.140):
где — катеты прямоугольного треугольника.
Площади треугольников
Теорема 35. Площадь треугольника равна половине произведения основания и высоты.
На рисунке 2.141 изображен треугольник ABC.
Есть еще одна формула для вычисления площади треугольника через его стороны. Эта формула носит имя древнегреческого математика Герона Александрийского (около I в.). Кроме этой формулы, есть еще так называемые ге-роновы треугольники — это треугольники, у которых целочисленные стороны и их площадь тоже есть целое число (примерами таких треугольников могут быть треугольники со сторонами 13, 14, 15 или 51, 52, 53).
Теорема 36 (формула Герона). Площадь треугольника равна
где — стороны треугольника, а р — его полупериметр,
.
Существует формула площади треугольника, которая использует понятие синуса угла.
Теорема 37. Площадь треугольника равна половине произведения его сторон на синус угла между ними
где — стороны ААВС, а
— угол между этими сторонами.
Площади четырехугольников и многоугольников
Для вывода формулы площади параллелограмма определим высоту параллелограмма.
Определение. Высотой параллелограмма называют отрезок перпендикуляра, проведенного из любой точки какой-нибудь стороны параллелограмма к прямой, содержащей противоположную сторону.
Высотой параллелограмма можно считать также и длину этого перпендикуляра. У параллелограмма две пары противоположных параллельных сторон и соответственно две высоты.
На рисунке 2.142 изображен параллелограмм ABCD, — его высоты. Заметим, что основания высот параллелограмма могут попасть и на продолжение одной из сторон (рис. 2.143).
Теорема 38. Площадь параллелограмма равна произведению его стороны и проведенной к ней высоты.
ABCD — параллелограмм, AD = ВС = , AM = CN = h (рис. 2.144).
Для вывода формулы площади еще одного четырехугольника — трапеции определяется понятие высоты трапеции.
Определение. Высотой трапеции называют отрезок перпендикуляра, проведенного из какой-либо точки основания трапеции к прямой, содержащей другое основание.
Высотой можно также считать длину этого перпендикуляра. На рисунке 2.145 ВМ — высота трапеции ABCD.
Теорема 39. Площадь трапеции равна произведению полусуммы оснований и высоты, т. е. если и
— основания трапеции, h — высота и S — площадь трапеции, то
Чтобы вычислить площадь произвольного многоугольника, можно разбить его на треугольники, не имеющие общих внутренних точек, и найти сумму их площадей.
Такое разбиение выпуклого многоугольника можно осуществить, проведя, например, диагонали из одной его вершины (рис. 2.146). Иногда удобно пользоваться другими разбиениями (рис. 2.147, 2.148).
Пример:
Через середину основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что полученный таким образом четырехугольник — параллелограмм и что его площадь равна половине площади треугольника.
Решение:
Из условия задачи имеем:
1.
4. Надо доказать, что BEDF — параллелограмм и что
5. Так как DE || ВС и DF || АВ, то BEDF — параллелограмм (2, определение параллелограмма).
Нужно установить связь между площадью параллелограмма и треугольника. Для этого удобно параллелограмм разбить на треугольники.
6. Соединим точки В и D и рассмотрим полученные треугольники (построение) (рис. 2.150).
7. равны (BD — общая сторона,
и
, как углы внутренние накрест лежащие при параллельных прямых (1, 2, 3, признак равенства треугольников по сторонам и двум прилежащим углам).
8. Эти треугольники и равновелики.
9. Треугольники BFD и CFD также равновелики между собой (хотя в общем случае они не равны), так как BF = FC (DF — средняя линия), т. е. основания их равны и они имеют одинаковую высоту, так как вершина D у них общая.
10. Аналогично равновелики между собой и
11. следовательно, площади
и параллелограмма BEDF можно записать так:
а
(8, 10, свойства площадей).
12. (11).
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
ВОПРОСЫ
1. Какие свойства площади фигуры вы знаете?
1) Равные фигуры имеют равные площади.
2) Площадь фигуры равна сумме площадей фигур, из которых она состоит.
2. Как поступают, когда хотят измерить какую-либо величину?
Для измерения величины сравнивают с единицей этой величины или её доли.
3. Какой квадрат называют единичным?
В качестве единицы измерения площади выбирают квадрат, сторона которого равна единичному отрезку. Такой квадрат называют единичным.
4. Какие единицы измерения площади вы знаете?
5. Что означает измерить площадь фигуры?
6. Чему равна площадь прямоугольника?
7. По какой формуле вычисляют площадь квадрата?
8. Верно ли, что если площади фигур равны, то и равны сами фигуры?
9. Сколько квадратных метров содержит 1 ар? 1 гектар?
РЕШАЕМ УСТНО
1. Сколько сантиметров содержится в: 1 дм; 1 м 3 дм; 5 м 2 дм; 12 дм 5 см; 40 мм?
2. Вычислите: 1) сумму кубов чисел 3 и 2; 2) куб суммы чисел 3 и 2; 3) разность квадратов чисел 8 и 6; 4) квадрат разности чисел 8 и 6.
3. Лодка за 5 ч прошла 40 км. За сколько часов она пройдет с той же скоростью 24 км?
4. Сколько литров воды может перекачать насос за 8 мин, если пять таких насосов за 6 мин перекачивают 450 л воды?
5. Какую цифру надо поставить вместо звездочек, чтобы запись 1* + 3* + 5* = 111 стала верным равенством?
УПРАЖНЕНИЯ
564. 1) Сколько квадратных сантиметров содержит 1 дм2, 1 м2? 2) Сколько квадратных метров содержит 1 км2?
565. Вычислите площадь прямоугольника, соседние стороны которого равны 14 см и 8 см.
566. Вычислите площадь квадрата со стороной 7 дм.
567. Одна сторона прямоугольника равна 16 см, а соседняя сторона на 6 см длиннее. Вычислите площадь прямоугольника.
570. Периметр прямоугольника равен 96 м, и он в 8 раз больше одной из сторон прямоугольника. Найдите площадь прямоугольника.
571. Найдите площадь квадрата, периметр которого равен 96 см.
572. Периметр прямоугольника равен 4 м 8 дм, одна из его сторон в 5 раз больше соседней стороны. Найдите площадь прямоугольника.
573. Периметр прямоугольника равен 6 дм 8 см, одна из его сторон на 1 дм 6 см меньше соседней стороны. Найдите площадь прямоугольника.
574. Выразите: 1) в арах: 12 га; 45 га; 6 га 28 а; 14 га 68 а; 32 400 м2; 123 800 м2; 2 км2 14 га 5 а; 4 км2 72 га 16 а; 2) в квадратных метрах: 5 а; 17 а; 8 га; 5 га 72 а; 14 га 43 а; 3) в гектарах и арах: 530 а; 1 204 а; 16 300 м2; 85 200 м2.
575. Выразите: 1) в квадратных сантиметрах: 8 дм2; 16 дм 2; 4 м2; 38 м2; 16 м2 19 дм2; 74 м2 3 дм2; 2) в гектарах: 340 000 м2; 5 830 000 м2; 53 км2; 14 км2; 5 км2 18 га; 24 км2 6 га.
576. Поле прямоугольной формы имеет площадь 56 а, его длина 80 м. Вычислите периметр поля.
578. Вычислите периметр и площадь фигуры, изображенной на рисунке 149 (размеры даны в сантиметрах).
579. Вычислите периметр и площадь фигуры, изображенной на рисунке 150 (размеры даны в сантиметрах).
580. Хватит ли 5 т гороха, чтобы засеять им поле, имеющее форму прямоугольника со сторонами 500 м и 400 м, если на 1 га земли надо высеять 260 кг гороха?
582. Фермер Петр Трудолюб посадил в теплице огурцы. Длина теплицы равна 16 м 50 см, а ширина 12 м. Сколько килограммов огурцов соберет фермер в своей теплице, если с 1 м2 собирают 30 кг огурцов?
583. Расход эмалевой краски на однослойное покрытие составляет 180 г на 1 м2. Хватит ли 3 кг эмали, чтобы покрасить стену длиной 6 м и высотой 3 м?
584. Квадрат со стороной 12 см и прямоугольник, длина которого равна 18 см, имеют равные площади. Найдите периметр прямоугольника.
585. Квадрат и прямоугольник имеют равные площади, соседние стороны прямоугольника равны 3 см и 12 см. Найдите периметр квадрата.
586. Ширина прямоугольника равна 26 см. На сколько квадратных сантиметров увеличится площадь этого прямоугольника, если его длину увеличить на 4 см?
587. Во сколько раз увеличится периметр и площадь прямоугольника, если каждую его сторону увеличить в 4 раза?
588. Длина прямоугольника равна 32 см. На сколько квадратных сантиметров уменьшится площадь этого прямоугольника, если его ширину уменьшить на 5 см?
589. Площадь квадрата АВСD равна 16 см2 (рис 151). Чему равна площадь прямоугольника АСFЕ?
590. Стороны прямоугольного листа бумаги имеют целочисленную длину (в сантиметрах), а площадь листа равна 12 см2. Сколько квадратов площадью 4 см2 можно вырезать из этого прямоугольника?
591. Стороны прямоугольного листа бумаги имеют целочисленную длину (в сантиметрах), а площадь листа равна 18 см2. Сколько квадратов со стороной 3 см можно вырезать из этого листа?
592. Внутри прямоугольника АВСD (рис. 152) вырезали отверстие прямоугольной формы. Как одним прямолинейным разрезом разделить полученную фигуру на две фигуры с равными площадями?
593. Используя четыре из пяти изображенных на рисунке 153 фигур, составьте квадрат.
594. Можно ли разрезать квадрат на несколько частей так, чтобы потом из них можно было составить два квадрата, длины сторон которых выражаются целым числом сантиметров, если сторона данного квадрата равна: 1) 5 см; 2) 6 см?
УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ
595. Из вершины прямого угла АВС (рис. 154) провели лучи ВD и ВЕ так, что угол АВЕ оказался больше угла DВЕ на 340, а угол СВD больше угла DВЕ на 230. Какова градусная мера угла DВЕ?
596. Выполните действия:
ЗАДАЧА ОТ МУРОЙ СОВЫ
597. Расстояние между городами А и В равно 30 км. Из города А в город В выехал велосипедист и двигался со скоростью 15 км/ч. Одновременно из города В в направлении города А вылетела птица со скоростью 30 км/ч. Встретившись с велосипедистом, птица развернулась и полетела назад. Прилетев в город В, она снова развернулась и полетела навстречу велосипедисту. Встретившись с ним, птица развернулась и полетела назад в город В и т.д. Сколько километров пролетела птица за то время, пока велосипедист ехал из города А в город В?