Что означает проектирование выборки

Проектирование выборки, сбор данных

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Определив способы сбора данных, исследователи должны решить за какой группой потребителей они будут наблюдать или опрашивать (группа может быть представлена домохозяйками, дошкольниками, водителями спортивных автомобилей, жителями штата, горда, района).

Выборка – это отображенная для исследования совокупность единиц наблюдения.

Объектами наблюдения – магазины, семьи, потребители

Выборка – известный статистический прием, который базируется на некоторых положениях теории вероятности( закон больших чисел)

Метод позволяет:

— сэкономить значительные средства.

— ускорить получение нужных данных.

— обеспечить сбор сведений, которые по-другому получить нельзя (оценка качества изделия, связанной с повреждением продукта).

Французы говорят :”Не нужна целая бочка вина, чтобы судить о его качестве”

Однако, применение выборки требует строгого соблюдения нескольких требований:

— отбор не должен быть преднамеренным (у всех единиц совокупности есть вероятность попасть в выборочную совокупность);

— совокупность, из которой ведется отбор должна быть достаточно большой и однозначной (если вы изучаете предпринимателей то в совокупность не должны попадать наемные работники).

Планируя выборку исследователи должны установить:

2) процедуру создания выборки

Этапы формирования выборки:

определение популяции – (из чего будет состоять популяция: индивиды, семьи, торговые предприятия). Х-ки – возраст (если это семья или индивид). Это по другому называется целевая популяция. Она определяется с т.з. единиц выборки.

определение основы выборки – это перечень элементов, из которых будет составляться выборка (телефонные справочники, иные базы).

— определение процедуры отбора – процедура выборки зависит от выбранной основы выборки.

определение объема выборки – зависит от важности решения, природы исследования,, количество переменных, ограниченность ресурсов, размеры выборок, которые использовались в подобных работах и т.д.

— отбор элементов выборки (которые будут реально обследоваться).

обследование отобранных респондентов.

Процесс проектирования выборки начинается с установления формы выборки.

Случайная выборка – в которой каждый элемент совокупности имен известную вероятность стать предметом анализа.

Размер выборки зависит от того, сколько предметов необходимо использовать в проекте, чтобы получить достоверные ответы, не выходя за рамки бюджетных средств, установленного времени.

Далее начинается непосредственный сбор данных.

Сбор данных может предполагать работу в «полевых условиях».

Выборочный метод применяется для отбора единиц наблюдения из генеральной совокупности.

Выборочный метод позволяет:

1)сделать выбор м/у различными способами формирования выборки.

2) дать оценку достоверности полученных результатов (сделать вывод о репрезентативности, (представительности) выборки.

Выборка применяется при сборе как первичных, так и вторичных данных.

В маркетинге теория выборочного метода используется не столько для расчета ошибок, точности результатов и выборки, сколько для обоснования выбора методов отбора единиц наблюдения, обеспечивающих репрезентативность исследуемой совокупности.

Эффективность и точность результатов достигается и обеспечивается на основе применения научно обоснованных методов формирования выборочной совокупности.

Задачи, решаемые с привлечением теории выборки,могут быть, самыми разнообразными:

анализ частоты обновления товаров,

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

структура продаж по разновидностям марки.

При проведении количественного анализа по обследованию потребителей на основании выборки часто оценивается средние величины и доли, например средний балл по какой-то х-ке товара, средний объем потребления

Вероятностные и невероятностные способы построения выборки.

Вероятностные способы построения:

1) Простая случайная выборка (лотерея, в которой имена возможных респондентов помещаются в барабан и перемешиваются, затем извлекаются имена «победителей»), таблица случайных чисел, компьютерные программы, генерирующие случайные последовательности чисел).

Источник

Основные этапы проектирования выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Маркетологи выделяют следующие этапы разработки выборки:

· определение соответствующей совокупности;

· получение «списка» совокупности;

· проектирование выборочного плана;

· определение методов доступа к совокупности;

· достижение нужной численности выборки;

· проверка выборки на соответствие требованиям;

· если необходимо формируется новая выборка.

На первом этапе определяется целевая совокупность, зависящая от целей исследования, здесь важно установить характеристики, которым должны удовлетворять единицы совокупности и которые позволяет ее отличать от других совокупностей.

На втором этапе устанавливается, откуда может быть получен перечень единиц совокупности (это важно для определения контура выборки). На этом этапе необходимо использовать соответствующие справочники, данные переписи населения и местных органов власти, материалы различных консультационных организаций.

На втором этапе также оценивается ошибка контура выборки, для чего важно и в этих целях необходимо:

· определить насколько список людей (юридических лиц), включенных в контур выборки отличается от совокупности в целом;

· установить, какой континент людей не вошел в состав контура выборки.

На третьем этапе с учетом ранее выполненных работ осуществляется проектирование самой выборки. В этом случае важно найти баланс между:

· затратами на сбор данных;

Достижение нужной численности выборки требует выполнения двух шагов операций: установления единицы выборки и от одной единицы должна быть получена требуемая информация.

На ряд выбранных респондентов невозможно выйти и что не каждый выбранный респондент выразит желание отвечать на вопросы. Таких респондентов необходимо заменить. И это обычно решается: во-первых, выбором следующего по списку респондента; либо, во-вторых, использованием выборки больших размеров; либо, в-третьих, формированием повторной выборки.

Первый метод наиболее часто применяется в случае систематической выборки, Например, в качестве контура выборки используется телефонный справочник и необходимо опросить каждого сотого абонента. Если не удается получить ответ от первого респондента, то звонят абоненту, следующему по справочнику, и так делают, пока не удастся получить ответы на задаваемые вопросы. Только после этого осуществляется скачок в 100 номеров.

Второй метод это использование выборки больших размеров и осуществляется он в случае, когда заранее известен процент респондентов, не принимавших участие в опросе. К примеру известно, что на письма при почтовом опросе отвечает только 20 % респондентов (во многих случаях этот процент и того меньше). Поэтому, чтобы получить окончательную выборку численностью в 200 человек, письма необходимо отправить тысяче потенциальных респондентов.

Суть третьего метода – метода формирования повторной выборки заключается в том, что если процент ответов намного ниже, чем ожидалось, то контуры исходной выборки расширяются за счет дополнительных имен, найденных, например, случайным образом.

Источник

Проектирование выборки.

Формы выборкиВиды выборки
случайная (вероятность известна)Простая случайная квотная гнездовая
неслучайнаяУсловно случайная выборка Пропорциональная выборка

Объектом выборки, является перечень единиц из которых будет взята выборка ( географический регион, организации, отдельные личности и т.д.). Если мы исследуем конкретный город, то необходимо определить, что нас интересует больше— предприятия или отдельные лица.

При составлении выборки нужно ответить на три вопроса:

·Кого нужно опрашивать? Ответ на этот вопрос не всегда очевиден.

·Сколько людей нужно опросить? (или Каков объем выборки?). Большая выборка дает более достоверные результаты, чем маленькая. Но для получения надежной информации нет никакой необходимости включать в выборку весь целевой рынок или даже его большую часть. Если выборка составлена правильно, то достоверные результаты можно получить даже при объеме менее чем в 1% от населения.

· По какому критерию следует включать людей в выборку, ( Какова структура выборки)?

Планирование выборки включает 3 этапа:

2. процедуру создания выборки

Сам процесс проектирования выборки требует наличия определенной формы выборки: случайная (вероятность известна), квотная выборка, гнездовая, неслучайная.

Случайная выборка—этовыборка, при которой каждый элемент совокупности имеет известную (не нулевую) вероятность стать предметом анализа.

Виды случайной выборки:

· Простая случайная выборка — любой человек может быть включенным в выборку.

· Квотная выборка — это такая выборка, при которой субъект исследования выбирает элементы совокупности, которые он будет изучать.

· Гнездовая выборка — население разделено на несколько взаимоисключающих групп по территориальному признаку и исследователь проводит выборку из этих блоков.

Неслучайная выборка — это доверительная выборка, при которой исследователь для сбора информации выбирает членов общества, от которых легче всего получить информацию.

· Условно случайная выборка— это выборка, при которой исследователь, полагаясь на свои суждения, выбирает людей, которые, по его мнению, обеспечат наиболее достоверные результаты.

· Пропорциональная выборка — это выборка, при которой исследователь находит и опрашивает определенное количество людей из каждой группы.

Планирование выборкиосуществляется в четыре этапа:

1. Определение генеральной (соответствующей) совокупности.

2. Получение списка совокупности.

3. Проектирование выборочного плана

4. Достижение нужного объема выборки или ее переформирование.

На первом этапе определяется генеральная совокупость, в соответствии с целями исследования. Затем четко устанавливаются характеристики, которым должны удовлетворять единицы совокупности и которые дают возможность отличить целевую совокупность от других возможных совокупностей.

На втором этапе устанавливается, откуда может быть получен перечень единиц совокупности. Это нужно для установления контура выборки. При этом можно воспользоваться соответствующими справочниками, данными переписи населения и местных органов власти, материалы различных консультационных организаций.

На третьем этапе осуществляется проектирование выборки. Здесь необходимо найти баланс между структурой выборки, затратами на сбор данных и объемом выборки; в деталях обсудить выборочные методы. Выборочный план должен соответствовать целям проводимого обследования и существующим ограничениям.

На четвертом этапе устанавливается единица выборки, от которой должна быть получена требуемая информация. Если респондент по какой-либо причине откажется дать нужную информацию, то необходимо предусмотреть замену ему. Переформирование выборки осуществляется тогда, когда проверка показала, что выборка не представляет совокупности в целом. В этом случае выбираются новые респонденты, которые добавляются к ранее использованной выборке, пока не достигается удовлетворительный уровень репрезентативности.

Объем выборки зависит от того, сколько институтов или лиц необходимо исследовать, чтобы получить достоверные ответы, не выходя за рамки бюджета и установленного времени.

Количество элементов в исходной (генеральной) совокупности может равняться 1000, 10 000 или 1000 000. На объем выборки как правило оказывает непосредственное влияние степень изменчивости количественного признака. Чем выше степень изменчивости признака, тем большим должен быть размер выборки, обеспечивающей заданную точность обследования.

После определения объема начинается сбор данных. Для этого следует обучить персонал для работы в полевых условиях, учитывая их уровень образования, методам и способам анкетирования, наблюдения.

Дата добавления: 2018-06-28 ; просмотров: 821 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Основы выборочного исследования и формирования простой случайной выборки

Маркетинговые исследования
Г. Черчилль, Т. Браун

Учебные цели

Итак, исследователь точно определил задачу и заручился приемлемыми для ее решения схемой исследований и инструментами сбора данных. Следующий этап исследовательского процесса должен заключаться в отборе тех элементов, которые будут обследоваться. Можно обследовать каждый элемент данной популяции, произведя полную перепись этой популяции. Полное обследование совокупности именуется переписью (цензом). Существует и другая возможность. Статистическому обследованию подвергается некая часть популяции, выборка элементов большой группы, и по данным, полученным на этом подмножестве, делаются некие выводы касательно всей группы. Возможность распространения результатов, полученных на основе выборочных данных, на большую группу зависит от метода, посредством которого была произведена выборка. Большая часть настоящей главы будет посвящена тому, как должна формироваться выборка и почему это так.

Понятие «популяция», или «совокупность», может относиться не только к людям, но и к фирмам, работающим в обрабатывающей промышленности, к организациям розничной или оптовой торговли или даже к совершенно неодушевленным объектам, таким как детали, производимые на предприятии; это понятие определяется как все множество элементов, удовлетворяющих неким заданным условиям. Этими условиями однозначно определяются как элементы, принадлежащие к целевой группе, так и элементы, которые следует исключить из рассмотрения.

Исследование, имеющее целью определение демографического профиля потребителей замороженной пиццы, должно начинаться с выяснения, кого следует и кого не следует относить к таковым. Относятся ли к этой категории лица, хотя бы однажды пробовавшие такую пиццу? Лица, покупающие хотя бы одну пиццу в месяц? В неделю? Лица, съедающие за месяц такое количество пиццы, которое превышает некий заданный минимум? Исследователь должен быть очень точным при определении целевой группы. Необходимо также следить за тем, чтобы выборка формировалась именно из целевой, а не «какой-то» совокупности, что имеет место в случае неподходящей или неполной основы выборки. Последняя является перечнем элементов, из которых будет формироваться реальная выборка.

Исследователь может предпочесть выборочный метод обследованию всей совокупности по нескольким причинам. Во-первых, полное обследование совокупности даже сравнительно небольшого размера требует очень больших материальных и временных затрат. Зачастую к моменту завершения переписи и обработки данных информация уже устаревает. В некоторых случаях ценз попросту невозможен. Скажем, исследователи задались целью проверить соответствие реального срока службы электрических ламп накаливания расчетному, для чего им необходимо держать их во включенном состоянии до момента выхода из строя. Если исследовать таким образом весь запас ламп, будут получены достоверные данные, однако торговать будет уже нечем.

И наконец, к вящему изумлению новичков, исследователь может предпочесть выборочный метод цензу, стремясь к точности результатов. Проведение переписей требует привлечения большого штата сотрудников, что оборачивается возрастанием вероятности появления систематических (не связанных с выборкой) ошибок. Это обстоятельство является одной из причин того, почему Бюро переписи США использует выборочные наблюдения для проверки точности разного рода переписей. Вы не ослышались: выборочные исследования могут проводиться для проверки точности данных ценза.

Этапы проектирования выборки

На рис. 15.1 показана состоящая из шести шагов последовательность, которой может придерживаться исследователь, занятый составлением выборки. Прежде всего необходимо определить целевую совокупность или набор элементов, о которых исследователь желает что-то узнать.

Например, при изучении предпочтений детей исследователям необходимо решить, будет ли обследуемая популяция состоять только из детей, только из родителей или из тех и других.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Исследователь должен определиться с тем, из кого или из чего будет состоять соответствующая совокупность: из индивидов, семей, фирм, иных организаций, операций с кредитными картами и т. д. Принимая подобные решения, необходимо определиться и с элементами, которые должны быть исключены из популяции. Должна производиться как временная, так и географическая привязка элементов, на которые в ряде случаев могут налагаться дополнительные условия или ограничения. Например, если речь идет об индивидах, искомая популяция может состоять только из лиц старше 18 лет, или только из женщин, или только из лиц с образованием не ниже среднего.

Задача определения географических границ для целевой популяции при международных маркетинговых исследованиях может представлять особую проблему, поскольку при этом возрастает неоднородность рассматриваемой системы. Скажем, относительное соотношение городских и сельских территорий может существенно изменяться от страны к стране. Территориальный аспект оказывает серьезное влияние на состав населения и в пределах одной страны. Например, на севере Чили компактно проживает преимущественно индейское население, в южных же районах страны живут главным образом потомки европейцев.

Вообще говоря, чем проще определяется целевая популяция, тем выше ее охват (инцидентность) и тем легче и дешевле процедура формирования выборки. Охват (инцидентность) соответствует выраженной в процентах доле элементов популяции или группы, которые удовлетворяют условиям включения в состав выборки. Охват непосредственно влияет на временные и материальные затраты, необходимые для проведения обследования. Если охват велик (т. е. большая часть элементов популяции удовлетворяет одному или нескольким простым критериям, используемым для выявления потенциальных респондентов), временные и материальные затраты, необходимые для сбора данных, сводятся к минимуму. И наоборот, с увеличением количества критериев, которым должны удовлетворять потенциальные респонденты, возрастают и материальные, и временные издержки.

На рис. 15.2 показана доля взрослого населения, занимающегося теми или иными видами спорта. Данные рисунка свидетельствуют о том, что обследовать людей, занимающихся мотоциклетным спортом (всего 3,6% от общего числа взрослых), куда сложнее и накладней, чем обследовать людей, совершающих регулярные оздоровительные прогулки (27,4% от общего числа взрослых). Главное, чтобы исследователь был точен в определении того, какие элементы должны включаться в обследуемую совокупность и какие элементы должны исключаться из нее. Четкая постановка цели исследования существенно облегчает решение этой задачи. Второй этап процесса отбора выборки состоит в определении ее основы, которая, как вы уже знаете, является перечнем элементов, из которых будет производиться выборка. Пусть целевой совокупностью некоего исследования являются все семьи, проживающие в районе Далласа. На первый взгляд, хорошей и легкодоступной основой выборки может стать телефонный справочник Далласа. Тем не менее при более внимательном рассмотрении становится очевидным, что содержащийся в справочнике список семей не вполне корректен, ибо номера некоторых семей в нем пропущены (разумеется, в него не входят и семьи, не имеющие телефона), некоторые же семьи имеют по несколько телефонных номеров. Лица, недавно поменявшие место жительства и, соответственно, номер своего телефона, также не присутствуют в справочнике.

Опытные исследователи приходят к выводу, что точное соответствие между основой выборки и интересующей их целевой совокупностью наблюдается весьма редко. Один из наиболее творческих этапов работы при разработке выборки — это определение подходящей основы выборки в тех случаях, когда составление списка элементов совокупности вызывает затруднения. Это может потребовать формирования выборки из рабочих блоков и префиксов, когда, например, используется метод случайного набора номера из-за недостатков телефонных справочников. Однако значительное увеличение рабочих блоков в течение последних 10 лет сделало эту задачу более трудной. Подобные ситуации могут возникать и при выборочном наблюдении территориальных зон или организаций с последующим взятием подвыборок, когда, скажем, целевой популяцией являются индивиды, но точного актуального их списка нет.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Источник: основано на данных, содержащихся в «SSI-LITe TM : Low Incidence Targeted Sampling» (Fairfield, Conn.: Survey Sampling, Inc., 1994).

Третий этап процедуры составления выборки тесно связан с определением основы выборки. Выбор метода или процедуры составления выборки во многом зависит от принятой исследователем основы выборки. Различные типы выборок требуют различных типов основ выборки. В этой и в следующей главе будет дан обзор основных типов выборок, используемых в маркетинговых исследованиях. При их описании должна стать очевидной связь основы выборки и метода ее формирования.

Четвертый этап процедуры составления выборки состоит в определении объема выборки. Эта проблема обсуждается в гл. 17. На пятом этапе исследователю необходимо реально отобрать элементы, которые будут подвергнуты обследованию. Используемый для этого способ определяется избранным типом выборки; при обсуждении методов выборки мы поговорим и об отборе ее элементов. И наконец, исследователю необходимо реально обследовать выделенных респондентов. На этом этапе существует большая вероятность совершения ряда ошибок.
Эти проблемы и некоторые методы их разрешения рассматриваются в гл. 18.

Типы планов выборки (выборочного контроля)

Все методы контроля выборки могут быть разделены на две категории: наблюдение за вероятностными выборками и наблюдение за детерминированными выборками. В вероятностную выборку каждый член совокупности может включаться с некой заданной ненулевой вероятностью. Вероятность включения в выборку тех или иных членов совокупности может быть различной, но вероятность включения в нее каждого элемента известна. Эта вероятность определяется особой механической процедурой, используемой для отбора элементов выборки.

Для детерминированных выборок оценка вероятности включения любого элемента в выборку становится невозможной. Гарантировать репрезентативность такой выборки нельзя. Например, Allstate Corporation разрабатывала систему для того, чтобы обрабатывать данные по предъявлению требований о страховом возмещении 14 млн домохозяйств (своих клиентов). Компания планирует использовать эти данные для определения закономерностей спроса на свои услуги — например, вероятности того, что домохозяйство, владеющее «Mersedes Benz», будет также иметь дом для отдыха (которому будет требоваться страховка). Несмотря на то, что база данных очень велика, компания не располагает средствами оценки вероятности того, что какой-либо конкретный клиент предъявит требование. Компания, таким образом, не может быть уверена в том, что данные о клиентах, которые предъявляют требования, репрезентативны по отношению ко всем клиентам компании; и в еще меньшей степени — по отношению к потенциальным клиентам.

Все детерминированные выборки основаны скорее на частной позиции, суждении или предпочтении исследователя, а не на механической процедуре отбора элементов выборки. Подобные предпочтения порой могут давать хорошие оценки характеристик совокупности, однако способа объективного определения соответствия выборки поставленной задаче не существует. Оценка точности результатов выборки может быть произведена только в том случае, если были известны вероятности отбора тех или иных элементов. По этой причине работа с вероятностной выборкой обычно считается более совершенным методом, позволяющим оценить величину ошибки выборочного наблюдения. Выборки могут подразделяться также на выборки фиксированного объема и последовательные выборки. При работе с выборками фиксированного объема объем выборки определяется до начала обследования, и анализу результатов предшествует сбор всех необходимых данных. Нас будут интересовать главным образом выборки фиксированного объема, поскольку при маркетинговых исследованиях обычно используется именно этот тип.

Однако не следует забывать, что существуют и последовательные выборки, которые могут быть использованы с каждым из обсуждаемых ниже основных планов выборочного исследования.

В последовательной выборке количество отбираемых элементов заранее неизвестно, оно определяется на основании серии последовательных решений. Если обследование малой выборки не приводит к достоверному результату, круг обследуемых элементов расширяется. Если результат представляется неубедительным и после этого, объем выборки увеличивается вновь. На каждом этапе принимается решение о том, считать ли полученный результат достаточно убедительным или же продолжить сбор данных. Работа с последовательной выборкой дает возможность оценить тренд (тенденцию изменения) данных по мере их сбора, что позволяет сократить расходы, связанные с дополнительными наблюдениями, в тех случаях, когда их целесообразность сходит на нет.

Как вероятностный, так и детерминированный план выборочного наблюдения делятся на ряд типов. Скажем, детерминированные выборки могут быть нерепрезентативными (удобными), преднамеренными или квотными вероятностные же выборки делятся на простые случайные, стратифицированные или групповые (кластерные), они, в свою очередь, могут подразделяться на подтипы. На рис. 15.3 показаны те типы выборок, которые будут обсуждаться в этой и в следующей главах.

Следует помнить о том, что основные типы выборок могут сочетаться, образуя более сложные планы выборочного наблюдения. Если вы усвоите их основные исходные типы, вам будет легче разобраться и с более сложными сочетаниями.

Детерминированные выборки

Как уже было сказано, при отборе элементов детерминированной выборки определяющую роль играют частные оценки или решения. Порой эти оценки исходят от исследователя, в некоторых же случаях отбор элементов совокупности отдается полевым сотрудникам. Поскольку элементы отбираются не механически, определение вероятности включения в выборку произвольного элемента и, соответственно, ошибки выборочного наблюдения становится невозможным. Незнание ошибки, обусловленной избранной процедурой выборочного обследования, не позволяет исследователям оценить точность их оценок.

Нерепрезентативные (удобные) выборки

Нерепрезентативные (удобные) выборки порой именуются случайными, поскольку отбор элементов выборки осуществляется «случайным» образом — отбираются те элементы, которые являются или представляются наиболее доступными в период проведения отбора.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Наша повседневная жизнь изобилует примерами подобных выборок. Мы беседуем с приятелями и на основании их реакции и позиций делаем выводы касательно царящих в обществе политических пристрастий; местная радиостанция призывает людей выразить свое отношение к некоему спорному вопросу, выражаемое ими мнение интерпретируется как превалирующее; мы призываем к сотрудничеству добровольцев и работаем с теми, кто вызывается нам помочь. Проблема удобных выборок очевидна — мы не можем быть уверены в том, что выборки такого рода действительно представляют целевую совокупность. В том, что мнение наших приятелей правильно отражает политические взгляды, превалирующие в обществе, мы еще способны усомниться, но нам зачастую очень хочется верить в то, что выборки большего объема, отобранные подобным же образом, репрезентативны. Покажем ошибочность подобного допущения на примере.
Несколько лет назад одна из локальных телевизионных станций города, в котором живет автор этой книги, проводила ежедневный опрос общественного мнения по темам, представляющим интерес для местной общины. Опросы, носившие название «Пульс Мэдисона», проводились следующим образом. Каждый вечер во время шестичасовых новостей станция обращалась к зрителям с вопроcом, касающимся определенной спорной проблемы, на который необходимо было дать положительный или отрицательный ответ.

В случае положительного ответа надлежало звонить по одному, в случае отрицательного ответа — по другому номеру телефона. Количество голосов «за» и «против» подсчитывалось автоматически. В десятичасовом выпуске новостей сообщались результаты телефонного опроса. Каждый вечер на студию звонило от 500 до 1000 человек, желавших выразить свою позицию по тому или иному вопросу; телевизионный комментатор интерпретировал результаты опроса как господствующее в обществе мнение.

В одном из шестичасовых выпусков зрителям был предложен следующий вопрос: «Не считаете ли вы, что возрастной ценз на употребление алкоголя в Мэдисоне следует снизить до 18 лет?». Существовавший легальный ценз соответствовал 21 году. Аудитория отреагировала на этот вопрос необычайной активностью, — в этот вечер на студию позвонили почти 4000 человек, из которых за снижение возрастного ценза высказались 78%. Представляется очевидным, что выборка из 4000 человек «должна быть репрезентативной» для сообщества, состоящего из 180 000. Ничего подобного. Как вы уже, наверное, догадались, определенная возрастная группа населения была заинтересована в известном исходе голосования куда сильнее прочих. Соответственно, не было ничего удивительного в том, что при обсуждении этого вопроса, проходившем несколькими неделями позже, выяснилось, что во время, отведенное для опроса, студенты действовали согласованно. Они звонили на телевидение по очереди, причем каждый по несколько раз. Таким образом, ни размер выборки, ни процент поборников либерализации закона не явились чем-то удивительным. Выборка была нерепрезентативной.

Простое увеличение объема выборки не делает ее репрезентативной. Репрезентативность выборки обеспечивается не объемом, а надлежащей процедурой отбора элементов. Когда участники опроса определяются добровольно или элементы выборки отбираются в силу их доступности, план контроля выборки не дает гарантии ее представительности. Эмпирические данные свидетельствуют о том, что выборки, формирование которых определялось соображениями удобства, редко оказываются репрезентативными (вне зависимости от их размера). Телефонные опросы, при которых рассматривается 800-900 голосов, представляют собой наиболее распространенную форму больших, но нерепрезентативных выборок.

К сожалению, многие люди относятся к результатам подобных опросов с доверием. Один из самых характерных примеров использования нерепрезентативных выборок в международных маркетинговых исследованиях — обследование тех или иных стран на основе выборки, состоящей из иностранцев, проживающих в данный момент на территории страны, инициировавшей обследование (например скандинавов, живущих в США). Хотя подобные выборки и могут пролить какой-то свет на определенные аспекты рассматриваемой популяции, необходимо помнить, что эти индивиды обычно представляют «американизированную» элиту, связь которой с собственной страной может оказаться достаточно условной. Не рекомендуется использовать нерепрезентативные выборки при проведении описательных или каузальных обследований. Они допустимы лишь при поисковых исследованиях, имеющих целью отработку определенных идей или представлений, но даже и в этом случае предпочтительнее использовать преднамеренные выборки.

Преднамеренные выборки

Как уже говорилось, отличительной чертой преднамеренной выборки является направленный отбор ее элементов. В некоторых случаях элементы выборки отбираются не в силу их репрезентативности, но благодаря тому, что они могут предоставить исследователям интересующую их информацию. Когда суд руководствуется показаниями экспертизы, он, в известном смысле, прибегает к использованию преднамеренной выборки. Подобная же позиция может возобладать и при разработке исследовательских проектов. При первичной проработке вопроса исследователь заинтересован прежде всего в определении перспектив исследования, чем и обусловливается отбор элементов выборки.

Выборка по методу «снежного кома» является одним из типов преднамеренной выборки, используемым при работе с особыми видами популяций. Эта выборка зависит от умения исследователя задать начальное множество респондентов, обладающих нужными характеристиками. Затем эти респонденты используются в качестве информантов, определяющих дальнейший отбор индивидов.

Представьте, например, что компания хочет оценить потребность в неком изделии, которое позволило бы глухим людям общаться по телефону. Исследователи могут начать разработку этой проблемы с идентификации ключевых фигур в сообществе глухих; последние могли бы назвать имена других членов этой группы, которые согласились бы принять участие в обследовании. Выборка при подобной тактике растет подобно снежному кому.

* То есть рабочих. — Примеч. пер.

Квотные выборки

Третий тип детерминированной выборки — квотные выборки; известная ее представительность достигается включением в нее той же, что и в обследуемой популяции, доли элементов, обладающих определенными характеристиками (см. «Исследовательское окно 15.1»). В качестве примера вы можете рассмотреть попытку создания репрезентативной выборки студентов, проживающих на территории университета. Если в некой выборке, состоящей из 500 индивидов, не будет ни одного старшекурсника, мы будем вправе усомниться в ее репрезентативности и в правомерности применения полученных на этой выборке результатов к обследуемой совокупности. При работе с пропорциональной выборкой исследователь может проследить за тем, чтобы доля старшекурсников в выборке соответствовала их доле в общем количестве студентов.

Предположим, что исследователь проводит выборочное исследование студентов университета, при этом он заинтересован в том, чтобы выборка отражала не только их принадлежность к тому или иному полу, но и распределение их по курсам. Пусть общее число студентов составляет 10 000:3200 — первокурсники, 2600 — второкурсники, 2200 — студенты третьего курса и 2000 — студенты четвертого курса; из них 7000 юношей и 3000 девушек. Для выборки объемом 1000 человек план пропорционального выборочного контроля требует наличия 320 первокурсников, 260 второкурсников, 220 третьекурсников и 200 выпускников, 700 юношей и 300 девушек. Исследователь может реализовать этот план, наделив каждого интервьюера определенной квотой, которая будет определять, с какими студентами он должен контактировать.

Интервьюеру, которому надлежит провести 20 интервью, может быть дана инструкция опросить:

Заметьте, что отбор конкретных элементов выборки определяется не исследовательским планом, а выбором интервьюера, призванного соблюдать только те условия, которые были заданы квотой: опросить пятерых первокурсников, одну первокурсницу и т. д.

Заметьте также, что данная квота точно отображает половое распределение студенческой популяции, но несколько искажает распределение студентов по курсам; 70% (14 из 20) интервью приходится на долю юношей, но лишь 30% (6 из 20) на долю первокурсников, в то время как те составляют 32% от общего числа студентов. Квота, выделяемая каждому конкретному интервьюеру, может не отражать и обычно не отражает распределение контрольных характеристик в популяции — соответствующей пропорциональностью должна обладать только итоговая выборка.

Следует помнить о том, что пропорциональные выборки зависят скорее от личных, субъективных позиций или суждений, чем от объективной процедуры отбора элементов выборки. Причем, в отличие от преднамеренной выборки, личное суждение здесь принадлежит не разработчику проекта, а интервьюеру. Возникает вопрос, можно ли считать пропорциональные выборки репрезентативными, пусть они и воспроизводят присущее популяции соотношение составляющих, обладающих теми или иными контрольными характеристиками. В этой связи необходимо сделать три замечания.

Во-первых, выборка может разительно отличаться от популяции по каким-то иным важным характеристикам, что может оказать серьезное влияние на результат. Скажем, если исследование будет посвящено проблеме бытующих в студенческой среде расовых предрассудков, небезразличным обстоятельством может оказаться то, откуда прибыли опрашиваемые: из города или из сельской местности. Поскольку квота для характеристики «выходец из города/села» не была означена, точное отображение этой характеристики становятся маловероятным. Разумеется, существует такая альтернатива: определить квоты для всех потенциально значимых характеристик. Однако увеличение количества контрольных характеристик приводит к усложнению спецификации. Это, в свою очередь, затрудняет — а порой и делает невозможным — отбор элементов выборки и, уж во всяком случае, приводит к его удорожанию. Если, например, принадлежность к городскому или сельскому населению и социо-экономический статус также окажутся значимыми для исследования, то интервьюеру, возможно, придется зан5ггься поисками первокурсника, который был бы горожанином и принадлежал к высшему или к среднему классу. Согласрггесь, что найти просто первокурсника мужского пола куда как проще.

Во-вторых, убедиться в том, что данная выборка действительно является репрезентативной, весьма сложно. Разумеется, можно проверить выборку на предмет соответствия распределения характеристик, которые не входят в число контрольных, их распределению в популяции. Однако подобная проверка может приводить только к негативным выводам. Выявить можно разве что расхождение распределений. Если же распределения выборки и популяции для каждой из этих характеристик и повторяют друг друга, существует вероятность того, что выборка отличается от популяции по какому-то иному, не заданному явно признаку.

И наконец, в-третьих. Интервьюеры, будучи предоставленными самим себе, склонны к определенным действиям. Они слишком часто прибегают к опросу своих приятелей. Поскольку же те зачастую оказываются подобными самим интервьюерам, возникает опасность ошибки. Опытные данные, полученные в Англии, свидетельствуют о том, что квотные выборки имеют тенденцию к:

В зависимости от специфики изучаемой проблемы названные тенденции могут приводить к разного рода ошибкам, исправление же их на стадии анализа данных представляется весьма и весьма затруднительным. С другой стороны, при объективном отборе элементов выборки исследователи получают в свое распоряжение определенные средства, позволяющие упростить процедуру оценки репрезентативности данной выборки. При анализе проблемы репрезентативности таких выборок исследователь рассматривает не столько состав выборки, сколько процедуру отбора ее элементов.

Исследовательское окно: Блестяще! Но кто будет это читать?

Каждый год рекламодатели тратят миллионы долларов на рекламные объявления, помещаемые на страницах бесчисленных изданий — от «Advertising Age» до «Yankee». Определенная оценка текста и изображения может производиться до его опубликования, что называется, на дому, в рекламном агентстве; подлинные же его проверка и оценка происходят только после публикации рекламного объявления, окруженного дюжинами столь же тщательно подготовленных объявлений, борющихся за внимание читателя.

Компания Roper Starch Worldwide занимается оценкой читаемости рекламных объявлений, помещаемых в потребительских, деловых, отраслевых и профессиональных журналах и газетах. Результаты изысканий доводятся до сведения рекламодателей и агентств — разумеется, за соответствующую плату. Поскольку рекламодатели каждодневно пускаются во все тяжкие, пытаясь донести свою рекламу до потребителя, компания Starch решила составить выборку, которая давала бы подписчикам своевременную и точную информацию об эффективности рекламы. Каждый год компания Starch опрашивала более 50 000 человек, рассматривая при этом около 20 000 рекламных объявлений. Ежегодно изучалось порядка 500 отдельных изданий.

Компания Starch использовала пропорциональную выборку, минимальная численность которой составляла по 100 читателей одного и 100 читателей другого пола. Starch пришла к выводу, что при таком объеме выборки основные отклонения в уровне читаемости стабилизируются. Читатели старше 18 лет опрашивались лично, при этом речь шла обо всех публикациях, кроме тех, которые предназначались для особых групп населения (скажем, для оценки публикаций журнала «Seventeen» опрашивались девушки соответствующего возраста).

При проведении опросов учитывалась зона распространения того или иного издания. Скажем, при исследовании журнала «Los Angeles» рассматривались читатели, живущие в южной Калифорнии. «Time» изучался в масштабах страны. Опрос посвящался отдельным номерам журнала и проводился в 20-30 городах одновременно.

Каждому итервьюеру задавалась небольшая квота интервью, что служило цели минимизации отклонения результатов опроса. Опросные листы рапространялись среди людей разных специальностей и возрастов, имеющих различные доходы. Каждое подобное исследование давало возможность представить позиции достаточно широкой читательской аудитории. При рассмотрении ряда профессиональных, деловых и отраслевых изданий учитывалась также специфика их подписки и распространения. Подписные листы, посвященные изданиям, имеющим достаточно узкое распространение, позволяли отобрать приемлемых респондентов.

При каждом опросе итервьюеры просили респондентов просмотреть издание и спрашивали, обратили ли те внимание на какое-либо объявление. Если ответ был утвердительным, регистратор задавал еще целый ряд вопросов,позволяющих оценить степень восприятия рекламного объявления.

Оценка эта могла быть троякой:

После обследования всех объявлений интервьюеры регистрировали основные классификационные сведения: пол, возраст, занятия, семейное положение, национальность, доход, размер и состав семьи, что позволяло осуществить перекрестное табулирование степени читательского интереса.

При должном использовании данные компании Starch позволяют рекламодателям и агентствам определять как неудачные, так и удачные, привлекающие и удерживающие внимание читателя типы рекламных схем. Информация такого рода крайне ценна для рекламодателей, заинтересованных прежде всего в эффективности проводимой ими рекламной кампании.

Источник: «Roper Starch Worldwide», Mamaronek, NY 10543.

Вероятностные выборки

Исследователь может определить вероятность включения в вероятностную выборку любого элемента популяции, поскольку отбор ее элементов осуществляется на основе некоего объективного процесса и не зависит от прихотей и пристрастий исследователя или полевого работника. Поскольку процедура отбора элементов объективна, исследователь может оценить достоверность полученных результатов, что было невозможно в случае детерминированных выборок, сколь бы тщательным ни был отбор элементов последних.

Не следует думать, что вероятностные выборки всегда репрезентативнее детерминированных. На деле более репрезентативной может оказаться и детерминированная выборка. Преимущество вероятностных выборок состоит в том, что они позволяют оценить возможную ошибку выборочного обследования. Если же исследователь работает с детерминированной выборкой, он не имеет объективного метода оценки ее адекватности целям исследования.

Простая случайная выборка

Большинство людей так или иначе сталкивается с простыми случайными выборками либо в рамках курса статистики в институте, либо читая о результатах соответствующих исследований в газетах или журналах. В простой случайной выборке каждый элемент, включаемый в выборку, обладает одной и той же заданной вероятностью попадания в число исследуемых элементов и любая комбинация элементов исходной популяции может потенциально стать выборкой. Например, если мы захотим составить простую случайную выборку всех студентов, числящихся в определенном колледже, нам достаточно будет составить список всех студентов, присвоить каждой значащейся в нем фамилии свой номер и с помощью компьютера произвести случайный отбор заданного количества элементов.

Генеральная совокупность

Генеральной, или изучаемой, совокупностью называется совокупность, из которой производится отбор. Эта совокупность (популяция) может быть описана рядом определенных параметров, являющихся характеристиками генеральной совокупности, каждый из которых представляет собой определенный количественный показатель, отличающий одну совокупность от другой.

Представьте, что исследуемой генеральной совокупностью является все взрослое население Цинциннати. Для описания этой совокупности может быть использован ряд параметров: средний возраст, доля населения с высшим образованием, уровень доходов и т. д. Обратите внимание на то, что все эти показатели имеют определенное фиксированное значение. Разумеется, мы можем рассчитать их, проведя полную перепись изучаемой совокупности. Обычно же мы опираемся не на ценз, а на отбираемую нами выборку и используем полученные при выборочном наблюдении значения для определения искомых параметров совокупности.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Проиллюстрируем сказанное приведенным в табл. 15.1 примером гипотетической совокупности, состоящей из 20 человек. Работа с небольшой гипотетической совокупностью, подобной этой, имеет ряд преимуществ. Во-первых, небольшой объем выборки дает возможность легко вычислить параметры совокупности, которые могут использоваться для ее описания. Во-вторых, этот объем позволяет понять, что может произойти при принятии того или иного плана выборочного контроля. Обе эти особенности делают простым сравнение результатов выборки с «истинным» и в данном случае известным значением совокупности, чего нельзя сказать о типичной ситуации, при которой действительное значение совокупности неизвестно. Сравнение оценки с «истинным» значением приобретает в этом случае особую наглядность.

Предположим, мы хотим оценить по двум случайно выбранным элементам средний доход лиц, входящих в исходную совокупность. Средний доход будет ее параметром. Для оценки этого среднего значения, обозначаемого нами как μ, мы должны разделить сумму всех значений на их количество:

Среднее по совокупности μ = Сумма элементов совокупности / Количество элементов.

В нашем случае вычисления дают:

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Производная совокупность

Производная совокупность состоит из всех возможных выборок, которые могут быть выделены из генеральной совокупности по заданному плану выборочного контроля (плану выборки). Статистика — это характеристика, или показатель, выборки. Значение статистики выборки используют для оценки определенного параметра совокупности. Различные выборки дают различные статистики или оценки одного и того же параметра совокупности.

Рассмотрим производную совокупность всех возможных выборок, которые могут быть выделены из нашей гипотетической генеральной совокупности, состоящей из 20 индивидов, по плану выборочного контроля, предполагающему, что выборка объемом n = 2 может быть получена путем случайного бесповторного отбора.

Предположим на время, что данные по каждой единице совокупности — в нашем случае это имя и доход индивида — записываются на кружки, после чего они опускаются в кувшин и перемешиваются. Исследователь извлекает из кувшина один кружок, списывает с него информацию и откладывает его в сторону. То же самое он делает и со вторым кружком, извлекаемым из кувшина. Затем исследователь возвращает оба кружка в кувшин, перемешивает его содержимое и повторяет ту же последовательность действий. В табл. 15.2 показаны возможные исходы названной процедуры. Для 20 кружков возможны 190 таких парных комбинаций.

Для каждой комбинации можно вычислить среднюю величину дохода. Скажем, для выборки АВ (k= 1)

k-e выборочное среднее = Сумма элементов выборки / Количество элементов выборки = Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

На рис. 15.4 показаны оценка среднего дохода по всей генеральной совокупности и величина ошибки для каждой оценки для выборок k = 25, 62,108,147 и 189.

Прежде чем приступать к рассмотрению зависимости между выборочным средним доходом (статистикой) и средним доходом по совокупности (параметром, требующим оценки), скажем несколько слов о производной совокупности. Во-первых, на практике мы не занимаемся составлением совокупностей такого рода. Это потребовало бы слишком большой траты времени и сил. Практик ограничивается составлением всего одной выборки нужного объема. Исследователь же пользуется концепцией производной совокупности и связанным с ней понятием выборочного распределения при формулировании итоговых выводов.

Как — будет показано далее. Во-вторых, следует помнить о том, что производная совокупность определяется как совокупность всех возможных различных выборок, которые могут быть выделены из генеральной совокупности по заданному плану выборочного контроля. При изменении любой части плана выборочного контроля производная совокупность также изменяется. Так, если при выборе кружков исследователь будет возвращать в кувшин первый из вынимаемых дисков прежде, чем вынуть второй, производная совокупность будет включать.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

выборки АА, ВВ и т. д. Если объем бесповторных выборок будет равен 3, а не 2, появятся выборки типа ABC, причем их будет 1140, а не 190, как это было в предыдущем случае. При изменении простого случайного отбора на любой иной метод определения элементов выборки производная популяция также изменяется.

Следует помнить и о том, что отбор выборки заданного объема из генеральной совокупности равносилен выбору одного элемента (1 из 190) из производной популяции. Этот факт позволяет делать много статистических выводов.

Выборочное среднее и генеральное среднее

Вправе ли мы приравнивать выборочное среднее к значению истинного среднего генеральной совокупности? В любом случае мы исходим из того, что они взаимосвязаны. Однако мы также полагаем, что будет иметь место ошибка. Например, можно полагать, что информация, полученная от пользователей Интернета, будет существенно отличаться от результатов опроса «обычного» населения. В других случаях можно предполагать достаточно точное соответствие, иначе мы не смогли бы использовать выборочное значение для оценки значения генерального. Но сколь большой может быть совершаемая нами при этом ошибка?

Давайте сложим все выборочные средние, содержащиеся в табл. 15.2, и разделим полученную сумму на количество выборок, т. е. давайте усредним средние.
Нами будет получен следующий результат:

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Он совпадает со средним значением генеральной совокупности. Говорят, что в таком случае мы имеем дело с несмещенной статистикой.

Статистика называется несмещенной, если ее среднее значение по всем возможным выборкам оказывается равным оцениваемому параметру генеральной совокупности. Заметьте, что речь здесь не идет о некоем частном значении. Частная оценка может быть весьма далека от истинного значения — возьмите, к примеру, выборки АВ или ST. В некоторых случаях истинное значение генеральной совокупности может оказаться недостижимым при рассмотрении любой возможной выборки, пусть статистика и будет при этом несмещенной. В нашем случае это не так: целый ряд возможных выборок — например AT — дает выборочное среднее, равное истинному среднему генеральной совокупности.

Имеет смысл рассмотреть распределение этих выборочных оценок, и в особенности зависимость между этим разбросом оценок и вариацией уровня доходов в генеральной совокупности. В качестве меры вариации используют дисперсию генеральной совокупности. Для определения дисперсии генеральной совокупности мы должны вычислить отклонение каждой величины от среднего значения, сложить квадраты всех отклонений и разделить полученную сумму на количество слагаемых. Обозначим а^ дисперсию генеральной совокупности. Тогда:

Дисперсия совокупности σ 2 = Сумма квадратов разностей каждого элемента
совокупности и среднего по совокупности / Число элементов совокупности =
Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Дисперсия среднего значения уровня доходов может быть определена таким же образом. То есть мы можем найти ее, определив отклонения каждого среднего от их общего среднего, суммировав квадраты отклонений и разделив полученную сумму на количество слагаемых.

Мы можем определить дисперсию среднего значения уровня доходов и иным образом, используя для этого дисперсию значений уровня доходов в генеральной совокупности, поскольку между двумя этими величинами существует прямая связь. Если быть точным, в тех случаях, когда выборка представляет лишь малую часть генеральной совокупности, дисперсия выборочного среднего равняется дисперсии генеральной совокупности, поделенной на объем выборки:

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

где σ x 2 — дисперсия среднего выборочного значения уровня доходов, σ 2 — дисперсия уровня доходов в генеральной совокупности, n — объем выборки.

Теперь сравним распределение результатов с распределением количественного признака в генеральной совокупности. Рисунок 15.5 демонстрирует, что распределение количественного признака в генеральной совокупности, показанное на поле A, является многовершинным (каждое из 20 значений появляется только раз) и симметричным относительно истинного среднего генеральной совокупности, равного 9400.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Распределение оценок, показанное на поле В, основывается на данных табл. 15.3, которая, в свою очередь, составлялась путем отнесения значений из табл. 15.2 к той или иной группе в зависимости от их величины с последующим подсчетом их количества в группе. Поле В — традиционная гистограмма, рассматриваемая в самом начале изучения курса статистики, которая представляет выборочное распределение статистики. Заметим попутно следующее: понятие выборочного распределения является наиважнейшим понятием статистики, это краеугольный камень построения статистических выводов. По известному выборочному распределению исследуемой статистики можно сделать вывод о соответствующем параметре генеральной совокупности. Если же известно только то, что выборочная оценка изменяется от выборки к выборке, но сам характер этого изменения неизвестен, определение ошибки выборочного обследования, связанного с этой оценкой, становится невозможным. Поскольку выборочное распределение оценки описывает ее изменение от выборки к выборке, оно обеспечивает основу для определения достоверности выборочной оценки. Именно по этой причине план вероятностной выборки столь важен для статистического вывода.

По известным вероятностям включения в выборку каждого элемента совокупности интервьюеры могут найти выборочное распределение различных статистик. Исследователи опираются именно на эти распределения — будь это выборочное среднее, доля выборки, выборочная дисперсия или какая-то иная статистика — при распространении результата выборочного наблюдения на генеральную совокупность. Заметьте также, что для выборок с объемом 2 распределение выборочных средних является одновершинным и симметричным относительно истинного среднего.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Итак, мы показали, что:

Центральная предельная теорема

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Приближение это становится все более точным по мере роста n. Помните об этом. Вне зависимости от вида генеральной совокупности распределение выборочных средних будет нормальным для выборок достаточно большого объема. Что же следует понимать под достаточно большим объемом? Если распределение значений количественного признака генеральной совокупности является нормальным, тогда нормальным будет и распределение выборочных средних для выборок объемом n=1. Если распределение переменной (количественного признака) в совокупности симметрично, но ненормально, выборки весьма малого объема дадут нормальное распределение выборочных средних. Если же распределение количественного признака генеральной совокупности имеет выраженную асимметрию, возникает потребность в выборках большего объема. И все-таки распределение выборочного среднего может быть принято нормальным только в тех случаях, когда мы имеем дело с выборкой достаточного объема.

Для того чтобы строить заключения, используя нормальную кривую, вовсе не обязательно исходить из условия нормальности распределения значений количественного признака генеральной совокупности. Мы, скорее, опираемся на центральную предельную теорему и в зависимости от популяционного распределения определяем такой объем выборки, который позволял бы работать с нормальной кривой. К счастью, нормальное распределение статистики обеспечивается выборками сравнительно небольшого объема — рис. 15.6 наглядно демонстрирует это обстоятельство. Оценки доверительного интервала. Может ли сказанное выше помочь нам при принятии определенных заключений о генеральном среднем? Ведь на практике мы производим отбор только одной, а не всех возможных выборок заданного объема, и на основе полученных данных делаем определенные заключения, касающиеся целевой группы.

Как же это происходит? Как известно, при нормальном распределении некий процент всех наблюдений имеет определенное среднеквадратическое отклонение; скажем, 95% наблюдений укладывается в ±1,96 среднеквадратических отклонений среднего. Нормальное распределение выборочных средних, к которому может быть приложена центральная предельная теорема, в этом смысле не является исключением. Среднее такого выборочного распределения равно генеральному среднему μ, а его среднеквадратическое отклонение носит название среднеквадратической ошибки среднего:

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

т. е. определенная доля выборочных средних в зависимости от выбранной величины z будет заключена в интервале Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки, определяемом величиной z. Это выражение может быть переписано в виде неравенства:

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

и потому для ее определения нам необходимо задаться среднеквадратическим отклонением количественного признака генеральной совокупности, т. е. 5. Что же делать в тех случаях, когда среднеквадратическое отклонение s неизвестно? Такая проблема не возникает по двум причинам. Во-первых, обычно для большинства количественных признаков, используемых в маркетинговых исследованиях, вариация изменяется куда медленнее уровня большинства интересующих маркетолога переменных. Соответственно, если исследование проводится повторно, мы можем использовать при расчетах прежнее, ранее полученное значение s. Во-вторых, коль скоро сформирована выборка и получены данные, мы можем оценить дисперсию генеральной совокупности, определив выборочную дисперсию. Дисперсия несмещенной выборки определяется как:

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Соответственно, ŝ = 283, а Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

и 95%-й интервал теперь

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

что меньше прежнего значения.

В табл. 15.5 сведены расчетные формулы для различных средних и дисперсий, о которых говорилось в настоящей главе. Формирование простой случайной выборки. В нашем примере отбор элементов выборки осуществлялся с помощью кувшина, в котором находились все элементы исходной совокупности. Это позволило нам наглядно представить понятия производной совокупности и выборочного распределения. Применять же подобный метод на практике мы не рекомендуем, ибо при этом повышается вероятность ошибки. Кружки могут отличаться и размерами, и фактурой, что в известных случаях может приводить к предпочтению одних другим. Отбор участников вьетнамской кампании, осуществлявшийся при помощи лотереи, может служить примером ошибки подобного рода.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Отбор осуществлялся путем вытягивания дисков с датами рождения из большого барабана. Телевидение транслировало эту процедуру на всю страну. К несчастью, диски загружались в барабан систематическим образом: первыми шли январские, последними — декабрьские даты. Хотя барабан и подвергался интенсивному раскручиванию, декабрьские даты выпадали куда чаще январских. Впоследствии процедура эта была пересмотрена таким образом, что вероятность подобных систематических ошибок была существенно снижена. Предпочтительный метод формирования простой случайной выборки основан на использовании таблицы случайных чисел.

Использование такой таблицы предполагает следующую последовательность шагов. Во-первых, элементам генеральной совокупности должны быть присвоены последовательные номера от 1 до N; в нашей гипотетической совокупности элементу А будет присвоен номер 1, элементу B — номер 2 и т. д. Во-вторых, количество разрядов таблицы случайных чисел должно быть таким же, как у номера N. Для N= 20 будут использоваться двузначные числа; для N между 100 и 999 — трехзначные числа и т. д. В-третьих, начальная позиция должна определяться случайным образом. Мы можем раскрыть соответствующую таблицу случайных чисел и, закрыв глаза, что называется, ткнуть в нее пальцем. Поскольку числа в таблице случайных чисел следуют в случайном порядке, начальная позиция не имеет особого значения.

И наконец, мы можем двигаться в любом произвольно выбранном направлении — вверх, вниз или поперек, отбирая те элементы, номера которых будут соответствовать случайным числам из таблицы. Для того чтобы проиллюстрировать сказанное, рассмотрим сокращенную таблицу случайных чисел (табл. 15.6). Поскольку N = 20, мы должны работать только с двузначными числами. В этом смысле табл. 15.6 устраивает нас как нельзя лучше. Пусть мы заранее решили двигаться вниз по столбцу, начальная же позиция находится на пересечении одиннадцатой строки и четвертого столбца, где находится число 77. Это число слишком велико, и поэтому должно быть отброшено. Следующие два числа также будут отброшены, четвертое же значение 02 будет использовано, поскольку 2 соответствует номеру элемента В.

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Что означает проектирование выборки. Смотреть фото Что означает проектирование выборки. Смотреть картинку Что означает проектирование выборки. Картинка про Что означает проектирование выборки. Фото Что означает проектирование выборки

Следующие пять чисел также будут отброшены как слишком большие, в то время как номер 05 укажет на элемент Е. Таким образом, элементы В и Е станут нашей двухэлементной выборкой, по которой мы и будем судить об уровне доходов данной совокупности. Возможна и альтернативная стратегия, при которой в качестве основы для отбора будет использована компьютерная программа, генерирующая случайные числа. Появившиеся в последнее время публикации свидетельствуют о том, что числа, генерированные подобными программами, не вполне случайны, что может определенным образом проявляться при построении сложных математических моделей, однако их можно использовать для большинства прикладных маркетинговых исследований. Заметим еще раз, что простая случайная выборка требует составления последовательного нумерованного списка элементов генеральной совокупности.

Иными словами, каждый член исходной совокупности должен быть идентифицирован. Для некоторых совокупностей сделать это не составляет труда, например при исследовании 500 крупнейших американских корпораций, список которых приведен в журнале «Fortune». Список этот уже составлен, поэтому формирование простой случайной выборки в данном случае не составит труда. Для иных же исходных совокупностей (например, для всех семей, живущих в определенном городе) составление общего списка крайне затруднительно, что заставляет исследователей прибегать к иным схемам выборочного обследования.

Резюме

Учебная цель 1
Ясно различать понятия переписи (ценза) и выборки

Полная перепись совокупности (популяции) называется цензом. Выборка совокупности, сформированная из отобранных элементов.

Учебная цель 2
Знать сущность и последовательность шести этапов, реализуемых исследователями для получения выборочной совокупности

Процесс формирования выборки делится на шесть этапов:

Учебная цель 3
Определить понятие «основа выборки»

Основа выборки — перечень элементов, из которых будет производиться выборка.

Учебная цель 4
Объяснить, в чем состоит отличие вероятностной и детерминированной выборки

В вероятностную выборку каждый член совокупности может включаться с некой заданной ненулевой вероятностью. Вероятности включения в выборку тех или иных членов совокупности могут отличаться друг от друга, но вероятность включения в нее каждого элемента известна. Для детерминированных выборок оценка вероятности включения любого элемента в выборку становится невозможной. Гарантировать репрезентативность такой выборки нельзя. Все детерминированные выборки основаны, скорее, на частной позиции, суждении или предпочтении. Подобные предпочтения порой могут давать хорошие оценки характеристик совокупности, однако не существует способа объективного определения соответствия выборки поставленной задаче.

Учебная цель 5
Различать выборку фиксированного объема и многоступенчатые (последовательные) выборки

При работе с выборками фиксированного объема объем выборки определяется до начала обследования и анализу результатов предшествует сбор всех потребных данных. В последовательной выборке количество отбираемых элементов заранее неизвестно, оно определяется на основании серии последовательных решений.

Учебная цель 6
Объяснить, что представляет собой преднамеренная выборка, и описать как сильные, так и слабые ее стороны

Элементы преднамеренной выборки отбираются вручную, они представляются исследователю отвечающими целям обследования. Предполагается, что отбираемые элементы могут дать полноценное представление об изучаемой популяции. Пока исследователь находится на начальных этапах проработки проблемы, когда определяются перспективы и возможные ограничения планируемого обследования, использование преднамеренной выборки может бьпъ очень эффективным. Но ни в коем случае нельзя забывать о слабых сторонах выборки этого типа, поскольку она же может быть использована исследователем и при описательных или при каузальных исследованиях, что не замедлит сказаться на качестве их результатов.

Учебная цель 7
Определить понятие квотной выборки

Пропорциональная выборка отбирается таким образом, что доля элементов выборки, обладающих определенными характеристиками, примерно соответствует доле таких же элементов в обследуемой популяции; для этого каждому счетчику задается квота, определяющая характеристики населения, с которым он должен контактировать.

Учебная цель 8
Объяснить, чем является параметр в процедуре выборки

Параметр — определенная характеристика или показатель генеральной или изучаемой совокупности; определенный количественный показатель, отличающий одну совокупность от другой.

Учебная цель 9
Объяснить, что такое производная совокупность

Производная совокупность состоит из всех возможных выборок, которые могут быть выделены из генеральной совокупности по заданному плану выборочного контроля.

Учебная цель 10
Объяснить, почему понятие выборочного распределения является важнейшим понятием статистики.

Понятие выборочного распределения — это краеугольный камень построения статистических выводов. По известному выборочному распределению исследуемой статистики можно сделать вывод о соответствующем параметре генеральной совокупности. Если же известно только то, что выборочная оценка изменяется от выборки к выборке, но сам характер этого изменения неизвестен, определение ошибки выборочного обследования, связанного с этой оценкой, становится невозможным. Поскольку выборочное распределение оценки описывает ее изменение от выборки к выборке, оно обеспечивает основу для определения достоверности выборочной оценки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *