Что означает разложить на множители
Разложение квадратного трёхчлена на множители
Как разложить на множители квадратный трёхчлен
В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:
Левая часть этого уравнения является квадратным трёхчленом.
Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.
Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:
Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:
Где левая часть — исходный квадратный трёхчлен.
Пример 1. Разложить на множители следующий квадратный трёхчлен:
Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:
В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:
Если a равно единице (как в данном примере), то решение можно записать покороче:
Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.
Пример 2. Разложить на множители следующий квадратный трёхчлен:
Приравняем данный квадратный трёхчлен к нулю и решим уравнение:
Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:
Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24
Как это работает
Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.
Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:
Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:
Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:
Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c
Раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Далее замечаем, что выражение ( x − x1 ) является общим множителем. Вынесем его за скобки:
Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.
Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a
Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a
Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:
Скобки внутри скобок можно раскрыть. Тогда получим следующее:
При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)
Примеры разложений
Пример 1. Разложить на множители следующий квадратный трёхчлен:
Найдём корни квадратного трёхчлена:
Во вторых скобках можно заменить вычитание сложением:
Пример 2. Разложить на множители следующий квадратный трёхчлен:
Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3
Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:
Пример 3. Разложить на множители следующий квадратный трёхчлен:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби
Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2
Пример 5. Разложить на множители следующий квадратный трёхчлен:
Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится
. То есть коэффициент a станет равным
Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:
Найдём корни квадратного трёхчлена:
Воспользуемся формулой разложения:
Задания для самостоятельного решения
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Разложение многочленов на множители с примерами решения
Содержание:
Разложение многочленов на множители
Разложение многочленов на множители — операция, об-I ратная умножению многочленов. Как вы уже знаете, решая разные задачи, иногда умножают два или более чисел, а иногда — раскладывают данное число на множители. Подобные задачи возникают и при преобразовании целых алгебраических выражений. В этой главе вы узнаете о:
Вынесение общего множителя за скобки
Вы уже умеете раскладывать на множители натуральные числа. Например,
На множители раскладывают и многочлены. Разложить многочлен на множители — это означает заменить его произведением нескольких многочленов, тождественным данному многочлену. Например, многочлен
Один из способов разложения многочленов на множители — вынесение общего множителя за скобки. Рассмотрим его.
Каждый член многочлена ах + ау имеет общий множитель а. На основании распределительного закона умножения Это означает, что данный многочлен ах + ау разложен на два множителя:
Чтобы убедиться, правильно ли разложен многочлен на множители, нужно выполнить умножение полученных множителей. Если всё верно, то в результате должен получиться данный многочлен.
Один и тот же многочлен можно разложить на множители по-разному. Например,
Как правило, стараются вынести за скобки такой общий множитель, чтобы в скобках осталось простейшее выражение. Поэтому чаще всего в качестве коэффициента общего множителя берут наибольший общий делитель (НОД) коэффициентов всех членов данного многочлена или их модулей. Но не всегда. Все зависит от того, с какой целью раскладывают на множители многочлен.
Пусть, например, надо найти значение выражения при условии, когда
Чтобы использовать условие, это упражнение можно решить так:
Здесь вынесено за скобки не , а
тогда в скобках имеем выражение, значение которого известно из условия.
Пример:
Разложите на множители многочлен
Решение:
или
Пример:
Разложите на множители многочлен
Решение:
Пример:
Докажите, что число делится на 20.
Последнее произведение делится на 20, поэтому делится на 20 и данная сумма.
Пример:
Решите уравнение
Решение:
поэтому данное уравнение равносильно уравнению
Произведение двух чисел равно нулю тогда, когда хотя бы одно из них равно нулю.
Ответ. Уравнение имеет два корня: 0 и 0,2.
Способ группировки
Разложим на множители многочлен Сгруппируем его члены так, чтобы слагаемые в каждой группе имели общий множитель
Вынесем из первой группы за скобки общий множитель а, из второй — общий множитель х, получим выражение
Слагаемые этого выражения имеют общий множитель b + с, вынесем его за скобки, получим выражение
Указанные преобразования можно записать цепочкой:
Такой способ разложения многочленов на множители называют способом группировки.
Замечание. Раскладывая на множители представленный выше многочлен, можно сгруппировать его члены иначе:
Получили такой же результат.
Разложим на множители многочлен
Записывать сумму а + с в виде 1 (а + с) необязательно, но сначала, чтобы не допускать ошибок, можно писать и так.
Чтобы воспользоваться способом группировки, иногда приходится один член данного многочлена представлять в виде суммы или разности одночленов. Чтобы разложить на множители трёхчлен • запишем одночлен
Подобные преобразования также можно выполнять, используя тождества.
Пример:
Разложите на множители многочлен:
Решение:
Ответ.
Пример:
Решите уравнение:
Решение:
Разложим левую часть уравнения на множители:
Корнем первого уравнения является у = 1,5, а второе уравнение корней не имеет, так как
Квадрат двучлена
Решая различные задачи, часто приходится умножать двучлены вида Чтобы в таких случаях можно было сразу написать ответ, полезно запомнить тождества, которые называют формулами сокращённого умножения. Рассмотрим некоторые из них.
Умножим двучлен
Следовательно,
Квадрат двучлена равен квадрату первого его члена плюс удвоенное произведение первого на второй плюс квадрат второго члена.
Доказанное равенство — тождество, его называют формулой квадрата двучлена. Пользуясь ею, можно сразу записать:
Промежуточные преобразования желательно выполнять устно, тем самым сокращается запись:
По формуле квадрата двучлена можно возводить в квадрат любые двучлены, в том числе
Формулы квадрата двучлена используют и в «обратном направлении»:
Формулу часто называют формулой квадрата суммы двух выражений,
— квадрата разности двух выражений.
Для положительных чисел а и b формулу
можно доказать геометрически, как показано на рисунке 44. Так её доказывали ещё древние греки. Ведь площадь квадрата со стороной а + b равна сумме площадей квадратов
а также прямоугольников ab и ab.
Существуют и другие формулы сокращённого умножения:
Пример:
Возведите в квадрат двучлен
Решение:
Пример:
Упростите выражение
Решение:
Пример:
Представьте в виде многочлена выражение:
Решение:
Пример:
Представьте выражение в виде степени двучлена:
Решение:
Разность квадратов
Умножим сумму переменных а и b на их разность.
Значит,
Это равенство — тождество. Словами его читают так:
Произведение суммы двух выражений и их разности равно разности квадратов этих выражений.
Пользуясь доказанной формулой, можно сразу записать:
Левую и правую части доказанной формулы можно поменять местами. Получим формулу разности квадратов двух выражений:
Разность квадратов двух выражений равна произведению их суммы и разности.
Пример:
Формула разности квадратов очень удобна для разложения многочленов на множители.
Для положительных чисел а и b формулу можно проиллюстрировать геометрически (рис. 46). Но это тождество верно не только для положительных чисел, но и для любых других чисел и выражений.
Истинность формулы разности квадратов следует из правила умножения многочленов, а это правило — из законов действий сложения и умножения. Законы сложения и умножения чисел — это своеобразные аксиомы, следствиями которых являются алгебраические тождества.
Пример:
Напишите разность квадратов и квадрат разности выражений
Решение:
— разность квадратов;
— квадрат разности данных выражений.
Пример:
Запишите в виде произведения двух двучленов выражение:
Решение:
Пример:
Представьте в виде двучлена выражение:
Решение:
.
Используя формулу разности квадратов, промежуточные вычисления и преобразования можно выполнять устно, а записывать лишь конечный результат.
Использование формул сокращённого умножения
С помощью формул сокращённого умножения некоторые многочлены можно разложить на множители. Например, двучлен можно представить в виде произведения по формуле разности квадратов:
Примеры:
Трёхчлены раскладывают на множители по формуле квадрата двучлена:
Примеры:
Полученные, выражения можно разложить на множители и записать так:
Многочлен можно разложить на множители по формуле куба двучлена:
Раскладывать на множители можно не только многочлены, но и некоторые другие целые выражения.
Например, — не многочлены, но и их можно представить в виде произведений многочленов:
Пример:
Разложите на множители многочлен:
Решение:
Пример:
Решите уравнение
Решение:
Значит, данное уравнение равносильно такому:
Пример:
Разложите на множители многочлен:
Решение:
Разность и сумма кубов
Выполним умножение многочленов
Следовательно, при любых значениях а и b
Трёхчлен называют неполным квадратом суммы выражений а и b (от
он отличается только коэффициентом среднего члена). Поэтому доказанную формулу словами читают так:
разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы.
Выполним умножение многочленов
Трёхчлен называют неполным квадратом разности выражений а и b. Поэтому полученную формулу читаю так:
сумма кубов двух выражений равна произведению суммы этих выражений и неполного квадрата их разности.
С помощью доказанных формул можно раскладывать на множители многочлены, являющиеся разностями или суммами кубов.
Примеры:
Формулу «разность кубов» для положительных значений а и b можно проиллюстрировать геометрически, как показано на рисунке 49.
Можно доказать, что для каждого натурального значения n истинна формула:
Формулы «разность квадратов» и «разность кубов» — простейшие случаи этой общей формулы.
Пример:
Разложите на множители двучлен:
Решение:
Пример:
Найдите произведение многочленов: •
Решение:
Первый способ. По формуле суммы кубов:
Второй способ. По правилу умножения многочленов:
Применение разных способов разложения многочленов на множители
Чтобы разложить многочлен на множители, иногда приходится применять несколько способов.
Пример:
Разложите на множители многочлен
Решение:
Сначала за скобки вынесен общий множитель а, потом выражение в скобках разложено на множители по формуле разности квадратов.
Пример:
Разложите на множители выражение
Решение:
Здесь применены способ группировки, вынесение общего множителя за скобки и формула суммы кубов.
Чтобы разложить на множители более сложные многочлены, приходится применять несколько известных способов или искусственные приёмы.
В этом случае можно использовать такое правило-ориентир:
Иногда удаётся разложить многочлен на множители, прибавляя и вычитая из него одно и то же выражение.
Пример:
Разложите на множители двучлен
Решение:
Прибавим к данному двучлену выражение
Пример:
Разложите на множители выражение
Решение:
Пример:
Представьте многочлен в виде разности квадратов двух многочленов.
Решение:
Пример:
Докажите, что число делится на 31.
Последнее произведение делится на 31, поэтому делится на 31 и равное ему данное числовое выражение.
Исторические сведения:
Наибольший вклад в развитие алгебраической символики внёс известный французский математик Ф. Виет, которого называли «отцом алгебры ». Он часто использовал буквенные обозначения. Вместо писал соответственно N,Q,C — первые буквы латинских слов Numerus (число), Quadratus (квадрат), Cubus (куб). Уравнение
Ф. Виет записывал так:
Степени чисел продолжительное время не имели специальных обозначений, четвёртую степень числа а записывали в виде произведения аааа. Позднее такое произведение начали записывать . Записи
предложил Р. Декарт.
Формулы сокращённого умножения древним китайским и греческим математикам были известны за много веков до начала нашей эры. Записывали их тогда не с помощью букв, а словами и доказывали геометрически (только для положительных чисел). Пользуясь рисунком, объясняли, что для любых чисел а и b площадь квадрата со стороной а + b равна сумме площадей двух квадратов со сторонами а и b к двух прямоугольников со сторонами а, b. Итак, Подобным способом обосновали и другие равенства, которые. мы теперь называем формулами сокращённого умножения.
В учебнике рассмотрены простейшие формулы сокращённого умножения.
Формулы квадрата и куба двучлена — простейшие случаи общей формулы бинома Ньютона:
Напомню:
Разложить многочлен на множители — это означает заменить его произведением нескольких многочленов, тождественным данному многочлену.
Простейшие способы разложения многочленов на множители:
Примеры:
Формулы сокращённого умножения
Разложение многочленов на множители — это преобразование, обратное умножению многочленов. Схематично эти две операции можно изобразить, например, так.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.