Что означает замыкание на плюс
Как найти обрыв и короткое замыкание в проводке автомобиля
Электрическая сеть (электропроводка) современных автомобилей является однопроводной, вторым проводником служит «масса» — кузов машины и двигатель. В ходе эксплуатации автомобиля можно столкнуться с некоторыми неисправностями проводки (например, короткое замыкание или обрыв). Далее рассмотрим инструкцию, как их найти самому.
Все электрические цепи (кроме силовых цепей стартера и генератора) защищены плавкими предохранителями. А цепи питания мощных потребителей электроэнергии (фары, стеклоподъемники, обогревы зеркал или сидений и т.д.) коммутируются через реле. Поэтому начинать поиск неисправности электропроводки стоит в такой последовательности:
1) если не работает осветительный прибор (например, фара или плафон освещения), то сначала проверяем не перегорела ли лампа;
2) проверить исправность предохранителя;
3) проверить исправность реле;
4) проверить надежность контактов в разъемах цепи (они могут окисляться, в этом случае их нужно зачистить).
Также рекомендуется проверить все точки крепления «массы».
Для поиска короткого замыкания или обрыва проводки можно использовать прибор «мультиметр».
Если нужно определить только наличие или отсутствие напряжения на участке цепи, то можно использовать специальный световой индикатор 12 В. Также подойдет контрольная лампа, которую можно сделать своими руками. Для этого к автомобильной лампе (не более 4 Вт) следует припаять два провода длиной не менее 50 см.
Как найти обрыв проводки в автомобиле.
При обрыве электрическая цепь размыкается. Часто причиной отсутствия напряжения является плохой контакт в разъеме цепи. Корпус колодки скрывает окислившиеся контакты, поэтому поиск неисправности может занимать длительное время. Обрыв может обнаружиться при покачивании колодок или проводов.
Чтобы найти обрыв в проверке нужно выставить мультиметр в режиме омметра или прозвонки. Выводы прибора подсоединяем к концам проверяемой цепи:
1) Если обрыва нет — мультиметр подаст звуковой сигнал (в режиме прозвонки) или сопротивление будет минимальным (в режиме омметра).
2) Если в проводке обрыв — звукового сигнала не будет (в режиме прозвонки), а сопротивление будет очень большим (в режиме омметра).
Как найти короткое замыкание в проводке автомобиля.
Короткое замыкание — это недопустимое соединение части цепи с «массой» или другой частью цепи. Часто причиной короткого замыкания бывает сильное окисление контактов в колодке, либо повреждение изоляции проводов. Если после замены неисправного предохранителя он снова перегорает, вероятно, в электропроводке есть короткое замыкание.
Чтобы найти короткое замыкание следует отсоединить проверяемый участок электропроводки от остальной проводки автомобиля. Мультиметр устанавливаем в режим прозвонки. Один щуп прибора подсоединяем к участку цепи, а другой — к кузову («массе»).
1) Если короткого замыкания на участке цепи нет — прибор не будет подавать звуковых сигналов.
2) Если есть короткое замыкание — мультиметр подаст звуковой сигнал (цепь окажется замкнутой).
Осматриваем весь участок цепи на наличие повреждений.
Технологическая инструкция АВТОВАЗа 🙂
Ниже представлены общие методы проверки целостности электрических цепей, проверки на наличие замыканий с использованием омметра и вольтметра.
Проверка целостности электрической цепи.
Потеря целостности электрической цепи может быть вызвана следующими причинами:
1) отсоединение колодки жгута;
2) слабое соединение колодки жгута;
3) загрязнение, окисление, коррозия контактов;
4) деформация контактов;
5) повреждение провода.
Проверку целостности цепи выполнять в следующей последовательности:
1) Отключить клемму провода «массы» от аккумуляторной батареи.
2) Визуально проверить, что колодки жгута подключены с обеих сторон электрической цепи, замки фиксаторов защелкнуты.
3) Разъединить колодки, проверить визуально контакты на наличие грязи, коррозии, деформации.
4) Подергивая за провода рядом с колодкой, убедиться, что провод и клемма крепко обжаты, что клемма зафиксирована внутри колодки.
5) С помощью щупа заданного диаметра и длины, соответствующего размеру контакта в ответной колодке, убедиться, что клеммы жгутовых колодок обеспечивают надежное соединение (клеммы не утоплены в колодке, щуп плотно входит в клемму).
6) С помощью омметра измерить сопротивление цепи между колодками. Сопротивление исправной цепи должно быть менее 1 Ом. Чтобы избежать повреждения клемм, для измерений допускается использовать щупы заданного диаметра, соответствующие размеру контактов в ответных колодках.
Проверка замыкания цепи на «массу»
Проверку выполнять в следующей последовательности:
1) Разъединить колодки с обеих сторон электрической цепи.
2) Пробник, одним концом соединенный с «+» аккумуляторной батареи, подключить к клемме проверяемой цепи. Если пробник светится, значит, проверяемая цепь замкнута на «массу».
Чтобы избежать повреждения клеммы, пробник должен подключаться с помощью щупа заданного диаметра, соответствующего размеру контакта в ответной колодке.
Проверка замыкания цепи на бортовую сеть
Проверку выполнять в следующей последовательности:
1) Отсоединить колодку с одной стороны электрической цепи.
2) Пробник, одним концом соединенный с «массой», подключить к клемме проверяемой цепи.
Если пробник светится, значит, проверяемая цепь замкнута на бортовую сеть.
3) Присоединить отсоединенную колодку.
4) Отсоединить колодку с другой стороны электрической цепи. Выполнить проверку 2.
Чтобы избежать повреждения клеммы, пробник должен подключаться с помощью щупа заданного диаметра, соответствующего размеру контакта в ответной колодке.
Измерение напряжения на контактах жгута проводов.
Проверку выполнять в следующей последовательности:
1) Отсоединить колодку с одной стороны электрической цепи.
2) Плюсовой шнур вольтметра подключить к клемме проверяемой цепи, минусовой к «массе» автомобиля. 3) Фиксировать значение напряжения.
4) Чтобы избежать повреждения клеммы, плюсовой шнур вольтметра должен иметь щуп заданного диаметра, соответствующий размеру контакта в ответной колодке.
Напомню, выполнять диагностику проводки удобней тогда, когда под рукой есть схемы электрооборудования автомобиля 🙂
Виды неисправностей в автомобильной электрической цепи
Существует всего лишь 4 способа повредить электрическую цепь.
Зная эти способы, вы приблизитесь на шаг ближе к решению проблемы.
Легко понять ваш испуг, когда вам поставлена задача решить проблему в электрике старенького автомобиля. Современные автомобильные электрические системы — это комплекс, который совершенствуется с каждой новой моделью. Усугубляет проблему множество сражений с теорией электричества, отсутствие стратегий диагностики, которые должны помочь завоевать победу и решить возникшие проблемы. Многие предпочитают заниматься тормозной системой или ремонтом двигателей, но нет такой системы в автомобиле, которая не имела бы электрических компонентов. Вы можете убежать, но не сможете спрятаться.
Если это про вас — мужайтесь. Электрически заряженный техник всегда помнит о том, что:
Итак, сделайте глубокий вздох и давайте пройдемся по основам, которые вы должны знать, чтобы стать превосходным автоэлектриком.
Основы.
Давайте сделаем небольшой обзор основ электричества. Прежде всего, что такое электричество? Ученые всегда придумывают новую информацию об этом, но мы можем предполагать, что электричество — это поток электронов, двигающихся через проводник. Электроны — это одни из основных кирпичиков материи, которые являются неотъемлемой частью атома. Атом — наименьшая частица, на которые может быть разбит любой элемент, сохраняя тем самым свойства этого элемента. Например, одним из таких элементов является медь, ее свободные электроны могут перемещаться от одного атома к другому.
Элементы, способные проводить электрический ток известны как — проводники. Лучшими проводниками являются серебро, медь, золото и алюминий. Материалы, блокирующие электрический ток известны как изоляторы. Обычно используются изоляторы содержащие пластик, стекло, резину и бакелит.
Поэтому мы одеваем медный провод в пластмассовый изолирующий материал, так как не хотим, чтобы электричество ушло из провода, более того — ушло в неизвестном направлении.
Что заставляет воду течь по трубе? Разность давления. Большее давление на одной стороне и меньшее на другой. Вода естественным образом течет по трубе от стороны с наибольшим давлением в направлении области с наименьшем давлением. Если не будет разницы в давлении, вода не потечет.
Неплотно закрытый вентиль или повреждение в трубе, уменьшающее ее диаметр, создает ограничения для потока. Возрастающие ограничения ослабляют поток воды. Электрическое сопротивление работает подобным образом. Увеличение сопротивления вызывает уменьшение электрического тока. Электрическое сопротивление измеряется в омах и может быть вызвано потерей контактов на подключениях, изношенными проводами или ржавыми клеммами. Важно понимать основной принцип относительно сопротивления: чем ближе вы стремитесь к нулевому ому, тем меньше сопротивление в цепи. В свою очередь, если ток в цепи будет равен нулю амперам, то сопротивление возрастет до бесконечности.
Вы, вероятно, слышали о законе Ома, названного в честь германского физика и математика Георга Симона Ома. Закон Ома является основой этой дискуссии, так как описывает отношение между напряжением, током и сопротивлением. Простым языком закон Ома гласит: один вольт электрического давления вызовет один ампер тока, протекающего через один ом сопротивления.
То, что идет не так.
Все мы знаем или сталкивались с «крутыми» автомобильными техниками, которые диагностируют проблему в электрической цепи прослушав историю клиента, а затем выдают что то вроде: — «Где то «коротыш». Бесполезное замечание, неправда ли? И как часто бывает, на вопрос о том, что и где конкретно неисправно, вы получаете большое затруднение с ответом.
Несмотря на их благие намерения вам помочь, называть любую электрическую неисправность коротким замыканием является дезинформаированием. Существует всего 4 возможных неисправностей, которые могут возникнуть в электрической цепи: обрыв цепи, высокое сопротивление, замыкание на «массу», замыкание на «питание». Итак рассмотрим, какие симптомы соответствую каждой неисправности и какие действия необходимо предпринять, чтобы их обнаружить.
Техническим специалистам необходимо начинать с четкого понимания беспокойства заказчика. Задавайте проясняющие вопросы, как например, является ли проблемы постоянной или возникает переодически. Эти вопросы дадут некоторое представление с какой из четырех возможных неисправностей вы имеете дело. Постарайтесь обеспечить присутствие заказчика, в момент поиска неисправности, а при необходимости, проведите с ним контрольный заезд.
После того, как вы выслушали заказчика проведите тщательный осмотр и основные тесты. Например, при таком осмотре, обрыв цепи вы сможете определить и без помощи мультиметра.
Следующий шаг — это выполнение визуального осмотра и основных тестов таких простых деталей, как лампочки и предохранители. Не доставайте предохранитель. Вместо этого проверьте вольтметром на двух его сторонах наличие напряжения.
Обычно, основной блок предохранителей находится около аккумуляторной батареи. Это гарантирует, что большинство проводов защищены предохранителями, плавкими вставками или автоматическими выключателями.
Педохранитель расплавленный? Тогда имеет место чрезмерное протекание тока, обусловленное снижением сопротивления в цепи. Если предохранитель в порядке, то сопротивление цепи либо в норме, либо слишком большое. Значительный процент проблем с электрикой решаются на этом этапе.
Хороший предохранитель покажет маленькое значение падения напряжения, которое будет увеличиваться, в случае увеличения тока. Если показания, замеряемые через предохранитель будут равны напряжению аккумуляторной батареи, то он в обрыве (оплавлен).
1. Обрыв цепи.
Когда заказчик заявляет, что устройство не работает вовсе, вам необходимо задуматься об обрыве цепи. Обрыв цепи возникает при прерывании соединений, через которые должен протекать ток. Вследствие прерывания соединения сопротивление цепи возрастает до бесконечности. Обрыв цепи также известен как прерывистая цепь.
Если предохранитель в порядке, это укрепляет необходимость приступить к диагностике обрыва цепи. Далее, вам необходимо получить доступ к неисправному устройству и включить зажигание автомобиля. Подсоедините минусовой провод вашего вольтметра на корпус (массу), замеряя напряжение на стороне питания этого устройства, т.е. присоедините плюсовой провод к месту подключения этого устройства. Вы должны увидеть на вольтметре напряжение аккумуляторной батареи. Если нет, то вам необходимо измерять напряжение в точках выше по течению от устройства, чтобы сузить место расположения разомкнутой цепи. Продолжайте замеры по обратно по направлению к аккумулятору. Если при замере вы увидите наличие напряжения, значит проблема заключается между этим местом и предыдущим, где вы измеряли.
А что если напряжение по питанию есть, но устройство все равно не работает? Вашим следующим шагом будет замер напряжения по «минусу», т.е. на корпус.
Если вам удалось замерить напряжение аккумуляторной батареи с обеих сторон устройства (по плюсу и минусу), и устройство при этом исправно, то вероятен разрыв цепи по «массе». Подсоедините перемычку (провод) между корпусом (или минусовым контактом) и корпусов автомобиля, чтобы завершить проверку.
Это пример неисправности по массе, которая отключила более чем одно устройство. Потеря напряжения через это соединение привело к неисправности заднего стеклоочистителя, заднего омывателя и обогрева заднего стекла.
Если и сейчас устройство не заработает — выходит, что оно неисправно.
2. Большое сопротивление.
Когда клиент жалуется, что устройство работает плохо, не в полную силу, это говорит о том, что вы имеете дело с большим сопротивлением. Это может быть тускло светящаяся лампочка, медленно раскручивающися двигатель, или электрический обогреватель не вращается с необходимой силой. Всему виной плохое соединение где-то в цепи, и возрастающее сопротивление снижает напряжение, необходимое для работы устройства.
Это вызвано феноменом, называемым — падение напряжения. Это всегда случается так, когда ток течет через сопротивление. Плохие (ржавые или неплотные) соединения будут сами потреблять напряжение и оставлять его меньше для устройства. Вольтметр, подключенный в месте соединения с проводом расскажет все об этом. Если соединение хорошее, вольтметр покажет падение напряжения в милливольтах. При плохом соединении ваш вольтметр покажет намного больше, чем просто большое значение падения напряжения. Это могут быть и расплавленные пластиковые соединения, и прогоревшие изоляторы. Они то и свидетельствуют о том, что вы нашли источник высокого сопротивления.
Характерным признаком неисправности с высоким сопротивлением является расплавленный разъем.
Нет необходимости проверять предохранитель за предохранителем. Они в порядке. Включите зажигание и снимите показания напряжения потребляемого устройством. По идее, вы должны увидеть значение напряжения близкое к напряжению аккумуляторной батареи, но при такой ситуации, скорее всего, шансы минимальны. Если вы наблюдаете значение напряжения более чем на 1 вольт ниже чем на аккумуляторной батарее, самое время начать поиски причин неисправности под названием «высокое сопротивление».
Здесь возможно высокое сопротивление как на стороне питания, так и на стороне «минуса», или на обеих. Подсоедините минусовой провод вашего вольтметра к хорошему минусовому контакту на корпусе и проверьте напряжение на стороне питания устройства. Если вольтметр показывает значение близкое к аккумуляторной батареи, на стороне питания все в порядке. Однако, если напряжение в этом случае низкое, вам необходимо проверить цепь вверх по течению к батареи, в поисках точки, в которой возникает падение напряжения. Если в какой то точке вы увидите нормальное напряжение цепи, то высокое сопротивление находится где то между этой точкой и последней вами проверенной.
Если на стороне питания напряжение близко к напряжения аккумуляторной батареи, неисправность кроится на стороне минусового контакта цепи. Минусовым проводом вашего вольтметра подключитесь к хорошему контакту на корпус, а вторым проводом подключитесь к минусовому подключению самого устройства. Вольтметр должен показать только милливольтовое значение падения напряжения, если все в порядке. Если показания больше, необходимо ремонтировать плохие соединения по «массе» и проверить как после этого работает устройство.
3. Короткое замыкание на массу.
Вот где начинается самое интересное. Если заказчик рассказывает вам о том, что устройство не работает вовсе и вы обнаруживаете оплавленный предохранитель, возможной причиной может быть замыкание на массу. Замыкание на массу это низкое сопротивление на пути к массе, вызывающее повышенный ток. Это часто вызвано повреждением изоляции провода вследствие его трения о корпус автомобиля. Однако, это может быть вызвано внутренним повреждением устройства, которое может ремонтироваться только заменой комплектующих.
Если вы встретились с расплавленным предохранителем, начните с его замены и затем начните работу с цепью. Первопричиной может быть и сам предохранитель, но если и новый предохранитель перегорит, то присутствует какая то неисправность. Предохранитель сгорел в момент его замены или после включение зажигания? Это сразу говорит о том, находится проблема до замка зажигания, или после него.
Внимательно изучите схему проводов, и определите цепи, подключенные к неисправному предохранителю. Какие цепи скорее всего приведут к короткому замыканию? Можете ли вы отключить цепи, которые подозреваете в причине неисправности? Если, при отключении конкретного устройства или участка цепи, предохранитель не сгорит, это значит, что вы находитесь значительно ближе к решению проблемы.
Наиболее сложным методом для определения короткого замыкания на массу является использование тонального генератора. Этот диагностирующий прибор имеет передатчик, который подсоединяется к патрону предохранителя (или к другой точке жгута с проводами) и посылает сигнал по проблемной цепи. Технический специалист продвигается по цепи с приемником, который издает звук, когда обнаруживает сигнал, проходящий по проводу. Когда вы вплотную приближаетесь к месту короткого замыкания на массу, звук из приемника пропадает. Этот прибор может применяться техническими специалистами также при определении обрыва цепи.
4. Замыкание на питание.
О замыкании на питание вам могут сообщить разными путями. Первый — заказчик мог рассказать вам, что конкретное устройство на его автомобиле не выключается. Другая вероятность, если заказчик говорит, что автомобиль пришлось заводить с толкача, после того, как она постояла ночь. Замыкание на питание — это неисправность вызванная наличием питания на устройстве в обход переключателя, или если сам переключатель имеет внутреннее короткое замыкание или если провод после переключателя законтачен с проводом из другой цепи. При всех вероятностях, предохранитель будет исправен, но цепь будет под напряжением когда вам это не нужно.
Если заказчик говорит о том, что устройство не хочет выключаться, вытащите предохранитель из этой цепи. Если устройство выключилось, есть проблема с изоляцией внутри этой цепи. Установите предохранитель заново и отключите от цепи зажигание. Если устройство выключилось, переключатель имеет внутреннее короткое замыкание. Если устройство по прежнему работает, когда предохранитель вытащен, на него поступает питание из другой цепи. Внимательно проверьте жгут проводов, в поисках места возможного соединения протертых проводов, вызвав эту неисправность.
Если заказчик говорит, что аккумуляторная батарея разрядилась за ночь, вы вероятно имеете дело с утечкой. Не доставайте предохранители. Вместо этого используйте мультиметр, чтобы замерить падение напряжения по отдельным предохранителям с выключенным зажиганием. Если цепь в норме, на цифровом мультиметре будет значение в милливольтах очень малое. Если вы обнаружите предохранитель, который будет показывать значение намного большее, чем остальные — то вы нашли ту цепь, которая «убила» аккумулятор клиента.
Милливольтовый диапазон на мультиметре удобен для измерения падения напряжения через предохранители и соединения.
Короткое замыкание
Что такое короткое замыкание
Короткое замыкание (КЗ, англ. short curcuit) — незапланированное соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.
Определение КЗ из «Элементарного учебника физики» Ландсберга
В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.
Как образуется короткое замыкание
Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:
I — сила тока в цепи, А
R — сопротивление, Ом
Давайте рассмотрим вот такую схему
Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.
А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ
Что будет дальше, если мы замкнем контакты ключа SA?
В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления — меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:
Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.
Закон Джоуля-Ленца
Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи
I — сила тока в этой цепи, А
Rн — сопротивление нагрузки, Ом
Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.
То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары.
Существуют еще запланированные и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.
Основные причины короткого замыкания
Все многообразие причин возникновения коротких замыканий можно свести к следующим:
Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.
Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть «кривой» электромонтаж, либо несоблюдение техники электробезопасности.
Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.
Ток короткого замыкания
Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.
Для источников ЭДС ток короткого замыкания может быть вычислен по формуле
Iкз — это ток короткого замыкания, А
E — ЭДС источника питания, В
Rвнутр. — внутреннее сопротивление источника ЭДС, Ом
Более подробно про ЭДС и внутреннее сопротивление читайте здесь.
Ниже на рисунке как раз изображен такой источник ЭДС в виде автомобильного аккумулятора с замкнутыми клеммами
Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.
Виды коротких замыканий
В цепи постоянного тока
В цепи переменного тока
Трехфазное замыкание
Это когда три фазных провода коротнули между собой.
Трехфазное на землю
Здесь все три фазы соединены между собой, да еще и замкнуты на землю
Двухфазное
В этом случае любые две фазы замкнуты между собой
Двухфазное на землю
Любые две фазы замкнуты между собой, да еще и замкнуты на землю
Однофазное на землю
Однофазное на ноль
Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.
В трехфазных сетях наиболее часто происходит однофазное замыкание на землю — 60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.
В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.
Последствия короткого замыкания
Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.
Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.
Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.
Меры, исключающие короткое замыкание
Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.
Вот такие предохранители используются в цепях с малыми токами
вот такие плавкие предохранители вы можете увидеть в автомобилях
А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов
Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа — трехфазный
Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.
В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:
Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.
В высоковольтных сетях защита чаще обеспечивается:
Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.