Что показывает модуль вектора перемещения

Кинематика. Перемещение и путь.

Перемещением в механике называют вектор (направленный отрезок прямой), соединяющий начальное и последующее положения тела.

Понятие вектора перемещения вводится для решения задачи кинематики – определить положение тела в пространстве в данный момент времени, если известно его начальное положение.

Что показывает модуль вектора перемещения

Допустим, точка М движется по криволинейной траектории и в некоторые моменты времени t1 и t2 оказывается в точках М1 и М2 соответственно. Вектор Что показывает модуль вектора перемещениясоединяет эти два положения и является вектором перемещения. Если точку М1 задать радиус-вектором Что показывает модуль вектора перемещения, а точка М2 – радиус-вектором Что показывает модуль вектора перемещения, то вектор перемещения будет равен разности этих двух векторов: Что показывает модуль вектора перемещения

Путь – это длина участка траектории, пройденного телом за данный промежуток времени. В общем случае модуль вектора перемещения не равен длине пути, пройденного телом за некоторый промежуток времени, поскольку траектория может быть криволинейной, а тело может менять направление движения.

Модуль вектора перемещения и путь могут быть равны только при прямолинейном движении в одном направлении. При изменении направления прямолинейного движения модуль вектора перемещения будет меньше пути.

При криволинейном движении модуль вектора перемещения тоже меньше пути, поскольку хорда всегда меньше дуги, которую она стягивает.

Источник

Траектория

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы Траектория и Путь), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

Что показывает модуль вектора перемещения

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия.

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Что показывает модуль вектора перемещения

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения Что показывает модуль вектора перемещения(рис. 1.3).

Выберем ось ОХ так, чтобы вектор Что показывает модуль вектора перемещениялежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно Аx и Вx. Длина отрезка АxВx на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

Что показывает модуль вектора перемещения

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Что показывает модуль вектора перемещения

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х0 и у0, то есть А(х0, у0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Что показывает модуль вектора перемещения

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора, с помощью которой можно найти модуль вектора перемещения, так как

По теореме Пифагора

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Что показывает модуль вектора перемещения

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

Источник

Равномерное движение

Школьный курс физики содержит раздел «кинематика». Большинство задач этого раздела можно решить, рассматривая движение вдоль одной оси — одномерное движение. Его еще называют прямолинейным движением.

Для некоторых задач нужно рассматривать движение на плоскости – двумерный случай.

Вообще, движение тела может происходить:

Здесь рассмотрим одномерный случай движения — движение тел вдоль оси.

Параметры, описывающие движение

Чтобы описать движение, используют:

Траектория – линия, вдоль которой двигалось тело.

Траектория – скаляр, в СИ длину траектории измеряют в метрах.
Для криволинейного движения траектория будет отрезком кривой.
Если движение прямолинейное, траектория – отрезок прямой линии.

Перемещение тела – это вектор. Он соединяет точки, в которых тело находилось в начале и конце движения, направлен из начальной точки в конечную.
Модуль этого вектора – его длину, в СИ измеряют в метрах.

Может ли перемещение тела равняться нулю, при том, что траектория имеет какую-либо протяженность?
Да, такое может быть. Когда тело движется так, что в конце движения оно вернется в начальную точку, в которой находилось перед началом движения.
Если в завершении движения тело окажется на каком-то расстоянии от начальной точки, длина вектора перемещения будет положительной.

Примечания:

Уравнение движения — описывает характер движения.

Вместо координат тела уравнение движения может содержать перемещение.

Примечания:

Описанные параметры применяют и для равномерного и для неравномерного движения.

Прямолинейное движение вдоль оси

Рассмотрим движение по прямой, когда скорость тела не меняется. Это — равномерное прямолинейное движение.

На рисунке 1 представлено движение тела вдоль оси, назовем ее для определенности Ox:

Что показывает модуль вектора перемещения

Ось «Ox» на рисунке 1 обозначена большим символом «X».
Точка, в которой тело находилось в начале движения \(x_ <0>\left( \text <м>\right)\) — начальная координата тела;
В эту точку тело переместилось к концу движения \(x \left( \text <м>\right)\) — конечная координата тела;
Расстояние между двумя точками \(S \left( \text <м>\right)\) – это перемещение тела. Перемещение – это вектор.

Формула перемещения для одномерного случая

Для движения по оси (одномерный случай), длину перемещения находят так:
\[ \large \boxed < S = \left| x — x_<0>\right| >\]
Знак модуля нужен для того, чтобы длина перемещения оставалась положительной, даже, если движение происходит влево по оси, т. е. против направления оси Ox.
Сравним два случая движения тел. Первый – в положительном направлении оси Ox (рис 2а), второй – в направлении, противоположном оси (рис 2б).

Что показывает модуль вектора перемещения

Чтобы найти длину вектора перемещения при движении в положительном направлении оси (рис. 2а), модуль раскрываем так:
\[ S = \left| x — x_ <0>\right| = x — x_ <0>\]
Для движения в отрицательном направлении оси (рис. 2б), длина вектора перемещения выражается так:
\[ S = \left| x — x_ <0>\right| = — \left( x — x_ <0>\right) = x_ <0>— x \]
И в первом, и во втором случае, длина (модуль) вектора перемещения окажется положительной.

Скорость равномерного движения

В учебниках физики равномерному движению дают такое определение:
Движение равномерное, когда тело за одинаковые интервалы времени проходит равные расстояния.

Упростим формулировку:
Если каждую секунду тело проходит одинаковые расстояния – оно движется равномерно.

Слово «равномерное» состоит из двух частей.
Если разбить его на части, получим
«равно» — одинаковый, равный,
«мерное» — отмерять.
Или, другими словами: каждую секунду отмеряем одинаковые расстояния (рис. 2).

Что показывает модуль вектора перемещения

Для равномерного движения тела его

\[ \left|\vec \right| = \left|\vec \right|\cdot t \]

Эта формула называется уравнением движения. Или, развернуто: «уравнение равномерного прямолинейного движения».

Где \( \left|\vec \right| \) — длина (модуль) вектора перемещения и, \(\left|\vec \right|\) — длина (модуль) вектора скорости.

Уравнение движения можно записать проще:

\(S \left( \text <м>\right)\) – расстояние, пройденное телом (перемещение).

\(t \left( c \right)\) – промежуток времени, в течение которого тело двигалось.

\(v \left( \frac<\text<м>> \right)\) – скорость, с которой двигалось тело.

Разделив обе части уравнения \( S = v \cdot t \) на интервал времени \( t \), получим выражение для скорости тела:

График уравнения равномерного движения

Вспомним, что перемещение является разностью конечных и начальных координат тела

\( S = \left| x — x_ <0>\right| \)

Воспользуемся тем, что при движении вдоль положительного направления оси модуль можно раскрыть так:

\( \left| x — x_ <0>\right| = x — x_ <0>\)

Тогда уравнение движения перепишем так:

\[ \large \boxed < x — x_<0>= v \cdot t >\]

Прибавим к обеим частям уравнения величину \( x_ <0>\). Получим такую запись

\[ \large x = v \cdot t + x_<0>\]

Это уравнение задает на плоскости tOx линию. Ее график на осях «x» и «t» — это прямая линия.

Вспомним, что для прямой линии в математике применяют такой вид записи:

Сравним два уравнения:

\[ \begin x = v\cdot t + x_<0>\\ y = k\cdot x + b \end \]

Видно, что число \( x_<0>\) – начальная координата тела, выполняет роль коэффициента \(b\).

А скорость тела \( v\) – играет роль углового коэффициента \(k\).

Сравним графики линий (рис. 4), описанных соотношениями \( y = k \cdot x + b\) и \( x = v \cdot t + x_<0>\)

Что показывает модуль вектора перемещения

Видно, что линия на рисунке 4а, располагается и слева и справа от вертикальной оси.

Линия же, описывающая движение тела, представленная на рисунке 4б, располагается только лишь в правой полуплоскости. Это не с проста. На горизонтальной оси рисунка 4б отложено время, а в левой полуплоскости время будет отрицательным. При решении задач физики мы считаем, что в начальный момент задачи время равно нулю. Поэтому, область отрицательного времени в физике нас не интересует.

Рассмотрим теперь на графике равномерное движение двух тел, обладающих разными скоростями (рис. 5). Движение тела 1 на рисунке описывает синяя линия, а тела 2 – красная.

Что показывает модуль вектора перемещения

Два тела стартуют из точки \( x_<0>\) и двигаются равномерно воль оси Ox. За промежуток времени \( \Delta t\) тело 1, проходит больший путь, чем тело 2.

Примечание: Чем сильнее на графике x(t) прямая линия прижимается к вертикали, тем больше скорость, с которой движется тело!

Как отмечалось выше, тело может двигаться не только в положительном направлении вдоль оси, но и в отрицательном направлении.

На следующем рисунке представлены случаи движения тела в положительном (рис. 6а) и, в отрицательном (рис. 6б) направлениях оси Ox.

Когда скорость направлена по оси (рис. 6а) — координата «x» увеличивается,

а когда против оси (рис. 6б) — координата «x» уменьшается.

Что показывает модуль вектора перемещения

На рисунке рядом с прямыми x(t) приведены уравнения движения. Когда скорость направлена против оси (рис. 6б), перед ней записывают знак «минус».

Угол \(\alpha\) на рисунке связан со знаком скорости. Если скорость направлена по оси (рис. 6а), то угол будет острым. А если скорость направлена против оси (рис. 6б) – угол тупой.

Примечание: Скорость – это вектор. Когда вектор направлен против оси, его проекция на эту ось будет отрицательной. Читайте тут о проекциях векторов. Длина любого вектора – это положительная величина.

Как по графику перемещения определить скорость

Пользуясь графиком функций S(t), или x(t) равномерного движения можно определить скорость, с которой движется тело.

Примечания:

Скорость находим за четыре шага (рис. 7):

Полученное число и будет скоростью тела.

Примечания:

Обращаем внимание на то, в каких единицах на осях измерены расстояние S и время t. Если нужно, переводим расстояние в метры, а время — в секунды, чтобы получить скорость в правильных единицах измерения.

Что показывает модуль вектора перемещения

Рассмотрим рисунок 7.

На рисунке первая точка имеет координаты \( \left( t_ <1>; x_ <1>\right) \),

координаты второй точки: \( \left( t_ <2>; x_ <2>\right) \).

Разницы между координатами находим, руководствуясь принципом («конечная» — «начальная») по формулам

Скорость вычислим из соотношения

Читайте далее о том, как переводить скорость из километров в час в метры в секунду и о равнопеременном движении

Источник

Траектория

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы Траектория и Путь), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

Что показывает модуль вектора перемещения

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия.

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Что показывает модуль вектора перемещения

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения Что показывает модуль вектора перемещения(см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор Что показывает модуль вектора перемещениялежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно Аx и Вx. Длина отрезка АxВx на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

Что показывает модуль вектора перемещения

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Здесь x0, y0, z0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Что показывает модуль вектора перемещения

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х0 и у0, то есть А(х0, у0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Что показывает модуль вектора перемещения

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора, с помощью которой можно найти модуль вектора перемещения, так как

По теореме Пифагора

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Что показывает модуль вектора перемещения

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *