Что показывает опыт маттеучи наличие каких биопотенциалов доказано в опыте
История изучения и способы регистрации биоэлектрических явлений (Гальвани, Маттеучи).
биоэлектрических явлениях, возникающих в живых тканях, относится ко второй половине XVIII века. Попытка последовательной разработки учения о «животном электричестве» сделана Л. Гальвани. Гальвани в своих опытах использовал препарат задних лапок лягушки, соединенных с позвоночником. Подвешивая этот препарат не медном крючке к железным перилам балкона, он обратил внимание, то их мышцы сокращались при каждом прикосновении к перилам. На основании этого Гальвани пришел к выводу, что подергивания лапок были вызваны «животные электричеством», зарождающимся в спинном мозгу лягушки и передаваемым по металлическим проводникам (крючку и перилам балкона) к мышцам лапки.С помощью мультипликатора К. Маттеучи (1838) впервые показал, что наружная поверхность мышцы заряжена электроположительно по отношению к ее внутреннему содержимому и эта разность потенциалов, свойственная состоянию покоя, резко падает при возбуждении. Маттеучи произвел также опыт, известный под названием опыта вторичного сокращения: при прикладывании к сокращающейся мышце нерва второго нервно-мышечного препарата его мышца тоже сокращается. Опыт Маттеучи объясняется тем, что возникающие в мышце при возбуждении потенциалы действия оказываются достаточно сильными, чтобы вызвать возбуждение приложенного к первой мышце нерва, а это влечет за собой сокращение второй мышцы.
Возбудимость и возбуждение. Возбудимые ткани. Значение процессов возбуждения в деятельности живых образований.
Возбудимость — способность органа или ткани живого организма приходить в состояние возбуждения при действии раздражителей из внешней среды или изнутри организма.
Возбуждение — это изменение уровня обмена веществ, характерного для состояния так называемого покоя, при действии внешних или внутренних раздражителей.
Возбудимые ткани – ткани организма специально приспособлены к существованию быстрых ответных реакций на действ раздражителя
3 вида : 1. Мышечная; 2. Нервная; 3. Железистый эпителий.
3 ф-ции состояния : 1. Состояние покоя; 2. Возбуждения – отвентная реакция возбудимых тканей на действие возбудителя. 3. Торможение – актив. Процесс возникает при действии раздражителя на ткань и подавление другого возбуждения.
Св-ва : возбудимость, проводимость, лабильность, рефрактерность, сократимость, секреция.
История изучения биоэлектрических явлений в тканях. Опыты Гальвани, Маттеучи. Роль русских ученых Чаговца, Самойлова и других.
Биоэлектрические явления и потенциалы.
Электричество у рыб человек обнаружил еще в глубокой древности. Например, древние греки остерегались встречаться в воде с рыбой, которая, как писал Аристотель, «заставляет цепенеть животных». Рыба, наводившая страх на людей, была электрическим скатом и носила имя «Toгрedo». И только двести лет назад ученые начали приоткрывать природу электричества в живых организмах. Первые научные данные о существовании биоэлектричества («животное электричество») были получены в 3-й четверти 18 в. при изучении природы «удара», наносимого некоторыми рыбами с электрическими органами при защите или нападении. Было обнаружено, что некоторые рыбы (электрический скат, электрический угорь) при охоте используют электрические разряды, оглушая и обездвиживая свою добычу. В 1791—1792 гг. итальянские ученые Л. Гальвани и А. Вольта первые дали научное объяснение явления «животного электричества». Своими, ставшими уже классическими, опытами они достоверно установили факт существования в живом теле электрических явлений. Позже биоэлектричество было обнаружено и в растительных тканях.
С позиций современных представлений о биоэлектрических явлениях ясно, что все процессы жизнедеятельности неразрывно связаны с различными формами биоэлектрических явлений.
Исследование биоэлектричества имеет большое значение для понимания физико-химических и физиологических процессов в живых системах и применяется в клинике с диагностической целью (электрокардиография, электроэнцефалография, электромиография и др.).
Целью настоящей работы является исследование биоэлектрических явлений. Для достижения названной цели необходимо решить следующие задачи:
1) охарактеризовать понятие биоэлектрических явлений;
2) выявить причины возникновения биоэлектрических явлений;
3) определить показатели биоэлектрической активности.
Понятие о биоэлектрических явлениях
Биоэлектрические явления обусловливают возникновение возбуждения и его проведение по нервным волокнам, являются причиной процессов сокращения мышечных волокон скелетных, гладких и сердечных мышц, выделительной функции железистых клеток и т.д. Биоэлектрические явления лежат в основе процессов всасывания в желудочно-кишечном тракте, в основе восприятия вкуса, запаха, в основе деятельности всех анализаторов и т.д. Нет физиологического процесса в живом организме, который в той или иной форме не был бы связан с биоэлектрическими явлениями.
В 1940-х гг. венгерский биохимик Альберт Сцент-Дьёрдьи пришел к выводу, что феномен жизни нельзя должным образом объяснить просто наличием каких-то химических веществ: необходимо, чтобы эти вещества находились в определенном электрическом состоянии. Идеи А. Сцент-Дьёрдьи привели к возрождению интереса к биоэлектричеству. Одним из первых результатов новых исследований в этой области стало обнаружение пьезоэлектрических свойств костной ткани.
Изучение ионной проницаемости мембраны гигантских нервных волокон позволило английским физиологам А. Ходжкину, А. Хаксли и Б. Катцу (1947-52) сформулировать современную мембранную теорию возбуждения, принимаемую в настоящее время почти всеми электрофизиологами.
К 1960-м гг. наукой было установлено два фундаментальных положения:
1) электрическая активность свойственна не только животным, но и всем другим биологическим объектам;
2)многие формы электрической активности, наблюдаемые у животных, имеют место и у других организмов.
Первые попытки по изучению биоэлектрических явлений («животного электричества») известны с ХVIII века, когда были выполнены исследования на «электрических» органах рыб. Все эти исследования подготовили благоприятную почву для трудов Гальвани, заложивших основу электрофизиологии как вполне самостоятельной области науки. В 1791 г. им были опубликованы результаты исследований, в том числе знаменитого «балконного» опыта. Позднее открытия Гальвани были подтверждены в работах Маттеучи. Дальнейшее развитие представлений о природе «животного электричества» связано с внедрением в физиологию экспериментальных приемов и техники. в 1896 г. В.Ю. Чаговец впервые высказал гипотезу о ионном механизме электрических потенциалов в живых клетках и сделал попытку применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Бернштейном была развита мембранно-ионная теория. Современные представления о природе биоэлектрических явлений в тканях базируются на результатах работ Алана Ходжкина, Эндрью Хаксли, Бернарда Катца.
Электрогенез: история изучения и открытий
В 1786 г. итальянский врач и физиолог Гальвани, развесив для просушки лягушачьи лапки на балконе заметил, что когда раскачиваемая ветром лапка соприкасается с металлической решеткой балкона, то возникает ее сокращение. Гальвани сделал вывод, что если между нервом и мышцей устанавливается замыкание посредством металлического проводника, и при этом мышца сокращается, то это есть доказательство проявления «животного электричества». Он считал, что нерв и мышца заряжены противоположно.
Балконный опыт Гальвани
При подвешивании нервно-мышечного препарата на железную решетку с помощью медного крючка, проходящего через спинной мозг препарата, имело место сокращение мышц лапки каждый раз, когда эта лапка соприкасалась с железной решеткой балкона.
Модификация «балконного» опыта Гальвани.
Позднее открытия Гальвани были подтверждены в работах Маттеучи. Однако Маттеучи обнаружил явление вторичного или индуцированного сокращения: при помещении нерва одного нервно-мышечного препарата на мышцу другого препарата и раздражителя нерва этого препарата, Маттеучи наблюдал сокращение мышцы обоих препаратов.
Опыт Маттеучи: вторичное (индуцированное) сокращение мышцы.
На основании этого явления Маттеучи выдвинул предположение об изменении электрических зарядов нервной ткани при ее возбуждении.
Дальнейшее развитие представлений о природе «животного электричества» связано с внедрением в физиологию экспериментальных приемов и техники. В 1820 году Швейгер сконструировал гальванометр, усовершенствовав который итальянский физик Нобиле применил его в 1827 г. для проверки опытов Гальвани. Однако наибольший интерес представляют работы Э.Дюбуа-Реймона, выполненные в 1840-1860 гг. В этих работах, благодаря высокочувствительному гальванометру и ряду других технических новшеств, удалось впервые, определив электрические процессы в мышце, зарегистрировав потенциал наружной и внутренней поверхности мембраны клеток. Впервые он установил, что наружная мембрана заряжена положительно по отношению к внутренней, и эта разность потенциалов изменяется при сокращении мышцы.
Позднее, в 1896 г. В.Ю. Чаговец впервые высказал гипотезу о ионном механизме электрических потенциалов в живых клетках и сделал попытку применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Бернштейном была развита мембранно-ионная теория, согласно которой клеточная поверхность представляет собой полупроницаемую мембрану, которая в состоянии физиологического покоя проницаема для ионов калия и практически непроницаема для остальных вне- и внутриклеточных ионов.
В 1936 году английский зоолог Джон Юнг обнаружил у кальмаров и каракатиц необычайно толстые аксоны, которые впоследствии стали называть «гигантскими аксонами». Их диаметр превышал 0,5 мм, что позволило достаточно легко вводить в них микроэлектроды, проводить химический анализ содержащейся в них жидкости, вводить в них различные растворы и т.д. «Гигантские аксоны» стали излюбленным объектом для изучения биоэлектрических явлений в тканях, с их помощью было получено много новых и интересных данных.
Современные представления о природе биоэлектрических явлений в тканях базируются на результатах работ Алана Ходжкина, Эндрью Хаксли, Бернарда Катца. Эти ученые в 40-50 годах нашего века модифицировали и экспериментально обосновали мембранно-ионную теорию Ю. Бернштейна. В настоящее время их взгляды о природе биоэлектрических явлений пользуются всеобщим признанием. Согласно их представлениям, наличие электрических потенциалов в живых клетках обусловлено различной концентрацией ионов Na+, K+, Ca2+ и Cl- внутри и вне клетки, а также различной проницаемостью для них клеточной мембраны. За разработку теории ионного механизма возбуждения эти авторы были удостоены звания лауреатов Нобелевской премии.
ИСТОРИЯ ОТКРЫТИЯ БИОПОТЕНЦИАЛОВ
Биопотенциал – показатель биоэлектрической активности, определяемый разностью потенциалов между двумя точками живой ткани.
История открытия биопотенциалов началась в конце 18 века, когда профессор анатомии в Болонье Луиджи Гальвани дал первые (1791 г.) экспериментальные доказательства существования электрических явлений в мышце лягушки. Он обратил внимание на то, что отпрепарированные задние лапки лягушки приходили в движение, как только касались железной решетки балкона, к которой были подвешены на медный крючок, проходящий через позвоночник и спинной мозг (изучалось статическое атмосферное электричество).
Алессандро Вольта взглядам Гальвани о существовании электричества в мышце противопоставил свое утверждение: электричество возникает при соприкосновении разнородных металлов через влажную среду. Попутно Вольта изобрел первый в мире источник постоянного тока (“вольтов столбик”), открыв “металлическое электричество”. Ирония судьбы: электричество в живых тканях, открытое Л. Гальвани, измеряют в Вольтах, а устройства, в основе которых лежит “металлическое электричество”, открытое Вольта, называют гальваническим элементом.
Справедливости ради следует отметить, что Гальвани поставил второй опыт (“сокращение без металлов”), подтвердив свое предположение о существовании “животного электричества”. Сокращение мышцы нервно-мышечного препарата возникало, когда нерв приводили в соприкосновение с поврежденной и неповрежденной поверхностями мышцы (рис. 1).
Рис. 1. Второй опыт Гальвани.
В 1840 г. Маттеуччи, используя зеркальный гальванометр, открывает потенциал повреждения (демаркационный потенциал). Участок повреждения мышцы оказался электроотрицательным по отношению к неповрежденному.
В 1848 г. – Эмиль Дюбуа-Реймон установил, что возбужденный участок нерва электроотрицателен по отношению к невозбужденному (рис. 2).
В конце Х1Х века благодаря работам Дюбуа-Реймона, Л.Герман и Ю.Бернштейн пытались связать электрические явления, возникающие в возбудимых тканях, со свойствами полупроницаемых клеточных мембран.
С 1949 г. Ходжкин, Хаксли, Катц, усовершенствовав микроэлектродную технику, положили начало экспериментальной разработке мембранной теории возбуждения.
Рис. 2. Распространение нервного импульса.
Запись, получаемая при перемещении волны активности последовательно под 2-мя электродами, когда оба они лежат на нерве.
ПОТЕНЦИАЛ ПОКОЯ И ПОТЕНЦИАЛ ДЕЙСТВИЯ
2.1. Потенциал покоя. Микроэлектродная техника (внутриклеточная регистрация биопотенциалов).
Микроэлектрод – стеклянная микропипетка, заполненная раствором электролита. Диаметр кончика менее 0,5 мкм позволяет ввести электрод внутрь клетки, не нарушая ее функции. Второй электрод (электрод сравнения) – в питающий раствор с исследуемой тканью. Потенциал внеклеточной среды принимается равным нулю. Электроды соединяются с согласующим устройством, потом с усилителем постоянного тока. В качестве регистратора используется осциллограф.
Обычно величина МПП колеблется от – 70 до – 95 мВ.
Смещение мембранного потенциала кверху, т.е. уменьшение значения мембранного потенциала по модулю (уменьшение поляризации) называется уменьшением мембранного потенциала или деполяризацией; смещение книзу, т.е. увеличение по модулю значения мембранного потенциала (увеличение поляризации), называется увеличением мембранного потенциала или гиперполяризацией(рис. 4).
Потенциал действия.
При неизменном функциональном состоянии клетки величина мембранного потенциала не изменяется. Поддержание постоянной его величины обеспечивается нормальным протеканием клеточного метаболизма.
Рис. 3. Внутриклеточная регистрация мембранного потенциала.
А – схема установки для регистрации; Б – момент введения микроэлектрода в клетку. 1 – стеклянный микроэлектрод; 2 – электрод сравнения; 3 – усилитель; 4 – регистратор.
Рис. 4. Изменения поляризации (потенциала) мембраны.
При нанесении на клетку, в которой находится микроэлектрод, допороговых стимулов, можно зарегистрировать уменьшение мембранного потенциала (деполяризацию), которое обратимо (быстро проходит) и зависит от силы стимула, но до определенного уровня.
Ответы клетки при действии на нее допороговых раздражений могут суммироваться.
При деполяризации до определенного уровня (обычно – это смещение мембранного потенциала на 20-30% от величины МПП), называемого критический уровень деполяризации (КУД), возникает резкое колебание мембранного потенциала (рис 5), получившее название потенциала действия (ПД) или спайка или пик – потенциала. И как бы мы дальше не увеличивали силу раздражения, амплитуда потенциала действия уже не изменится (закон “все или ничего”).
Все изменения мембранного потенциала до КУД отображают местный процесс возбуждения, нераспространяющееся возбуждение или локальный ответ.
В ПД различают пик и следовые потенциалы. Восходящая часть пика – деполяризация, нисходящая – реполяризация.
Овершут – перезарядка мембраны или перескок – основная причина распространения возбуждения.
Именно эти овершуты, перескоки ПД и регистрировал в своих экспериментах Эмиль Дюбуа-Реймон. ПД – это всегда распространяющееся возбуждение.
Следовые потенциалы: отрицательный следовый потенциал (следовая деполяризация); положительный следовый потенциал (следовая гиперполяризация).
Амплитуда потенциала действия: нервные клетки 110 –100 мВ; скелетные и сердечные мышцы 110 – 120 мВ.
Продолжительность ПД нервных клеток 1 –2 мс.
Фазовые изменения возбудимостипри генерации ПД (рис. 5).
Мерило возбудимости – порог раздражения. При местном, локальном, возбуждении возбудимость увеличивается. Т.е. когда мембранный потенциал достигает КУД, возбудимость повышена.
ПД сопровождается многофазными изменениями возбудимости:
Период абсолютной рефрактерности (АРП) соответствует фазе деполяризации потенциала действия, пику и началу фазы реполяризации, возбудимость снижена вплоть до полного отсутствия во время пика.
Период относительной рефрактерности соответствует оставшейся части фазы реполяризации, возбудимость постепенно восстанавливается к исходному уровню.
Супернормальный период соответствует фазе следовой деполяризации потенциала действия (отрицательный следовый потенциал), возбудимость повышена.
Субнормальный период соответствует фазе следовой гиперполяризации потенциала действия (положительный следовый потенциал), возбудимость снижена.
Если потенциал покоя присущ всем живым клеткам без исключения, то потенциал действия генерируется только возбудимыми клетками, является электрофизиологическим показателем возникновения и распространения процесса возбуждения по мембранам нервных и мышечных клеток.
Рис. 5. ПД и изменения возбудимости во время ПД.
Вторичный тетанус (опыт Маттеучи)
К. Маттеучи показал, что можно вызвать сокращение мышц нервно-мышечного препарата, прикладывая нерв к сокращающимся мышцам другого препарата. Этот опыт свидетельствует о том, что в сокращающейся мышце возникают токи, причем настолько значительные, что их можно использовать в качестве раздражителя для нерва другого препарата. Эти токи получили название токов действия.
Для работы необходимы: стимулятор, держатель, набор препаровальных инструментов, раствор Рингера.
Объект исследования – два нервно-мышечных препарата лягушки.
Проведение работы. Готовят два препарата задних лапок лягушки. Мышцы бедра удаляют, а обе лапки за бедренную кость укрепляют в держателях (рис. 85). Нерв одного препарата помещают на электроды, а нерв другого располагают вдоль икроножной мышцы первого. Ритмически раздражая нерв вызывают тетаническое сокращение мышц первого препарата, наблюдают за сокращениями мышц второго.
Результаты работы и их оформление. Зарисуйте схему проведения опыта. Объясните механизмы возникновения токов действия.
Рис. 85. Опыт Маттеучи:
1 – нервно-мышечные препараты лягушки; 2 – держатели; 3 – раздражающие электроды
ИЗМЕРЕНИЕ МЕМБРАННОГО ПОТЕНЦИАЛА
МЫШЦЫ ЛЯГУШКИ
Если внутрь нервной или мышечной клетки ввести один электрод, а второй поместить в окружающем клетку растворе или ткани, то между электродами обнаруживается разность электрических потенциалов – мембранный потенциал покоя. Внутренняя область клетки при этом всегда электроотрицательна относительно наружной среды. Потенциал покоя измеряют как разность между потенциалами цитоплазмы и наружной среды клетки, поэтому он всегда обозначается со знаком минус. О существовании разности потенциалов свидетельствует скачок потенциала, возникающий в момент прокола электродом мембраны клетки. Если электроды соединены с помощью усилителя постоянного тока с осциллографом, то этот скачок потенциала вызывает резкое смещение луча осциллографа с изоэлектрической линии вниз (рис. 86).
Для работы необходимы: лабораторный рН-метр (например, ЛПЧ-02), стеклянные микроэлектроды, заполненные ЗМ раствором КСl (диаметр кончика порядка 0,5–1 мкм), два серебряных электрода, микроманипулятор, камера из органического стекла для помещения и фик-
Рис. 86. Внутриклеточное отведение биопотенциалов от нервной
(пирамидная клетка коры мозга – А)и мышечной клеток
(поперечнополосатая мышца кошки – Б):
1 – внеклеточная запись; 2 – момент прокола мембраны и вхождения микроэлектрода в клетку; 3 – величина разности потенциалов между внутренней и наружной поверхностями мембраны (мембранный потенциал); 4 – линия; определяющая исходное (нулевое) значение потенциала; 5 – одиночный спонтанный разряд клетки; 6 – колебания, связанные с давлением микроэлектрода на внутреннюю поверхность мембраны мышечной клетки; 7 – момент прокола мембраны
и выхода микроэлектрода из мышечной клетки
сации препарата, набор препаровальных инструментов, раствор Рин-гера.
Объект исследования – лягушка.
Проведение работы. Измерение мембранного потенциала мышечных волокон производят стеклянными микроэлектродами с помощью рН-метра, используемого как высокоомный милливольтметр. Необходимо включать в сеть рН-метр не менее чем за 1 ч до начала измерений. В работе используют портняжную мышцу лягушки. Лягушку обездвиживают. На сухожилие у колена накладывают лигатуру, а у сращения бедренных костей лигатуру накладывают на конец мышцы. Отпрепарированную мышцу укрепляют в камере из органического стекла внутренней стороной вверх, слегка растянув ее. Камеру заполняют раствором Рингера. Вскрывают оболочку мышцы, чтобы при введении не обламывался кончик микроэлектрода.
Камеру укрепляют на стеклянном столике от настольной лупы под бинокуляром. Стеклянный микроэлектрод, предварительно заполненный ЗМ раствором КСl, фиксируют в препаратоводителе, который укреплен на универсальном штативе над камерой для препарата. Препаратоводитель используют в качестве микроманипулятора для введения микроэлектрода в клетку. К входному кабелю рН-метра припаяны два серебряных электрода, которые непосредственно перед опытом хлорируются.
Хлорирование проводят в 1%-ном растворе NaCl. Источником тока служит батарейка для карманного фонарика (4,5 В), анодом – оба серебряных электрода одновременно, катодом – графитовый стержень. Для регулирования силы пропускаемого тока в цепь включен реостат. Подбирают такую величину тока, чтобы за 2–3 с поверхность электрода покрылась ровным белым слоем AgCl. Затем один из серебряных электродов погружают в раствор КСl, который заполняет широкую часть микроэлектрода, а другой опускают в раствор Рингера, заполняющий камеру с мышцей.
Перед началом введения микроэлектрода в мышцу ручку «Виды работ» рН-метра устанавливают в положение «рН». Переключатель «Пределы измерений» устанавливают в положение «2–6 рН», тогда шкала соответствует напряжению от 0 до 400 мВ с ценой деления 5 мВ.
Опускают микроэлектрод в камеру с раствором Рингера и измеряют межэлектродный потенциал. После этого вводят микроэлектрод в мышечное волокно, медленно вращая микровинт препаратоводителя. О попадании электрода внутрь клетки судят по отклонению стрелки рН-метра. Измеряют мембранный потенциал у 10–15 мышечных волокон, причем перед каждым введением микроэлектрода сначала измеряют меж-электродный потенциал.
Мембранный потенциал определяют как разность между потенциалом, возникшим при введении микроэлектрода в мышечное волокно, и межэлектродным потенциалом. Например, если межэлектродный потенциал равен +15 мВ, а после введения микроэлектрода стрелка рН-метра отклонилась на 95 мВ, то мембранный потенциал данного волокна равен 80 мВ.
Результаты работы и их оформление. Вычислите среднее значение мембранного потенциала одиночного мышечного волокна скелетной мышцы лягушки. Обсудите природу мембранного потенциала.
Дата добавления: 2018-04-04 ; просмотров: 7003 ; Мы поможем в написании вашей работы!