Что получают с помощью генной инженерии
10 Безумных примеров генной инженерии
Вы, скорее всего, слышали о светящихся в темноте кошках, созданных в Южной Корее. Это генетически модифицированные кошки с люминесцентной пигментацией в коже, что позволяет им светиться красным цветом под ультрафиолетовым светом. Затем ученые клонировали их, и они успешно передали флуоресцентный ген следующему поколению клонов кошек. К лучшему ли это или к худшему ещё не известно, но понятно одно – генная инженерия прочно обосновалась, и будет развиваться в дальнейшем, что и наводит на вопросы: когда мы поймём, что зашли слишком далеко? В чём заключается черта, разделяющая научный прогресс и необратимые изменения ДНК живого существа?
Если вам это кажется маловероятным, то десять поразительных примеров генной инженерии, представленных ниже, убедят вас в обратном.
10. Паучьи козы
Паутина применяется в примерно полутора миллионах целей, и с каждым днем это число растёт. Благодаря её невероятной прочности по отношению к размеру, её тестировали для использования в пуленепробиваемых жилетах, искусственных сухожилиях, бинтах, и даже компьютерных чипах и волоконно-оптических кабелях для хирургии. Однако получение достаточного количества паутины требует десятков тысяч пауков и долгого времени ожидания, не говоря уже о том, что пауки, как правило, убивают других пауков на своей территории, поэтому их нельзя разводить так как, скажем, пчел.
Поэтому, взгляд учёных пал на коз, единственных животных в мире, которые могли бы принести пользу за счет добавления ДНК паука в их ДНК. Профессор Рэнди Льюис (Randy Lewis) из Университета Вайоминга (University of Wyoming), изолировал гены, которые позволяют паукам производить каркасную нить паутины или самый сильный тип паутины, который пауки используют при постройке своих паутин (большинство пауков производит шесть различных типов нитей). Затем он соединил эти гены с теми генами, которые отвечают за выработку молока у коз. Затем он спарил несколько раз козу с изменёнными генами, в результате чего получилось семь козлят, три из которых унаследовали ген, ответственный за выработку паутины.
Всё что сейчас остаётся это доить коз и отфильтровывать паутину, ну ещё может изредка бороться с преступностью. Профессор Льюис не чужд иронии – его офис завешан постерами Человека-Паука.
9. Поющие Мыши
В большинстве случаев учёные проводят эксперименты с какой-либо целью. Тем не менее, в некоторых случая они просто впрыскивают кучу генов в мышей и ждут результатов. Именно так вывели мышку, которая чирикает как птица. Этот результат был получен в результате одного из исследований «Проекта Развитая Мышь» (Evolved Mouse Project), японского научно-исследовательского проекта, который использует грубый подход к генной инженерии – они модифицируют мышей, дают им размножаться, и отмечают результаты.
Одним прекрасным утром, проверяя новый помёт мышей, они обнаружили, что одна мышка «поёт как птичка». Ободрённые полученным результатом они сфокусировали своё внимание на этой мыши и теперь в их распоряжении находятся сто подобных экземпляров. Кроме того они заметили ещё кое-что интересное: когда обычные мыши росли вместе с поющими, они начинали использовать различные звуки и тоны, наподобие диалекта, используемого людьми. Ниже представлено видео одной из таких мышей.
Для чего же могут использоваться поющие мыши? Кто знает. Но целью проекта является искусственное ускорение эволюции, и это ускорение как минимум набирает странные обороты. Профессор Такеши Яги (Takeshi Yagi) также утверждает, что у них есть мышь «с короткими конечностями и хвостом, похожая на таксу». Странно это всё.
Этот пример, вероятно, появятся в супермаркетах довольно скоро: генетически модифицированный атлантический лосось, спроектирован специально для того, чтобы быть в два раза больше обычного и, кроме того, сделать это в два раза быстрее, чем обычный лосось. В ДНК этого лосося, созданного компанией «AquaBounty» и названного «лосось AquaAdvantage» есть два изменения: первое это ген чавыча, который не используется в качестве пищи настолько же широко, насколько атлантический лосось, но который, тем не менее, растёт гораздо быстрее в молодом возрасте.
Второе изменение это ген бельдюги, рыбы похожей на мурену, живущей на дне, которая растёт круглый год – в то время как лосось обычно растёт только в летний период. В результате получился постоянно растущий лосось, и он находится на первом месте в списке генно-модифицированных животных, которых одобрят для употребления людьми. Кстати говоря, управление по контролю качества пищевых продуктов и лекарственных средств США уже одобрило его в декабре прошлого года.
7. Бананы-вакцины
В 2007 году индийская команда учёных опубликовала свои исследования по созданию вида бананов, которые прививают людей против гепатита Б. Кроме того, группа успешно изменила морковь, салат, картофель и табак, чтобы в них содержались вакцины, но по их словам бананы являются наиболее надежной транспортной системой.
Вакцина работает следующим образом: ослабленный вариант вируса или микроба вводится человеку. Введённый вирус или микроб не достаточно сильны, чтобы вы заболели, однако его достаточно для того, чтобы ваш организм начал производить антитела. Эти антитела смогут вас защитить в том случае, если сильный вариант вируса попытается попасть к вам в организм.
Но существует много причин, по которым вакцины могут оказаться бесполезными или даже вредными, начиная от аллергических реакций и заканчивая тем фактом, что они могут просто не сработать. Так почему же рекомендуется делать прививки от гриппа каждый год? Всё потому, что вирусы адаптируются к вакцине, а это значит, что нужно будет постоянно разрабатывать новые виды модифицированных бананов, чтобы угнаться за гонкой генетических модификаций вируса. Ну а что если вы не хотите вакцину? Легко предотвратить поход к врачу, сложнее избежать попадания на ваш стол генномодифицированных продуктов, учитывая, что не все ГМО продукты обязаны носить соответствующие ярлыки.
В ходе проекта было выведено 10 поколений «зелёных свиней», однако в 2012 году его перестали финансировать.
5. Лекарства, основанные на куриных яйцах
Если у человека рак, то в конечном итоге он сможете вылечить его, употребляя в пищу больше яиц. Но не просто яиц, а яиц содержащих человеческие гены. Британский исследователь Хелен Санг (Helen Sang) разработала кур с геном человеческой ДНК, которая содержит белки, способные бороться с раком кожи.
Когда куры несут яйца, половина обычного белка, который составляет яичные белки, будет содержать белки препарата используемые в лечении против рака. Эти лекарства могут быть выделены и переданы пациентам. Идея состоит в том, что выработка лекарств, таким образом, будет намного дешевле и эффективней, и не потребует дорогостоящих биореакторов, которые на данный момент являются стандартом индустрии.
У этой системы есть много потенциальных преимуществ, однако некоторые люди подняли вопрос о том, будут ли куры, используемые для производства лекарств, классифицированы как «медицинское оборудование» или как «животные», потому как в первом случае это позволит производителям обойти законы о защите прав животных.
4. Очеловеченное коровье молоко
Видимо очеловеченных кур было мало, поэтому учёные из Китая уже ввели человеческие гены более 200 коровам в попытке заставить их вырабатывать человеческое грудное молоко. И что самое интересное – это сработало. По словам главного исследователя Нинга Ли (Ning Li) в настоящее время все 200 коров производят молока идентичное молоку, вырабатываемому кормящими женщинами.
Их метод включал в себя клонирование человеческих генов и смешивание их с ДНК зародышей коров. Они планируют разработать генно-модифицированную альтернативу детскому питанию, которую можно будет давать новорожденным, однако люди обеспокоены безопасностью кормления новорожденных генно-модифицированных грудным молоком.
Они специально выделили особый токсин из яда скорпиона и изменили геном капусты таким образом, чтобы он производил токсин по мере роста овоща. Но зачем им было создавать ядовитый овощ? Очевидно, токсин, который они использовали, AaIT, ядовит только для насекомых, а для людей он безопасен. Другими словами, он действует как встроенный пестицид, поэтому, когда какое-то насекомое вроде гусеницы попытается съесть капусту, его сразу же парализует, а затем у него начнутся такие сильные спазмы, что он умрёт от судорог.
Вызывает опасения лишь тот факт, что генетическая составляющая организма меняется с каждым последующим поколением. Если в геноме капусты уже будут присутствовать ядовитые гены, сколько же времени пройдёт до того, как гены мутируют в то, что будет по-настоящему токсично для людей?
2. Свиньи с человеческими органами
Наверное, дальше всех кто пытался скрестить геном человека и животных зашли несколько отдельных исследователей, которые начали размножать свиней с органами, готовыми к трансплантации человеку. Ксенотрансплантация или трансплантация органов других видов человеку, оставалась неразрешённой задачей из-за специфического фермента, вырабатываемого свиньями, который отторгался человеческим телом.
Рэндалл Пратер (Randall Prather), исследователь из Университета Миссури (University of Missouri) клонировал четырёх свиней, которые лишены гена, ответственного за производство этого фермента. Шотландская компания, та же что успешно клонировала овечку Долли, также успешно клонировала пять свиней, которые тоже лишены этого гена.
Вполне возможно, что в ближайшем будущем такие генно-модифицированные свиньи будут выращиваться, как заводы по производству органов. Другой вероятностью является то, что реальные человеческие органы будут выращиваться внутри свиней. Это исследование еще вызывает множество споров, однако крысиную поджелудочную железу уже удалось вырастить внутри мыши.
1. Суперсолдаты Дарпы (Darpa)
Компания «DARPA» министерства обороны США интересовалась человеческим геномом в течение многих лет, и, как и можно ожидать от компании, которая создала 99 процентов смертельных роботов в мире, их интерес не ограничивается образовательными целями. Обойти запрет на создание гибридных эмбрионов человека довольно сложно, тем не менее, они экспериментируют с разными способами создания «суперсолдатов», углубляя своё исследование человеческого генома.
Однако у них в запасе есть ещё один проект, который на самом деле просто ужасает: их программа «Нейронные устройства, управляемые людьми» (Human Assisted Neural Devices) ставит целью «определить, можно ли дифференциально модулировать сети нейронов с помощью оптогенетической нейростимуляции у животных». Оптогенетика это мрачная ветвь нейробиологии, которая используется для «манипуляции неврональной активности и для контроля поведения животных».
В бюджете также указывается, что они надеются получить работающую демонстрацию этой технологии на «низшем примате» уже в этом году, что является свидетельством того, что они уже далеко продвинулись. Это определённо позволяет сделать вывод, что это технология будет впоследствии использоваться для создания суперсолдат или людей-зомби.
Биотехнология. Генная инженерия
Молекулярный биолог Пробирочка расскажет про биотехнологию и все ее аспекты — от становления до прогресса
Автор
Редакторы
Комикс на конкурс «био/мол/текст»: Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, способствуют решению разнообразных задач. За счет генной инженерии совершен огромный шаг навстречу новым технологиям. В этой статье будет рассказано об истории открытия, становления и успехов биотехнологии, а также о тех вопросах, над которыми сейчас работают молекулярные биологи и биотехнологи.
Конкурс «био/мол/текст»-2018
Эта работа опубликована в номинации «Наглядно о ненаглядном» конкурса «био/мол/текст»-2018.
Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Спонсором приза зрительских симпатий выступил медико-генетический центр Genotek.
Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, хорошо способствуют решению разнообразных задач.
В настоящее время биотехнология способна решить множество проблем медицины и создания пищевых продуктов. Также особая роль биотехнологии отводится в сельском хозяйстве. Ученые занимаются созданием и дальнейшим культивированием трансгенных растений и синтезом средств их защиты.
За счет генной инженерии был совершен огромный шаг навстречу новым технологиям. Однако ее развитие породило множество споров, в том числе и о ГМО. Несмотря на все слухи, польза ГМО явно видна. ГМ-растениям не страшен холод, пестициды или засуха. Помимо этого, использование генномодифицированных организмов может улучшить качество жизни населения стран третьего мира.
Самая главная молекула. Открытие ДНК
Несомненно, молекула ДНК занимает особое место в биологической науке. Ведь ДНК является носителем всей наследственной информации, сохраняет ее и передает следующему поколению. Именно с открытия знаменитой двойной спирали учеными Фрэнсисом Криком и Джеймсом Уотсоном (1953 г.) начался новый виток в истории человеческой культуры — эпоха генетики, молекулярной биологии, биотехнологии и биомедицины.
Значение ДНК колоссально, поскольку во всех живых организмах генетическая информация существует в виде особой структуры — двойной спирали. Рассмотрим ДНК с химической точки зрения. Молекула представляет собой достаточно длинную цепь из строительных блоков — нуклеотидов. А каждый нуклеотид состоит из азотистого основания, дезоксирибозы (особого сахара) и фосфатной группы.
Язык науки. Генетический алфавит
Двухцепочечная молекула ДНК хранит генетическую информацию, а генетическим кодом называют систему записи последовательности кодируемого белка нуклеотидами в гене.
Между языком генетики и любым другим языком можно для наглядности провести параллель. Как самый обычный текст, написанный, к примеру, на русском или английском языках, описывающий последовательность действий, так и запись информации в гене о последовательности аминокислот белка состоит из логически упорядоченных букв. То есть вся генетическая информация в молекуле записана набором из четырех букв — так называемым «алфавитом». Нуклеотиды обозначаются буквами А (аденин), Т (тимин), Ц (цитозин) и Г (гуанин). Они одинаковы у всех — от бактерий до человека. Различной будет лишь последовательность этих букв.
Свойства генетического кода:
Кольцо и спираль. Разнообразие форм
После открытия структуры ДНК началось активное развитие молекулярной биологии. Тем не менее, понимая строение ДНК на уровне химической структуры, никто не мог представить, что эта молекула может быть кольцевой. Как теперь известно, кольцевую ДНК имеют бактерии. Но кольцевая молекула есть и у человека, она находится в митохондриях.
Кольцевое строение ДНК наиболее эффективно для ее удвоения, то есть репликации. Репликация кольцевого типа — относительно простой процесс удвоения молекулы. Происходит разделение цепочек исходной молекулы и наращивание по принципу комплементарности новых цепочек по существующим. В результате получаются дочерние ДНК, которые окажутся идентичными копиями исходной. При кольцевом строении молекулы процесс удвоения протекает более точно.
Роль биотехнологии. Правда о ГМО
Переход биологии на молекулярный уровень дал начало развитию биотехнологии. Ее суть состоит в использовании методов генной инженерии для рыночного производства значимых биологических продуктов: новейших лекарств, реагентов для научных исследований и продуктов питания.
Для создания всего вышеперечисленного используют рекомбинантные белки. Это такие искусственно созданные и обладающие новыми свойствами белки, синтез которых контролируют новые гены, внедренные в клетки.
Рекомбинантные ДНК
ДНК — главный материал, с которым работает генный инженер. Но проверять результаты работы и производить рекомбинантный продукт придется с помощью живых организмов. Так, при создании рекомбинантных ДНК нельзя обойтись без кишечной палочки, которая подходит для производства некоторых биотехнологических продуктов. А при работе с эукариотическими генами и белками часто используют пекарские дрожжи. Главная особенность дрожжей — отличная способность к гомологичной рекомбинации. Дрожжи также удобно использовать при производстве рекомбинантных белков, так как они умеют редактировать матричную РНК, их продукты лишены токсичности, а у некоторых видов достаточно высокий выход продукта.
Вышеуказанные микроорганизмы стали моделями для изучения молекулярной организации и отработки генетических техник у прокариот и эукариот. Для обеспечения техники безопасности и удобства работы с рекомбинантными ДНК были созданы различные мутанты кишечной палочки. К примеру, следующие:
Для генных инженеров эта бактерия особо значима, так как:
Однако у кишечной палочки есть и ряд недостатков:
Постепенно увеличивалось влияние биологии на быт и жизнь человека в целом. Это привлекло к ней всеобщее внимание. Рост возможностей современной биотехнологии породило множество споров, в том числе и о ГМО.
Интересный факт
Человечество тысячи лет вмешивается в эволюционные процессы, проводя искусственный отбор организмов с полезными, значимыми для человека спонтанно возникшими мутациями — селекцию. К примеру, когда-то всем известной кукурузы (в современном понимании) и вовсе не существовало. Древние люди занимались скрещиваниями дикого родственника нынешней кукурузы — теосинте. И как выяснилось в результате исследований, геномы теосинте и кукурузы оказались уж очень схожими. Разницу между двумя видами определили несколько десятков генетических мутаций.
Многих пугает даже сама аббревиатура «ГМО», ведь каждый вкладывает в нее какой-то свой смысл, а у многих она ассоциируется с чем-то злым, опасным и даже смертоносным. Вероятнее всего, ГМО нагоняет страх на людей из-за непонимания, что же это такое.
ГМО — это организмы, геном которых был изменен при помощи генетической инженерии. Тем не менее факт остается фактом: за счет эволюционных процессов гены изменяются сами по себе у всех живых организмов. Отличие лишь одно: в процессе эволюции мы не можем контролировать процесс изменения генома, а в лаборатории, используя современные знания и технологии, способны изменять и улучшать гены.
Кстати говоря, у ученых-генетиков нет ни стимулов, ни целей создавать что-либо угрожающее здоровью всего человечества. Специалисты стремятся продвигать научный прогресс и производить те продукты, которые будут нужны людям.
Современная биотехнология. Генная инженерия сегодня
На данный момент перед учеными стоит ряд технологических задач. Можно изменить биологические организмы с помощью генноинженерных и клеточных методов для удовлетворения потребностей человека. К примеру, улучшить качество продуктов, получить новые виды растений и животных, придать различным живым организмам улучшенные свойства и создать необходимые лекарственные препараты за счет методов генетической инженерии.
Несомненно, в биотехнологии важное место занимает генная инженерия, позволяющая «кроить и шить» геномы подопытных организмов. Роль биотехнологии очень велика, поскольку ее способами производят генноинженерные белки (интерфероны, вакцины против серьезных заболеваний), вещества для фармакологии (лекарства, антибиотики, гормоны, антитела). А различные ферментные препараты применяют в производстве стиральных порошков, спирта. Особая роль биотехнологии — синтез средств для защиты растений и создание трансгенных растений
Трансгенные растения: вред или польза?
Люди могли изменять ДНК растений на протяжении многих лет. Скрещивая друг с другом растения с самыми лучшими свойствами, специалисты замечали, что эти свойства будут сохранены в потомстве. Так зародилась селекция.
Работа специалистов-селекционеров упростилась, когда в науке стали применять генетические законы Грегора Менделя. Позже было обнаружено, что возможно улучшить необходимые свойства растений при помощи мутаций. Число этих мутаций можно увеличивать за счет химикатов и рентгеновских лучей. В результате таких экспериментов было получено огромное количество разнообразных сортов растений. Важно знать, что такой метод может дать непредсказуемые результаты, поскольку, как известно, мутации спонтанны.
Конечно, из различных источников информации можно узнать о предполагаемом вреде трансгенных растений. И на второй план уходит одна из главных задач трансгенных организмов — спасение от нехватки важных питательных веществ и голода населения Земли. Существуют такие трансгенные растения, за счет которых удалось спасти человеческие жизни. Хорошим примером послужит золотой рис.
Золотой рис — генетически модифицированный сорт посевного риса, в зернах которого содержится огромное количество бета-каротина. Эти зерна имеют золотисто-желтый цвет. Считается, что это первая сельскохозяйственная культура, которая целенаправленно генетически модифицирована для улучшения пищевой ценности.
Вообще, при обширном выращивании, золотой рис может в несколько раз улучшить качество питания во многих странах (в том числе и в ряде стран третьего мира), где наблюдается нехватка витамина A. В организме человека витамин A производится из бета-каротина, который поступает преимущественно с растительной пищей. Для модификации риса использовали два гена: ген цветка нарцисса и ген бактерии Erwinia uredovora.
Разумеется, сегодня человечество нуждается в развитии новых технологий, а также ресурсов для жизни, удовлетворяющих потребности организма. Инновации вызывают опасения: сейчас некоторые люди не доверяют современным достижениям генетической инженерии.
Все же важно понимать, что новое — не обязательно плохое, всего лишь нужно попытаться разглядеть и положительные стороны, узнать больше о новых достижениях, открытиях, сделать последующие выводы исключительно на основе достоверных фактов. Именно тогда человечество может отграничиться от ряда споров, заблуждений, встать на путь новейших биологических открытий, сделать огромный рывок вперед.
Медицина и генная инженерия: достижения и проблемы (на пересечении биологии, медицины и биоэтики)
Генная инженерия представляет собой новое направление в сфере молекулярной биологии, которое получило широкое распространение во многих сферах медицины и биологии относительно недавно.
Генная инженерия позволяет целенаправленно, по заранее намеченной программе, экспериментально модифицировать геном с использованием генетической информации из разных гетерологических систем: вирусов, бактерий, насекомых, животных и человека. Применяя методы генной инженерии, ученые способны модифицировать структуру генов, а также создавать гибридные гены.
Следует отметить огромный вклад генной инженерии в улучшение сферы медицинского обслуживания. Так, благодаря генной инженерии стало возможным создание новых диагностических препаратов, вакцин и препаратов для заместительной терапии, а также лечение наследственных заболеваний. Применение генной терапии в лечении такой патологии как первичные иммунодефициты является единственным терапевтическим методом, обеспечивающим полное излечение, что значительно улучшает качество жизни пациентов и снижает риск летального исхода. В последнее время рассматриваются новые варианты применения генной инженерии в трансплантологии и редактировании генома эмбрионов. Возможность применения этой инновационной технологии порождает множество биоэтических вопросов. Считаю, что анализ предполагаемых последствий применения генной инженерии для общества должен создавать рамки возможного вмешательства в геном организмов.
Среди многих достижений генной инженерии, получивших применение в медицине, наиболее значимое — получение человеческого инсулина в промышленных масштабах. Генные инженеры в качестве первой практической задачи решили клонировать ген инсулина. Клонированные гены человеческого инсулина были введены с плазмидой в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали.
Использование генно-инженерного инсулина не вызывало каких-либо патологических реакций в организме, в том числе и иммунопатологических, которые часто наблюдались у пациентов, использующих в терапии диабета инсулин животного происхождения. Масштабное использование генно-инженерного инсулина значительно снизило летальность от диабета, в особенности у пациентов детского возраста, так как именно у этой категории населения преимущественно развивается инсулинозависимый диабет 1 типа. Следующими разрабатываемыми генно-инженерными препаратами были интерфероны и интерлейкины, используемые в терапии вирусных и онкологических заболеваний.
Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находятся на стадии клинических исследований. Среди них лекарства, используемые в терапии артрозов, сердечно-сосудистых заболеваний, онкологических заболеваний.
Сферы использования генной инженерии в медицине значительно расширяются. Так актуальной является возможность применения генной инженерии в диагностике и терапии наследственных заболеваний.
В настоящее время известно более 4000 наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения. Генные инженеры разрабатывают диагностические препараты, позволяющие обнаруживать генетические аномалии в период беременности, что дает возможность предотвратить рождение ребенка с генетической аномалией [4].
Генная терапия наследственных заболеваний заключается в замене мутантных генов на гены «дикого типа», в которых отсутствуют мутации.
Так в 1989 году в Национальных Институтах Здоровья США впервые была предпринята попытка применить в клинической практике генную терапию для лечения пациентов с диагнозом тяжелая комбинированная иммунная недостаточность (ТКИН). Наиболее обнадеживающие результаты ожидают в тех случаях, когда заболевание обусловлено дефектом одного гена. В этом случае полагают, что удастся вводить нормальный ген в соматические клетки прицельно в то место на хромосоме, где находится дефектный ген. При гомологичной рекомбинации введенный ген заместит дефектный. Такой однократной процедуры в ряде случаев будет достаточно, чтобы излечить болезнь. Однако на практике очень трудно проконтролировать судьбу введенной в клетки ДНК, и на одно правильное встраивание в геном приходится более 1000 случайных. Разрабатывается и другой подход, когда введенный ген не заменяет дефектный, а компенсирует его функцию, встраиваясь в хромосому в другом месте.
Инновационной технологией в редактировании генома является технология CRISPR. По причине легкости редактирования генома с использованием технологии CRISPR существует значительный интерес к перспективам редактирования генома эмбриона человека.
Основной метод применения технологии CRISPR — доставка редактирующих агентов в клетки эмбриона, созданного путем оплодотворения in vitro. В последствии может оказаться более целесообразным и этически приемлемым редактировать гаметогенные клетки-предшественники у будущих родителей. Преимущество зародышевой коррекции аллелей генов, соответствующих патологическим состояниям, заключается в том, что они навсегда исчезнут из генома.
Еще одной сферой использования генной инженерии в медицине является CAR-T-терапия. На сегодняшний день одним из наиболее перспективных направлений в терапии онкологических заболеваний является адоптивная клеточная иммунотерапия. При проведении такой терапии выделяют, активируют и размножают аутологичные T-лимфоциты, а затем вводят их обратно пациенту, что приводит к частичной регрессии или эрадикации опухоли. Введение Т-клеток, модифицированных химерными антигенными рецепторами (CAR-T-клеток), является одним из наиболее активно развивающихся направлений иммуноонкологии [6]. CAR-T-клетки представляют собой генетически модифицированные собственные Т-клетки пациентов, которые содержат химерный антигенный рецептор. Этот рецептор содержит в себе часть антитела, специфического к антигену опухоли и часть, рецептора Т-клеток. С использованием CAR-T-терапии получены обнадеживающие результаты при гематологических опухолевых заболеваниях. Так, клинические испытания CAR-T-клеток, направленных против В-лимфоцитарного антигена CD19, показали их эффективность при лечении резистентных к химиотерапии опухолей В-клеточного происхождения.
Биоэтические проблемы
С точки зрения биоэтики возникает ряд вопросов о допустимости применения генной инженерии по отношению к человеку. Помимо биоэтических проблем существует ряд дополнительных вопросов как в непосредственно самой процедуре генетической модификации клеток организма человека, так и в отдаленных последствиях этой процедуры для отдельного человека и для человеческой популяции в целом.
Примером проблемы при использовании генной инженерии в редактировании генома эмбриона является риск того, что попытка исправить генетический код не родившегося ребенка может принести больше вреда, чем пользы. Современная технология редактирования генома не обладает достаточной эффективностью и специфичностью, чтобы полностью гарантировать безопасность. Мутации, возникающие в нецелевых локусах хромосом вследствие введения редактирующих конструкций, могут влиять на организм ребенка и передаваться из поколения в поколение, а их эффекты не всегда могут быть доброкачественными, предсказуемыми или обратимыми.
Использование генной терапии в лечении наследственных заболеваний также сопровождается рядом проблем, так при лечении некоторых заболеваний отдаленным последствием такой терапии является развитие онкологических заболеваний.
Обратной стороной CAR-T-терапии является высокий риск возникновения системных и опасных для жизни побочных эффектов, в первую очередь, гиперцитокинемии (цитокиновый шторм, цитокиновый каскад, синдром выброса цитокинов и синдром лизиса опухоли). Эти осложнения могут спровоцировать развитие синдрома полиорганной недостаточности и, как следствие, привести к летальному исходу. Еще одна существенная проблема применения CAR-T-терапии – неспецифическая цитотоксичность, особенно актуальная в случае терапии солидных опухолей, к которым крайне сложно подобрать специфичные антигены. Неспецифическая цитотоксичность обусловлена развитием интенсивной и быстрой кросс-реакции введенных Т-клеток на здоровые клетки, что часто приводит к летальному исходу.
Ценностные суждения из области биоэтики можно подразделить на два типа, как это делает М. Хяурю в своей работе «Категорические возражения генной инженерии − критика». Суждения первого типа касаются вероятных последствий тех или иных биотехнологических процедур, их можно назвать прагматическими (или консеквенционалистскими). Суждения второго типа высказываются вне зависимости от возможных последствий предмета суждений, их называют деонтологическими (или категорическими).
Примером этических суждений о конкретных последствиях может служить то, что граница между лечением и улучшением в области медицинской генетики не является очевидной, и улучшающая генная инженерия сама по себе может быть благом, но угрозу представляет социальное неравенство относительно распределения выгод генной инженерии так как это может привести к созданию серьезной и необратимой несправедливости. Любые генно-инженерные процедуры будут доступны в первую очередь для развитых стран, в то время как страны третьего мира будут лишены возможности использования генно-инженерных технологий.
Отдельные генетические последовательности, пригодные для улучшающей генной инженерии людей, в будущем могут быть запатентованы. Рынок улучшающей генной инженерии представляется перспективным: все люди будут заинтересованы в улучшении параметров своего потомства, но, иметь доступ к таким процедурам в первую очередь будут жители развитых стран.
Использование генной инженерии приведет не только к усугублению неравенства между жителями отдельных стран, но и к расслоению общества внутри этих стран. Генетически привилегированные люди могут стать не стареющими, здоровыми супер гениями безупречной физической красоты, отличающимися блестящим остроумием и обезоруживающим, умаляющим чувство собственного достоинства юмором, излучающими тепло, эмпатический шарм и ослабленную непоколебимость. Непривилегированные останутся сегодняшними людьми, возможно, не имеющими чувства самоуважения и страдающими от случайных приступов зависти. Мобильность между низшими и высшими классами может исчезнуть, и ребенок, рожденный в бедной семье, не имеющий генетического усовершенствования, не сможет успешно соперничать с супер детьми богатых родителей. Даже если не случится дискриминация или эксплуатация низшего класса, все еще будет что-то разрушительное в перспективе общества с такими крайними формами неравенства.
Примерами категорических суждений являются изменение уникальности и ценности личности человека, подвергшегося воздействию генной инженерии, а также дискриминация по отношению к еще не родившемуся ребенку, в случае проведения генно-инженерных процедур на зародышевой линии.
В случае участия в создании «дизайнерских детей», ученый принимает (в соответствии с собственными предпочтениями и/или общественными стереотипами) необратимые решения, задающие основания и границы органических черт будущего индивида, а вместе с тем и черт будущей личности. Из этого следует, что генетически запрограммированные личности уже более не смогут рассматривать себя как безусловных творцов своей собственной истории жизни. Это может повлечь за собой множество самых неожиданных последствий, включая расщепление идентичности, изменение механизмов, формирующих самосознание, самопонимание, самооценку, а значит и существенный сдвиг морально-нравственных норм, ценностей и идеалов. Необходимо отдавать себе отчет в том, что реализация возможностей генетической инженерии приводит к угрозе трансформации не только человеческой телесности (которая является результатом биологической эволюции, насчитывающей миллионы лет), но и собственно человеческой культуры, ее эмоционального строя, черт личности, особенности индивидуального сознания, духовного мира, способов переживания бытия, а также характера самоидентификации личности..
Присвоив себе роль творцов, человечество начинает переделывать природу, исходя исключительно из своей выгоды и не считаясь с балансом, тем самым нарушая всю структуру природных механизмов. Новаторские методы породили дилеммы, несущие в себе вызов моральным ценностям. Здесь важно обратить внимание на то чрезвычайно негативное обстоятельство, что достижения генетики и биомедицины, делая геном человека объектом постороннего вмешательства, катализируют не только возрастание значимости человеческой жизни, но и её падение. Как это ни парадоксально, но девальвация ценности жизни проявляет себя особенно ярко в технологиях, обеспечивающих воспроизводство человеческой жизни. Создание «запасных» зигот и их последующее уничтожение — условие процедуры искусственного оплодотворения. Негативные результаты пренатальной диагностики — повод для искусственного прерывания жизни. Существует реальный риск овеществления эмбриона, а значит, и выросшего из него человека. Человек здесь выступает как творец, проявляя тем самым свою универсальность. Впервые в истории живое становится объектом проектирования и конструирования; тем самым нивелируется различие между живым и неживым как объектами познания и преобразования. Безусловно, такого рода практическая деятельность должна быть ограничена определенными рамками и запретами. Однако до какой степени подобные исследования совместимы с природой и свободой человека? До какого предела следует разрешать экспериментальную интервенцию в человеческий организм, чтобы не нанести непоправимый ущерб человеческому достоинству, уникальности и неповторимости каждого индивида? [19].
В воспроизводстве наиболее важными вопросами являются интересы ребенка, который не может дать свое предварительное согласие или свободно вступать в любую форму договора. Ведь эмбрион является будущей личностью, которая не давала разрешения на проведение опытов.
Также следует отметить, что способность отбирать гены детей и создавать так называемых «дизайнерских детей» будет изменять родителей, которые будут рассматривать своих детей как обычный продукт. Тогда люди начнут оценивать потомство в соответствии со стандартами контроля качества, и это отрицательно повлияет на этический идеал безоговорочного принятия детей, не важно, каковы их способности и индивидуальные черты.
Еще одним вопросом является то, что сегодня никто не может даже приблизительно оценить те последствия, которые повлечет за собой размножение живой материи, созданной искусственно.
Также хочется осветить биоэтические вопросы генетического тестирования. Наиболее глубокие проблемы, относящиеся к прогнозированию, лежат в сфере здравоохранения, где проводится генетическое тестирование. Генные технологии имеют отношение к правам человека и в судебных случаях — например, при установлении отцовства или материнства и при идентификации подозреваемых преступников. Права человека нарушаются и тогда, когда насильственное или даже добровольное тестирование методами генной технологии может представлять угрозу частной жизни индивида, если информация помещается в общедоступную базу данных. Нарушение прав человека в данном случае состоит в том, что подозреваемым становится любой, кто отказывается подвергнуться ДНК-тестированию.
Двигаться вперед или остановиться? Предлагаем поразмышлять….
Автор — Валерия Пугачева
Лещинская, И. Б. Генетическая инженерия / И. Б. Лещинская // Соросовский образовательный журнал. – 1996. – № 1. – С. 32-394.
Мохов, А. А. Использование технологии геномного редактирования: достижения и перспективы / А. А. Мохов, А. А. Чапленко, А. Н. Яворский // Биомедицина. – 2019. – Т. 15, № 2. – С. 34-42.
Молекулярные подходы к безопасной и контролируемой Т-клеточной терапии / Р. С. Калинин [и др.] // Acta Naturae. – 2018. – Т. 10, № 2. – С. 17-25.
Буйнякова, И. С. «Дизайнерские младенцы» социально-этические проблемы биотехнологического проектирования будущих детей / И. С. Буйнякова // Научные ведомости. – 2017. – Т. 40, № 9. – С. 130-139.
Воронцова, З. И. Философские и социокультурные проблемы биогенных технологий / З. И. Воронцова // Новые технологии. – 2009. – № 4. – С. 13-19.
Найдыш, В. М. Философские проблемы антропогенетики генной инженерии (статья вторая) / В. М. Найдыш, Е. Н. Гнатик // Вестник РУДН. – 2009. – № 3. – С. 31-38.
Воронцов, С. А. Морально-этические проблемы развития биотехнологии / С. А. Воронцов // Вестник молодежной науки. – 2017. – Т. 5, № 12. – С. 22-27.
International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity / C. Picard [et al.] // J. Clin. Immunol. – 2018. – Vol. 38, N 1. – P. 96-128.
Первичные иммунодефициты: принципы терапии и организации медицинской помощи / Н. Chapel [et al] // Frontiers in Immunology. – 2014. – Т. 5, № 12. – С. 1-15.