Что понимается под гранулометрическим составом почвы
Гранулометрический состав
Гранулометри́ческий соста́в (механический состав, почвенная текстура) — относительное содержание в почве, горной породе или искусственной смеси частиц различных размеров независимо от их химического или минералогического состава. Гранулометрический состав является важным физическим параметром, от которого зависят многие аспекты существования и функционирования почвы, в том числе плодородие.
Гранулометрический состав [1] — содержание в почве механических элементов, объединенных по фракции.
Содержание
Фракции частиц при гранулометрическом анализе почв
В почвах и породах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует.
Исторически первая классификация фракций предложена А. Аттербергом в 1912 и была основана на изучении физических свойств монофракциальных смесей. Их анализ показал резкие качественные различия, в частности, в липкости при достижении размеров 0,002, 0,02 и 0,2 мм.
Шкала Аттерберга легла в основу более новых зарубежных классификаций. В СССР и России была принята несколько иная классификация Н. А. Качинского.
Шкала Качинского | |
---|---|
Граничные значения, мм | Название фракции |
до 0,001 | Ил |
0,001—0,005 | Мелкая пыль |
0,005—0,01 | Средняя пыль |
0,01—0,05 | Крупная пыль |
0,05—0,25 | Тонкий песок |
0,25—0,5 | Средний песок |
0,5—1 | Крупный песок |
Вместе с этими в классификации Качинского выделяются фракции физического песка и физической глины, соответственно, крупнее и мельче 0,01 мм. 1—3 мм — фракция гравия, крупнее 3 мм — каменистая часть почвы.
Классификации почв по гранулометрическому составу
В настоящее время получили распространение два основных принципа построения классификаций:
Однозначного перехода от одной классификации к другой не существует, однако используя кумулятивную кривую выражения результатов гранулометрического состава можно назвать почву по обеим классификациям.
Влияние гранулометрического состава на свойства почв и пород
Гранулометрический состав определяет многие физические свойства и водно-воздушный режим почв, а также химические, физико-химические и биологические свойства.
Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые почвы могут иметь проблемы с воздухосодержанием, лёгкие — с водным режимом.
Разные фракции обычно представлены различными минералами. Так, в крупных преобладает кварц, в мелких — каолинит, монтмориллонит. По фракциям различается способность образовывать с гумусом органоминеральные соединения.
Методы определения (гранулометрия)
состава песчаных и супесчаных почв.Разделение материала на гранулометрические фракции производится при помощи стандартного набора сит с последующим взвешиванием выделенных фракций.
Способы выражения
При определении гранулометрического состава почв выявляется процентное содержание фракций механических элементов. Например, почва содержит 23,4% физической глины.
Влияние гранулометрического состава на продуктивность растений
Продуктивность растений на почвах различного гранулометрического состава может существенно различаться, что объясняется различием в свойствах почв. Оптимальный гранулометрический состав зависит от условий влагообеспеченности и технологии возделывания. В засушливых условиях низкий запас влаги в лёгких почвах (супесях и песках) и слабый капиллярный подъём приводят к существенному снижению урожайности. В условиях хорошего и избыточного увлажнения такие почвы лучше аэрируются и растения на них чувствуют себя лучше. Низкий запас элементов питания в лёгких почвах можно легко устранить при внесении удобрений, которые имеют высокую эффективность на таких почвах вследствие малой буферности.
См. также
Примечания
Полезное
Смотреть что такое «Гранулометрический состав» в других словарях:
Гранулометрический состав — (a. granulometric composition; н. Kornverteilung; ф. composition granulometrique, granulometrie; и. composicion granulometrica, granulometria) распределение зёрен (кусков) по крупности в массивах г. п., горной массе, почве или… … Геологическая энциклопедия
гранулометрический состав — Количественное распределение частиц пробы в зависимости от их размера, выражается в процентах массы, прошедшей или оставшейся на выбранных ситах, по отношению ко всей массе пробы. [ГОСТ Р 50724.3 94] Тематики ферросплавы … Справочник технического переводчика
гранулометрический состав — Содержание в горной породе или почве зерен разного размера, выраженное в процентах от массы или количества зерен исследованного образца … Словарь по географии
гранулометрический состав — 4.2.43 гранулометрический состав (particle size distribution): Распределение твердого топлива из бытовых отходов на фракции по размеру частиц. Источник: ГОСТ Р 54235 2010: Топливо твердое из бытовых отходов. Термины и определения оригинал … Словарь-справочник терминов нормативно-технической документации
гранулометрический состав — granuliometrinė sudėtis statusas T sritis Standartizacija ir metrologija apibrėžtis Procentinis skirtingų matmenų dalelių kiekis birioje medžiagoje. atitikmenys: angl. fractional composition; granulometric composition vok. Kornaufbau, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
гранулометрический состав — granuliometrinė sudėtis statusas T sritis chemija apibrėžtis Procentinis skirtingų matmenų dalelių kiekis birioje medžiagoje. atitikmenys: angl. fractional composition; grading; granulometric composition rus. гранулометрический состав;… … Chemijos terminų aiškinamasis žodynas
гранулометрический состав — granuliometrinė sudėtis statusas T sritis fizika atitikmenys: angl. fractional composition; granulometric composition vok. Kornaufbau, m; Korngrößenverteilung, f; Kornzusammensetzung, f rus. гранулометрический состав, m; фракционный состав, m… … Fizikos terminų žodynas
гранулометрический состав — granuliometrinė sudėtis statusas Aprobuotas sritis statyba apibrėžtis Įvairių medžiagų (grunto, nešmenų, skaldos ir t. t.) įvairaus dydžio dalelių masių procentai tirtame bandinyje, prilyginant jo masę 100%. atitikmenys: angl. grading; grain size … Lithuanian dictionary (lietuvių žodynas)
Гранулометрический состав — ситовой состав, зерновой состав количественное распределение частиц в пробе в зависимости от размера, выраженное в % по массе продукта, прошедшего через сито (набор сит) или оставшегося на каждом сите (наборе сит) … Энциклопедический словарь по металлургии
ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ — ситовой состав, зерновой состав количественное распределение частиц в пробе в зависимости от размера, выраженного в % по массе продукта, прошедшего через сито (набор сит) или оставшегося на каждом сите (наборе сит) … Металлургический словарь
Гранулометрический состав почв и почвообразующих пород и его значение
Твердая фаза почв и почвообразующих пород состоит из обломков (частиц) первичных и вторичных минералов, органического вещества (гумуса) и органо-минеральных соединений, которые называются механическими элементами.
Механические элементы находятся в твердой фазе почв в раздельно-частичном состоянии, а также в виде агрегатов разной формы и величины.
Классификация механических элементов и их свойства
Свойства механических элементов твердой фазы почв и почвообразующих пород, химический и минералогический составы меняются от их размера довольно отчетливо, а иногда и резко, что послужило основанием для разделения их на группы, или фракции.
Такая группировка называется классификацией механических элементов. Наибольшее признание получила классификация механических элементов Н. А. Качинского.
Названия фракций механических элементов
Размеры фракций, мм
Камни (>3 мм) — обломки горных пород и минералов, водопроницаемость провальная, элементы питания находятся в труднодоступной форме.
Гравий (3—1 мм) — обломки первичных минералов, водопроницаемость провальная, водоподъемная способность отсутствует, влагоемкость очень низкая (
Песок (1—0,05 мм) — обломки первичных минералов, среди которых преобладают кварц и полевые шпаты; по мере уменьшения диаметра частиц песка возрастает содержание кварца как минерала, более устойчивого к выветриванию; водопроницаемость высокая, низкая водоподъемная способность (от нескольких до 50 см) и низкая влагоемкость (3—10 %).
Пыль крупная (0,05—0,01 мм) — близка по минералогическому составу к фракциям песка, но водные свойства несколько лучше, не участвует в структурообразовании.
Почвы, обогащенные крупной и средней пылью, после дождя и последующего высыхания заплывают с образованием поверхностной корки, отрицательно влияющей на водно-воздушные свойства пахотного горизонта, что может привести к гибели всходов растений; устраняется это боронованием.
Пыль средняя и мелкая (0,01—0,001 мм) — в этих фракциях по сравнению с крупной пылью уменьшается количество кварца и полевых шпатов, особенно в мелкой пыли.
В мелкой пыли больше слюд, роговой обманки, характерно наличие вторичных минералов и гумусовых веществ; частицы средней пыли практически не участвуют в структурообразовании.
А частицы мелкой пыли способны к коагуляции и структурообразованию; влагоемкость и водоподъемная способность высокие; водопроницаемость низкая.
Частицы твердой фазы почвы крупнее 1 мм (камни и гравий) называют скелетной частью, а менее 1 мм — мелкоземом.
Учитывая, что каждая фракция (группа) механических элементов обладает определенными свойствами, от которых зависят показатели плодородия, принято определять их процентное содержание и процентное соотношение.
Процентное содержание каменистой и гравелистой фракций определяют на основе просеивания образца почвы через почвенные сита, а в основу метода разделения по размеру фракций мелкозема положены скорости их падения в воде, рассчитанные по формуле Дж. Т. Стокса.
Классификация почв и почвообразующих пород по гранулометрическому составу
Суммарное процентное содержание фракций мелкозема от 1 до 0,01 мм называют физическим песком, менее же 0,01 мм — физической глиной, а их процентное соотношение — гранулометрическим составом.
Именно это процентное соотношение использовано для характеристики гранулометрического состава, потому что все главнейшие свойства почв особенно резко изменяются на переходе размера частиц мелкозема через 0,01 мм.
В таблице 8 приведена классификация гранулометрического состава Н.А. Качинского (краткая шкала), в которой каждому определенному процентному соотношению физической глины и физического песка дано свое название, заимствованное из народного лексикона.
Эта классификация получила в почвоведении наибольшее признание.
В таблице 8 для краткости не приводится процентное содержание физического песка, а подразумевается, что на него приходится все остальное (до 100 %) процентное содержание мелкозема размером 0,01—1 мм.
8. Классификация почв по гранулометрическому составу Н. А. Качинского
Краткое название по гранулометрическому составу
Содержание физической глины (частиц 80
II. Классификация почв по каменистости
Степень каменистости почвы
Чем больше физической глины в твердой фазе почв, тем тяжелее их обрабатывать, поэтому в агрономической практике различают почвы тяжелые и легкие.
К тяжелым относятся глинистые и тяжелосуглинистые почвы, почвы легко- и среднесуглинистые менее тяжелые по гранулометрическому составу, легкими называют супесчаные и песчаные почвы.
В почвах более тяжелых при равных условиях с легкими (плотность, гумусность и т. д.) в одном и том же объеме твердой фазы содержится в естественных условиях больше воздуха и влаги вследствие повышенной пористости и суммарной удельной поверхности частиц мелкозема.
Так как воздух — плохой проводник тепла, а вода обладает высокой теплоемкостью, то тяжелые почвы нагреваются солнцем медленнее легких, поэтому в агрономической практике их называют холодными, а легкие почвы — теплыми.
Из таблицы 8 видно, что для почв разных типов почвообразования при одном и том же гранулометрическом составе (начиная с супеси) содержание физической глины разное.
Это связано с тем, что частицы физической глины почв разных типов почвообразования обладают разной способностью к агрегатированию, имеют неодинаковый качественный состав и свойства. Например, в солонцах и сильносолонцеватых почвах содержится повышенное количество обменного катиона натрия.
В результате усиливаются связность почв при высыхании и липкость при увлажнении. Из-за этого солонцы и сильносолонцеватые почвы на одну градацию тяжелее почв подзолистого типа почвообразования, которые содержат в почвенном поглощающем комплексе повышенное количество водородных ионов, усиливающих дисперсность твердой фазы.
Почвы степного типа почвообразования вследствие хорошей гумусированности (гуматного типа гумуса), высокой насыщенности почвенного поглощающего комплекса катионами кальция и магния обладают повышенной способностью к агрегатированию.
Поэтому они при одном и том же содержании физической глины являются более легкими по сравнению с минеральными почвами других типов почвообразования.
Кроме кратких названий почв и почвообразующих пород по гранулометрическому составу (см. табл. в почвоведении используют также полные названия, в которых к краткому названию добавляют названия двух преобладающих по содержанию групп фракций мелкозема: песчаной (1—0,05 мм), крупнопылеватой (0,05—0,01 мм), пылеватой (0,01—0,001) или иловатой ( 3 мм), то в зависимости от их процентного содержания к названию по гранулометрическому составу мелкозема добавляют название по степени каменистости (см. табл. 8). Например, суглинок легкий пылевато-песчаный среднекаменистый (при содержании камней 5—10 %).
Значение гранулометрического состава
Гранулометрический состав определяет практически все свойства почв, поэтому его необходимо учитывать в работе агронома.
Чем тяжелее гранулометрический состав, тем богаче минералогический состав почв, больше валовых и подвижных элементов питания растений, активнее совершаются гумусово-аккумулятивные процессы и процессы структурообразования.
Выше поглотительная способность, теплоемкость, влагоемкость, биогенность почв, ниже водо- и воздухопроницаемость и т. д. Таким образом, гранулометрический состав влияет на основные показатели плодородия.
От гранулометрического состава зависят:
Гранулометрический состав влияет на интенсивность развития водной и ветровой эрозий, на проходимость транспорта по грунтовым дорогам.
От гранулометрического состава зависят технологические особенности агроприемов:
От гранулометрического состава зависят затраты топлива на обработку почв, на земляные работы.
Какой же гранулометрический состав лучше для земледелия? Многие наиболее благоприятные свойства и режимы складываются в легко- и среднесуглинистых почвах.
Однако при хорошей оструктуренности почв, например черноземов, лучшими будут тяжелосуглинистые и глинистые почвы. В агрономической практике используют приемы, позволяющие при необходимости регулировать гранулометрический состав. На песчаных почвах проводят глинование, на глинистых — пескование.
Контрольные вопросы и задания
Гранулометрический состав почвообразующих пород и почв
От гранулометрического состава почвы в значительной мере зависят ее свойства, богатство и плодородие. По гранулометрическому составу верхних почвенных горизонтов и почвообразующих пород почвы делятся на песчаные (рыхлые и связные), супесчаные, суглинистые (легкие, средние и тяжелые) и глинистые (легкие, средние и тяжелые).
К физико-механическим свойствам почвы относят липкость, пластичность, набухание, усадку, связность, твердость и сопротивление при обработке. Рассмотрим некоторые наиболее важные из них.
Физическая спелость почвы. От связности и липкости зависит особое агрономическое свойство почвы, называемое физической спелостью. Это такое ее состояние, при котором она хорошо крошится и требует при этом наименьших усилий при обработке. Физическая спелость почвы наступает при определенной влажности которая, зависит от механического состава, типа почва, структуры, содержания гумуса, степени задернения и скорости обработки. При физической спелости почва имеет невысокую связность и липкость.
Водные свойства почвы. Вода участвует во всех процессах происходящих в почве. Водными свойствами почвы называют такие, которые определяют поведение почвенной влаги. К ним относят водоудерживающую, водопропускную и водоподъемную способности почв.
Водоудерживающая способность почв количественно может характеризоваться величинами гигроскопической влажности и влагоемкости. Гигроскопическая влажность – это количество парообразной воды, которое может поглощать (сорбировать) сухая почва вследствие притяжения поверхностью почвенных частиц. Наибольшее количество воды почва поглощает из воздуха, насыщенного водяными парами до относительной влажности около 100%. Эта величина называется максимальной гигроскопической влажностью или максимальной гигроскопичностью (МГ). Выражают ее в процентах от массы сухой почвы. Растениям гигроскопическая влага недоступна. Содержание ее зависит от гранулометрического состава, гумусированности и от поглотительной способности почв.
Водные режимы почв.Совокупность процессов поступления влаги в почву, ее передвижения и расхода называют водным режимом. Бывает: промывным и непромывным, выпотным, мерзлотным, ирригационного (при орошении).
Доступность влаги растениям. Часть влаги с огромной силой удерживают частицы почвы. Она недоступна растениям. Устойчивое завядание их начинается при содержании влаги в почве в 1,3-1,5 раза большем, чем величина МГ. Влажность, при которой растения начинают завядать, называют влажностью завядания (ВЗ).
Глинистые минералы группы гидрослюд и монтмориллонита обладают важной способностью аккумулировать химические элементы, необходимые для жизнедеятельности трав. Поэтому в условиях северных лесов породы, богатые этими минералами, более благоприятны для образования дерново-подзолистых почв, чем породы, лишенные гипергенных силикатов, на которых формируются подзолистые почвы. Переполнение почвообразующей породы обломочным кварцем создает условия дефицита элементов питания для растений. Важное значение для водно-физических свойств почвы и её водного режима имеет гранулометрический состав почвообразующих пород.
ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ ПОЧВ
Лекция 6
Почвоведение
Твердая фаза минеральных почв и почвообразующих пород состоит из элементарных частиц различного размера, которые называют механическими элементами. Под элементарной почвенной частицей, или гранулой, понимают обособленную минеральную, органо-минеральную или органическую частицу кристаллического или аморфного строения, все молекулы которой находятся в химической взаимосвязи. По происхождению механические элементы бывают минеральные, органические и органо-минеральные. Они представляют собой обломки горных пород, отдельные первичные и вторичные минералы, гумусовые вещества и продукты их взаимодействия с минеральными компонентами почвы.
В почве механические элементы находятся в раздельно-частичном состоянии в виде совокупности индивидуальных зерен или гранул, как в песках и супесях. В суглинках и глинах под действием различных факторов механические элементы соединены в агрегаты. Чтобы перевести их в раздельно-частичное состояние, агрегаты разрушают механическим или химическим путем.
МЕХАНИЧЕСКИЕ ЭЛЕМЕНТЫ, ИХ КЛАССИФИКАЦИЯ И СВОЙСТВА
Механические элементы, близкие по размерам, объединяют во фракции. В России наиболее широко распространена классификация механических элементов, разработанная А. Н. Сабаниным и В. Р. Вильямсом и уточненная Н. А. Качинским.
Отдельные фракции механических элементов заметно различаются по химическому и минералогическому составу, физико-химическим и водно-физическим свойствам.
Общая закономерность заключается в том, что по мере уменьшения размера фракций в них снижается содержание кварца, увеличивается количество слюд и вторичных минералов. Чем меньше размер механических элементов, тем ниже в них содержание кремния как основного элемента кристаллической решетки первичных минералов. Наоборот, содержание алюминия, железа, кальция, магния существенно возрастает при переходе от песчаных фракций к илистой. Содержание гумуса и емкость катионного обмена также возрастают с уменьшением размера механических элементов.
Каждая из фракций имеет свои характерные особенности. В случае доминирования какой-либо фракции в гранулометрическом составе она будет отражать определенные состав и свойства.
При содержании каменистого материала менее 0,5 % он не мешает обработке почвы. Если почва слабокаменистая, при условии, что каменистый материал представлен мелким щебнем или галькой, ее обработка не отличается от обработки некаменистой почвы. Однако при этом происходит ускоренный износ рабочих органов обрабатывающих орудий.
При средней каменистости почвы необходимо вычесывать крупный каменистый материал. Однако мелкие камни, остающиеся после вычесывания, способствуют быстрому износу орудий, обрабатывающих почву. Для успешного возделывания полевых культур на сильнокаменистых почвах следует проводить сложные мелиоративные работы по выбору и удалению каменистого материала с полей. Без проведения специальных мелиоративных работ сильнокаменистые почвы можно использовать для возделывания плодово-ягодных культур.
Валунный тип каменистости чаще всего встречается в северо-западных районах Нечерноземной зоны. Щебенчатые почвы широко представлены в горных и предгорных районах.
Фракция крупной пыли по минералогическому составу приближается к песчаной, имеет невысокую поглотительную способность и влагоёмкость, не пластична, слабо набухает, отличается низкой величиной удельной поверхности 1. 2 м 2 /г.
Фракция средней пыли характеризуется низкой удельной поверхностью —2. 10 м 2 /г, не способна к коагуляции, но удерживает влагу и набухает. Вследствие повышенного содержания слюд отличается связностью и пластичностью, имеет плохую водопроницаемость.
Почвы, обогащенные крупной и средней пылью, легко распыляются, склонны к заплыванию и уплотнению, отличаются слабой водопроницаемостью и отсутствием структурообразующего эффекта.
Фракция мелкой пыли состоит не только из первичных, но и вторичных минералов. В связи с этим фракция мелкой пыли имеет свойства, не присущие более крупным фракциям. Она способна к коагуляции и структурообразованию, обладает поглотительной способностью, содержит гумусовые вещества в повышенных количествах. Ее удельная поверхность превышает 50 м 2 /г. Однако высокое содержание мелкой пыли в почвах в свободном, не агрегированном состоянии придает им неблагоприятные свойства: плотное сложение, плохую водопроницаемость, чрезмерное набухание и усадку, липкость, трещиноватость, а также избыточное количество влаги, недоступной для растений.
Ил состоит преимущественно из высокодисперсных вторичных минералов. Из первичных минералов встречаются кварц, ортоклаз, мусковит. Илистая фракция имеет большое значение в создании почвенного плодородия. Благодаря высокой удельной поверхности, достигающей 200. 250 м 2 /г, она играет главную роль в физико-химических процессах, протекающих в почве. Ил отличается высокой поглотительной способностью, содержит много гумуса, элементов зольного и азотного питания растений. Особо важная роль в структурообразовании и формировании почвенного поглощающего комплекса (ПИК) принадлежит коллоидной части этой фракции.
Водно-физические и физико-механические свойства почв, обогащенных илистой фракцией, в значительной мере определяются ее способностью к коагуляции и склеиванию механических элементов в агрегаты. Эта способность зависит от минералогического и химического состава почвы, обогащённости ее гумусом, соединениями кальция и железа, а также от состава поглощенных катионов. Необратимая коагуляция илистой фракции способствует структурообразованию. Структурная почва даже при высоком содержании ила характеризуется благоприятными физическими свойствами.
В некоторых случаях высокое содержание ила негативно влияет на свойства почв. При развитии восстановительных процессов в результате переувлажнения, высоком содержании в ППК обменных ионов натрия или водорода, большом количестве минералов группы монтмориллонита в малогумусных почвах значительная часть ила находится в свободном состоянии и легко пептизируется водой. Почвы, содержащие много водопептизируемого ила, при увлажнении заплывают, содержат мало воздухоносных пор, характеризуются повышенной плотностью, набухаемостью и липкостью, низкой водопроницаемостью, склонны к коркообразованию.
Таким образом, с уменьшением размера почвенных частиц изменяются их свойства. Особенно контрастные различия между фракциями механических элементов видны при сопоставлении их водно-физических и физико-механических свойств.
Крупные фракции не пластичны, не набухают, не способны к обменному поглощению катионов и не содержат гумуса. Они не могут образовывать капилляры и поглощать влагу, но отличаются высокой водопроницаемостью. С уменьшением размера фракций их свойства меняются на прямо противоположные. При этом довольно резкие изменения свойств происходят у фракций размером 0,01 мм. С учетом этого все фракции механических элементов по предложению Н.М. Сибирцева разделяют на две большие группы: физический песок и физическую глину.
КЛАССИФИКАЦИЯ ПОЧВ ПО ГРАНУЛОМЕТРИЧЕСКОМУ СОСТАВУ
Относительное содержание в почве фракций механических элементов называется гранулометрическим составом. Его определяют с помощью механического анализа, результаты которого выражают в процентах от массы абсолютно сухой почвы.
Классификация почв по гранулометрическому составу основана на соотношении физического песка и физической глины. Ее основы разработал Н. М. Сибирцев и в последующем существенно откорректировал Н. А. Качинский. Классификация Н. А. Качинского построена с поправкой на генезис почв с учетом того, что одно и то же содержание физической глины по-разному сказывается на свойствах подзолистых, степных и солонцовых почв, для которых имеются различные шкалы.
Классификация существует уже длительное время и была разработана исходя из того, что свойства почв в основном зависят от гранулометрического состава.
Гранулометрический состав, за редким исключением, почвы наследуют от почвообразующей породы. При широком варьировании гранулометрического состава почвообразующих пород на них формируются и различные по гранулометрическому составу почвы даже в пределах одного типа.
• верхняя часть профиля наиболее обогащена илистыми и мелкопылеватьтми Частицами. В нижележащих горизонтах по мере приближения к цочнообразующей породе содержание тонкодис Персных частиц уменьшается а крупнопьглеватых и песчаных постепенно увеличивается, количество грубообломочного материала также возрастает. Содержание илистыхчастиц и физической глины в почве всегда выше, чем в почвообразующей породе. Такое распределение механических элементов Типично для бурых лесных и дерново-карбонатных почв, формирующихся на элювии плотных осадочных или изверженных пород, и связано с процессом оглинивания, наиболее интенсивно протекающим в верхней биохимически активной части почвенного профиля;
• содержание фракций механических элементов практически не изменяется в пределах почвенного профиля; оно такое же, как и в почвообразующей породе. Такая картина наблюдается в почвах, где не происходит существенной трансформации минеральной части под влиянием процесса почвообразования, типичных и обыкновенных черноземах, темнокаштановых почвах и др.;
• верхние горизонты почвы обеднены илистой фракцией, максимальное содержание этой фракции в средней части почвенного профиля, где формируются иллювиальные или метаморфические горизонты. Содержание ила в почвообразующей породе чаще всего выше, чем в верхней части профиля почвы.
Дифференциация почв по гранулометрическому составу может быть обусловлена не процессами выветривания и почвообразования, а исходной неоднородностью почвообразующей породы. Например, на севере таежно-лесной зоны значительные площади занимают почвообразующие породы, представляющие собой морену, перекрытую маломощными песчаными или супесчаными наносами. Подзолистые почвы, формирующиеся на них, имеют резко дифференцированный профиль. Песчаный или супесчаный гранулометрический состав верхних горизонтов на определенной глубине резко изменяется на суглинистый или глинистый.
- Что понимается под гранулометрическим составом почв
- Что понимается под гуманизацией образования в педагогике