Что понимают под действительным значением физической величины метрология

Черчение

Основные метрологические понятия

Физическая величина — свойство, общее в качественном от­ношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта.

Например, длина, масса, электропроводность и теплоемкость тел, давле­ние газа в сосуде и т. д.

Единица физической величины — физическая величи­на, которой по определению присвоено числовое значение, равное 1.

Например: масса — 1 кг, сила — 1 Н, давление — 1 Па, длина 1 м, угол 1°.

Значение физической величины — оценка физической величины в виде некоторого числа принятых для нее единиц.

Например: диаметр отверстия — 0,01 м, масса тела — 93 кг.

Измерение — нахождение значения физической величины опыт­ным путем с помощью специальных технических средств.

Например: измерение диаметра вала — микрометром, давления среды — манометром или вакуумметром.

В метрологии различают истинное и действительное значения физиче­ских величин. Истинное значение — значение физической ве­личины, которое идеальным образом отражает в качественном и количе­ственном отношениях соответствующее свойство объекта. Истинное зна­чение должно быть свободно от ошибок измерения, но так как все физи­ческие величины находят опытным путем и их значения содержат ошиб­ки измерений, то истинное значение физических величин остается неиз­вестным.

Действительное значение — значение физической величи­ны, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для определенной цели может быть использовано вместо него. При технических измерениях значение физической величины, найденной с допустимой по техническим требованиям погрешностью, при­нимается за действительное значение.

Источник

Истинное и действительное значение физиз величины.

Метрология

Основные понятия и определения

Объектом измерения является физическая величина, характеризующая одно из свойств физического объекта.

Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи, называется измеряемой физической величиной или просто измеряемой величиной [3].

По природе измеряемые величины разделяются на 11 классов: электрические, магнитные, электромагнитные, механические, акустические, тепловые, оптические, химические, радиоактивные, пространственные и временные. Каждый класс включает конечное множество конкретных величин.

По виду отражаемой стороны эмпирических объектов каждый класс измеряемых величин разделяется на два подкласса: энергетические и вещественные величины. К энергетическим величинам относятся, например, сила электрического тока, электрическое напряжение, напряженность электрического поля, напряженность магнитного поля, механическая сила, давление и т.п. Метрологическая общность энергетических величин заключается в использовании при их измерении энергии объектов исследования. Вещественными величинами являются различные свойства веществ и материалов, а также параметры физических тел и объектов, например удельное электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость, магнитное сопротивление, акустическое сопротивление и т.п. Метрологическая общность вещественных величин состоит в использовании при их измерении измерительных преобразований и других приемов косвенных измерений.

По признаку метризуемости измеряемые величины разделяются на непосредственно и косвенно метризуемые величины. К непосредственно метризуемым величинам относится около двух десятков физических величин, остальные являются косвенно метризуемыми величинами. Непосредственно метризуемые величины измеряются наиболее просто и с высокой точностью. Измерение косвенно метризуемых величин осуществляется с использованием различных функциональных связей и с преобразованием их в непосредственно метризуемые величины.

По признаку изменяемости выделяют состояния и изменения величин. Состояние величины в общем случае характеризуется размером величины, нахождение значения которого и является задачей измерения.

Классификация измерений.

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии.

Юстиро́вка (от нем. justieren выверять) — совокупность операций по выравниванию конструкций и конструктивных элементов (поверхностей, столбов, стоек и т. д.) вдоль некоторого направления («осевого»), а также по приведению меры, измерительного или оптического прибора, механизмов (или их части) в рабочее состояние, обеспечивающее точность, правильность и надежность их действия. При юстировке приборов — осуществляется проверка и наладка измерительного и/или оптического прибора, подразумевающая достижение верного взаиморасположения элементов прибора и правильного их взаимодействия.

Калибровка средства измерений — совокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средств измерений.

Калибровка средств измерений производится преимущественно метрологическими службами юридических лиц с использованием эталонов, соподчинённых государственным эталонам единиц величин.

В России калибровочная деятельность регламентирована Законом РФ «Об обеспечении единства измерений» и многими другими подзаконными актами.

Поверка средств измерений — совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия характеристик средства измерения установленным требованиям.

Национальная система гост р

Система сертификации ГОСТ Р служит для организации и проведения работ по обязательной сертификации продуктов, работ и услуг и обеспечения требуемого уровня объективности и достоверности результатов сертификации. Она открыта для участия в ней федеральных органов, различных организаций, признающих и выполняющих ее правила. Взаимодействие системы сертификации ГОСТ Р с остальными системами сертификации, создаваемыми федеральными органами исполнительной власти, происходит на основе соглашений, заключаемых Ростехрегулированием с соответствующими организациями, в случае если иное не предусмотрено законодательными и прочими нормативными правовыми актами Российской Федерации Система ГОСТ Р имеет право взаимодействовать с международными, региональными и государственными системами сертификации других стран по вопросам, связанным с подтвержденим соответствия, включая признание сертификатов, знаков соответствия и протоколов испытаний.

Обьекты сертификации

В настоящее время каждый предприниматель знаком с процессом сертификации, поскольку она помогает не только получить дополнительные прибыли, но и значительно улучшить процесс производства или оказания услуг. При процедуре сертифицирования в качестве объектов сертификации могут выступать продукция, услуги, те или иные работы, системы качества, производство, технологический процесс. То есть объектов сертификации существует большое количество, на которые могут быть оформлены различные сертификаты.

Объекты сертификации принято классифицировать на группы. В первую группу объектов сертификации входят любые товары, производство и продукция. Во вторую группу входят услуги, работы. Услуги принято делить на материальные и нематериальные. Материальные услуги – это перевозка грузов и людей, банковские услуги, то есть такая услуга подразумевает восстановление или создание нового товара, перехода его в иное состояние. Нематериальная услуга касается восстановления здоровья, наполнение внутреннего мира, повышение профессионализма и многое другое.

Проведение сертификации

3.1. Сертификация продукции включает:

подачу заявки на сертификацию;

принятие решения по заявке, в том числе выбор схемы;

отбор, идентификацию образцов и их испытания;

оценку производства (если это предусмотрено схемой сертификации);

выдачу сертификата;

Метрология

Основные понятия и определения

Объектом измерения является физическая величина, характеризующая одно из свойств физического объекта.

Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи, называется измеряемой физической величиной или просто измеряемой величиной [3].

По природе измеряемые величины разделяются на 11 классов: электрические, магнитные, электромагнитные, механические, акустические, тепловые, оптические, химические, радиоактивные, пространственные и временные. Каждый класс включает конечное множество конкретных величин.

По виду отражаемой стороны эмпирических объектов каждый класс измеряемых величин разделяется на два подкласса: энергетические и вещественные величины. К энергетическим величинам относятся, например, сила электрического тока, электрическое напряжение, напряженность электрического поля, напряженность магнитного поля, механическая сила, давление и т.п. Метрологическая общность энергетических величин заключается в использовании при их измерении энергии объектов исследования. Вещественными величинами являются различные свойства веществ и материалов, а также параметры физических тел и объектов, например удельное электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость, магнитное сопротивление, акустическое сопротивление и т.п. Метрологическая общность вещественных величин состоит в использовании при их измерении измерительных преобразований и других приемов косвенных измерений.

По признаку метризуемости измеряемые величины разделяются на непосредственно и косвенно метризуемые величины. К непосредственно метризуемым величинам относится около двух десятков физических величин, остальные являются косвенно метризуемыми величинами. Непосредственно метризуемые величины измеряются наиболее просто и с высокой точностью. Измерение косвенно метризуемых величин осуществляется с использованием различных функциональных связей и с преобразованием их в непосредственно метризуемые величины.

По признаку изменяемости выделяют состояния и изменения величин. Состояние величины в общем случае характеризуется размером величины, нахождение значения которого и является задачей измерения.

истинное и действительное значение физиз величины.

Истинное значение физической величины – значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Истинное значение физической величины может быть соотнесено с понятием абсолютной истины. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.

Действительное значение физической величины (англ. conventional true value (of a quantity)) – значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Основные единицы измерения физических величин.

Основные единицы СИ и измеряемые ими величины:

Килограмм kg |кг Масса

Секунда | s | с | Время

| Ампер | А | А | Сила электрического тока

| Кельвин | К | К Термодинамическая температура*

Моль | mol | моль | Количество вещества

Кандела | cd | кд | Сила света

Классификация измерений.

Классификация средств измерений может проводиться по следующим критериям.

1. По характеристике точности измерения делятся на равноточные и неравноточные.

Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях.

Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях.

2. По количеству измерений измерения делятся на однократные и многократные.

3. По типу изменения величины измерения делятся на статические и динамические.

Статические измерения – это измерения постоянной, неизменной физической величины.

Динамические измерения – это измерения изменяющейся, непостоянной физической величины.

4. По предназначению измерения делятся на технические и метрологические.

Технические измерения – это измерения, выполняемые техническими средствами измерений.

Метрологические измерения – это измерения, выполняемые с использованием эталонов.

5. По способу представления результата измерения делятся на абсолютные и относительные.

Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей).

6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные.

Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир).

Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений.

Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости.

Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии.

Юстиро́вка (от нем. justieren выверять) — совокупность операций по выравниванию конструкций и конструктивных элементов (поверхностей, столбов, стоек и т. д.) вдоль некоторого направления («осевого»), а также по приведению меры, измерительного или оптического прибора, механизмов (или их части) в рабочее состояние, обеспечивающее точность, правильность и надежность их действия. При юстировке приборов — осуществляется проверка и наладка измерительного и/или оптического прибора, подразумевающая достижение верного взаиморасположения элементов прибора и правильного их взаимодействия.

Калибровка средства измерений — совокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средств измерений.

Калибровка средств измерений производится преимущественно метрологическими службами юридических лиц с использованием эталонов, соподчинённых государственным эталонам единиц величин.

В России калибровочная деятельность регламентирована Законом РФ «Об обеспечении единства измерений» и многими другими подзаконными актами.

Поверка средств измерений — совокупность операций, выполняемых органами Государственной метрологической службы (другими уполномоченными на то органами, организациями) с целью определения и подтверждения соответствия характеристик средства измерения установленным требованиям.

Источник

Истинное значение и действительное значение величины

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины.

Квалиметрия. Качество. Показатели качества. Методы определения качества.

Квалиметрия(от лат. qualis – какой по качеству и греч. метрео – мерить, измерять) – науч. дисциплина, в рамках к-рой изучаются методология и проблематика комплексной, количественной оценки качества объектов любой природы: одушевленных или неодушевленных, предметов или процессов, продуктов труда или продуктов природы, имеющих материальный или духовный характер (естественно, что объектом приложения методов квалиметрии может быть и любое конструктивное и технологическое решение, если его качество требуется подвергнуть квалиметрическпму анализу).

Квалиметрию обычно подразделяется на теоретическую квалиметрию, изучающую проблемы оценки качества в общем плане, и прикладную квалиметрию, рассматривающую вопросы измерения качества применительно к конкретным объектам.

Квалиметрия как наука переживает период становления, чем объясняется отсутствие единого мнения по ряду вопросов. Являясь в значительной степени науч. дисциплиной межотраслевого характера, квалиметрия по многим вопросам смыкается с конкретными инж. дисциплинами: стандартизацией, метрологией, экономикой, организацией производства, правом, психологией и др., а в ее аппарат включается целая группа мат. теорий.

Конечной целью квалиметрии являются разработка и совершенствование методик, с помощью к-рых качество конкретного оцениваемого объекта может быть выражено одним числом, характеризующим степень удовлетворения данным объектом общественной или личной потребности. Кроме того, подобные методики позволяют решить и др. задачи квалиметрического анализа.

Показатель качества (продукции) это количественная характеристика одного или нескольких свойств продукции, входящих в её качество, рассматриваемая применительно к определённым условиям её создания и эксплуатации или потребления.Каждая продукция и каждая услуга обладают свойственным им перечнем показателей качества, который зависит от назначения продукции, условий её производства и эксплуатации и многих других факторов. Показатель качества может выражаться в различных физических единицах измерения (например, секунда, метр, кв.метр, куб.метр, км/ч, грамм, вольт, ватт, и др.), условных единицах измерения (балл, рубль, FLOPS, процент избирателей и др.), а также быть безразмерным (вероятность наступления ожидаемого события, и др.).
В виде технических требований показатели входят в состав технического задания на разрабатываемую продукцию и технических условий.

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Общая характеристика показателей качества

Номенклатура показателей окончательно формируется на этапе проектирования продукции, так как здесь они закладываются в конструкцию. Далее, на этапе производства эти показатели находят своё воплощение. А на этапе эксплуатации (потребления) показатели становятся индивидуальной характеристикой продукции, выделяют её из других видов продукции (товара), составляют её потребительские свойства и, следовательно, делают привлекательной и конкурентоспособной.

Стремление учесть, как можно больше показателей в желании максимально полно охарактеризовать продукцию делает задачу проектирования практически нерешаемой. Важно выделять главные показатели, отражающие наиболее существенные потребительские свойства объекта. Также следует иметь в виду, что для определённых условий производства и эксплуатации существуют обязательные к учёту показатели.
В основном это касается безопасности, когда минимально приемлемый уровень требований устанавливают нормативные документы федеральных органов исполнительной власти, осуществляющих контроль за качеством и безопасностью товаров, такие как Госгортехнадзор, Роспотребнадзор и другие.
Также, если продукция предназначается для реализации отдельным гражданам или каким-то образом может быть им продана, то она должна удовлетворять дополнительным требованиям, устанавливаемыми Законом Российской Федерации «О защите прав потребителей».

Источник

Основные понятия и определения метрологии

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Основные понятия и определения метрологии.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Теоретическая (фундаментальная) метрология – раздел метрологии предметом которого является разработка фундаментальных основ метрологии.

Законодательная метрология – раздел метрологии, предметом которого является установление обязательных технических и юридических требований по применению единиц физических величин, эталонов, методов и средств измерений, направленных на обеспечение единства и необходимости точности измерений в интересах общества.

Практическая (прикладная) метрология – раздел метрологии, предметом которого являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.

Физическая величина — свойство, общее в качественном отношении для множества объектов и индивидуальное в количественном отношении для каждого из них.

Размер физической величины – количественное содержание свойства (или выражение размера физической величины), соответствующего понятию «физическая величина», присущее данному объекту.

Значение физической величины количественная оценка измеряемой величины в виде некоторого числа принятых для данной величины единиц.

Единица измерения физической величины – физическая величина фиксированного размера, которой присвоено числовое значение, равное единицы, и применяемая для количественного выражения однородных с ней физических величин.

При измерениях используют понятия истинного и действительного значения физической величины. Истинное значение физической величины – значение величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Действительное значение физической величины – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Измерение нахождение значения физической величины опытным путем с помощью специальных технических средств.

Главные признаки понятия «измерение»:

а) измерять можно свойства реально существующих объектов познания, т. е. физические величины;

б) измерение требует проведения опытов, т. е. теоретические рассуждения или расчеты не могут заменить эксперимент;

в) для проведения опытов требуются особые технические средства — средства измерений, приводимые во взаимодействие с материальным объектом;

г) результатом измерения является значение физической величины.

Характеристики измерений: принцип и метод измерений, результат, погрешность, точность, сходимость, воспроизводимость, правильность и достоверность.

Принцип измерения – физическое явление или эффект, положенное в основу измерений. Например:

Метод измерения – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Например:

Результат измерения – значение величины, полученное путем ее измерения.

Погрешность результата измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины.

Точность результата измерений – одна из характеристик качества измерений, отражающая близость к нулю погрешности результата измерения.

Сходимость результатов измерений – близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью. Сходимость измерений отражает влияние случайных погрешностей на результат измерения.

Воспроизводимость – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям (температура, давление, влажность и др.).

Правильность – характеристика качества измерений, отражающая близость к нулю систематических погрешностей в их результатах.

Достоверность – характеристика качества измерений, отражающая доверие к их результатам, которая определяется вероятностью (доверительной) того, что истинное значение измеряемой величины находится в указанных границах (доверительных).

В 1960г. 11 Генеральная конференция по мерам и весам утвердила Международную систему единиц – СИ, которая включает в себя систему единиц МКС (механические единицы) и систему МКСА (электрические единицы).

Системы единиц строятся из основных и производных единиц. Основные единицы образуют минимальный набор независимых исходных единиц, а производные единицы представляют собой различные комбинации основных единиц.

Виды и методы измерений

Для выполнения измерений необходимо осуществление следующих измерительных операций: воспроизведения, сравнения, измерительного преобразования, масштабирования.

Воспроизведение величины заданного размера – операция создания выходного сигнала с заданным размером информативного параметра, т. е. величиной напряжения, тока, сопротивления и т. д. Эта операция реализуется средством измерений – мерой.

Сравнение – определение соотношения между однородными величинами, осуществляемое путем их вычитания. Эта операция реализуется устройством сравнения (компаратором).

Измерительное преобразование – операция преобразования входного сигнала в выходной, реализуемая измерительным преобразователем.

Масштабирование – создание выходного сигнала, однородного с входным, размер информативного параметра которого пропорционален в К раз размеру информативного параметра входного сигнала. Масштабное преобразование реализуется в устройстве, которое называется масштабным преобразователем.

по числу измерений – однократные, когда измерения выполняют один раз, и многократные – ряд однократных измерений физической величины одного и того же размера;

характеристике точности – равноточные – это ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью, и неравноточные, когда ряд измерений какой-либо величины выполняется различающимися по точности средствами измерений и в разных условиях;

характеру изменения во времени измеряемой величины – статические, когда значение физической величины считается неизменным на протяжении времени измерения, и динамические – измерения изменяющиеся по размеру физической величины;

способу представления результатов измерений – абсолютные измерения величины в ее единицах, и относительные – измерения изменений величины по отношению к одноименной величине, принимаемой за исходную.

способу получения результата измерения (способу обработки экспериментальных данных) – прямые и косвенные, которые делят на совокупные или совместные.

Прямое измерение измерение, при котором искомое значение величины находят непосредственно из опытных данных в результате выполнения измерения. Пример прямого измерения — измерение вольтметром напряжения источника.

Пример косвенного измерения: сопротивление резистора R находят из уравнения R=U/I, в которое подставляют измеренные значения падения напряжения U на резисторе и тока I через него.

Совместные измерения одновременные измерения нескольких неодноименных величин для нахождения зависимости между ними. При этом решают систему уравнений

Пример совместного измерения: определяют зависимость сопротивления резистора от температуры Rt = R0(1 + At + Bt2); измеряя сопротивление резистора при трех различных температурах, составляют систему из трех уравнений, из которых находят параметры R0, А и В зависимости.

Совокупные измерения — одновременные измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, составленных из результатов прямых измерений различных сочетаний этих величин.

Пример совокупного измерения: измерение сопротивлений резисторов, соединенных треугольником, путем измерения сопротивлений между различными вершинами треугольника; по результатам трех измерений определяют сопротивления резисторов.

Взаимодействие средств измерений с объектом основано на физических явлениях, совокупность которых составляет принцип измерений, а совокупность приемов использования принципа и средств измерений называют методом измерений.

Методы измерения классифицируют по следующим признакам:

по физическому принципу положенному в основу измерения – электрические, механические, магнитные, оптические и т. д.;

степени взаимодействия средства и объекта измерения – контактный и бесконтактный;

режиму взаимодействия средства и объекта измерения – статические и динамические;

виду измерительных сигналов – аналоговые и цифровые;

организации сравнения измеряемой величины с мерой – методы непосредственной оценки и сравнения с мерой.

При методе непосредственной оценки (отсчета) значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора прямого преобразования, шкала которого заранее была градуирована с помощью многозначной меры, воспроизводящей известные значения измеряемой величины. В приборах прямого преобразования в процессе измерения оператором производится сравнение положения указателя отсчетного устройства и шкалы, по которой производится отсчет. Измерение силы тока с помощью амперметра — пример измерения по методу непосредственной оценки.

Методы сравнения с мерой методы, при которых производится сравнение измеряемой величины и величины, воспроизводимой мерой. Сравнение может быть непосредственным или опосредствованным через другие величины, однозначно связанные с первыми. Отличительной чертой методов сравнения является непосредственное участие в процессе измерения меры известной величины, однородной с измеряемой.

Группа методов сравнения с мерой включает в себя следующие методы: нулевой, дифференциальный, замещения и совпадения.

При нулевом методе измерения разность измеряемой величины и известной величины или разность эффектов, производимых измеряемой и известной величинами, сводится в процессе измерения к нулю, что фиксируется высокочувствительным прибором — нуль-индикатором. При высокой точности мер, воспроизводящих известную величину, и высокой чувствительности нуль-индикатора может быть достигнута высокая точность измерений. Примером применения нулевого метода является измерение сопротивления резистора с помощью четырех-плечего моста, в котором падение напряжения на резисторе

с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

При дифференциальном методе разность измеряемой величины и величины известной, воспроизводимой мерой, измеряется с помощью измерительного прибора. Неизвестная величина определяется по известной величине и измеренной разности. В этом случае уравновешивание измеряемой величины известной величиной производится не полностью и в этом заключается отличие дифференциального метода от нулевого. Дифференциальный метод также может обеспечить высокую точность измерения, если известная величина воспроизводится с высокой точностью и разность между ней и неизвестной величиной мала.

В качестве примера измерения с использованием этого метода является измерение напряжения Ux постоянного тока с помощью дискретного делителя R напряжения U и вольтметра V (рис. 1). Неизвестное напряжение Ux = U0 + ΔUx, где U0— известное напряжение, ΔUx —измеренная разность напряжений.

При методе замещения производится поочередное подключение на вход прибора измеряемой величины и известной величины и по двум показаниям прибора оценивается значение неизвестной величины. Наименьшая погрешность измерения получается в том случае, когда в результате подбора известной величины прибор дает тот же выходной сигнал, что и при неизвестной величине. При этом методе может быть получена высокая точность измерения при высокой точности меры известной величины и высокой чувствительности прибора. Примером этого метода является точное измерение малого напряжения с помощью высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

При методе совпадения измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали.

КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ

Средство измерений (СИ) – техническое средство, предназначенное для измерений, нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

По назначению СИ подразделяются на меры, измерительные преобразователи, измерительные приборы, измерительные установки и измерительные системы.

Мера – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью. Различают меры:

однозначные – воспроизводящие физическую величину одного размера;

многозначные – воспроизводящие физическую величину разных размеров;

набор мер – комплект мер разного размера одной и той же физической величины, предназначенных для практического применения как в отдельности, так и в различных сочетаниях;

магазин мер – набор мер конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях.

Измерительный преобразователь – техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал удобный для обработки. Это преобразование должно выполняться с заданной точностью и обеспечивать требуемую функциональную зависимость между выходной и входной величинами преобразователя.

Измерительные преобразователи могут быть классифицированы по признакам:

по характеру преобразования различают следующие виды измерительных преобразователей: электрических величин в электрические, магнитных в электрические, неэлектрических в электрические;

месту в измерительной цепи и функциям различают первичные, промежуточные, масштабные, и передающие преобразователи.

Измерительный прибор – средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне.

Измерительные приборы подразделяются:

по форме регистрации измеряемой величины – на аналоговые и цифровые;

применению – амперметры, вольтметры, частотомеры, фазометры осциллографы и т. д.;

назначению – приборы для измерения электрических и неэлектрических физических величин;

действию – интегрирующие и суммирующие;

способу индикации значений измеряемой величины – показывающие, сигнализирующие и регистрирующие;

методу преобразования измеряемой величины – непосредственной оценки (прямого преобразования) и сравнения;

способу применения и по конструкции – щитовые, переносные, стационарные;

защищенности от воздействия внешних условий – обыкновенные, влаго-, газо-, пылезащищенные, герметичные, взрывобезопасные и др.

Измерительные установки – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенная для измерений одной или нескольких физических величин и расположенная в одном месте.

Измерительная система – совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого объекта с целью измерений одной или нескольких физических величин, свойственных этому объекту, и выработки измерительных сигналов в разных целях. В зависимости от назначения измерительные системы подразделяют на информационные, контролирующие, управляющие и др.

Измерительно-вычислительный комплекс – функционально объединенная совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенная для выполнения в составе измерительной системы конкретной измерительной задачи.

По метрологическим функциям СИ подразделяются на эталоны и рабочие средства измерений.

Эталон единицы физической величины – средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.

Рабочее средство измерений – это средство измерений, используемое в практике измерений и не связанное с передачей единиц размера физических величин другим средствам измерений.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРЕДСТВ ИЗМЕРЕНИЙ

Метрологическая характеристика средства измерений – характеристика одного из свойств средства измерений, влияющая на результат и погрешность его измерений. Метрологические характеристики, устанавливаемые нормативно-техническими документами, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально – действительными метрологическими характеристиками.

Функция преобразования (статическая характеристика преобразования) – функциональная зависимость между информативными параметрами выходного и входного сигналов средства измерений.

Погрешность СИ – важнейшая метрологическая характеристика, определяемая как разность между показанием средства измерений и истинным (действительным) значением измеряемой величины.

Чувствительность СИ – свойство средства измерений, определяемое отношением изменения выходного сигнала этого средства к вызывающему его изменению измеряемой величины. Различают абсолютную и относительную чувствительность. Абсолютную чувствительность определяют по формуле

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология,

Относительную чувствительность – по формуле

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология,

где ΔY – изменение сигнала на выходе; ΔX – изменение измеряемой величины, Х – измеряемая величина.

Цена деления шкалы (постоянная прибора) – разность значения величины, соответствующая двум соседним отметкам шкалы СИ.

Порог чувствительности – наименьшее значение изменения физической величины, начиная с которого может осуществляться ее измерение данным средством. Порог чувствительности в единицах входной величины.

Диапазон измерений – область значений величины, в пределах которой нормированы допускаемые пределы погрешности СИ. Значения величины, ограничивающие диапазон измерений снизу и сверху (слева и справа), называют соответственно нижним и верхним пределом измерений. Область значений шкалы прибора, ограниченную начальными и конечными значениями шкалы, называют диапазон показаний.

Вариация показаний – наибольшая вариация выходного сигнала прибора при неизменных внешних условиях. Она является следствием трения и люфтов в узлах приборов, механического и магнитного гистерезиса элементов и др.

Вариация выходного сигнала – это разность между значениями выходного сигнала, соответствующими одному и тому же действительному значению входной величины при медленном подходе слева и справа к выбранному значению входной величины.

Динамические характеристики, т. е. характеристики инерционных свойств (элементов) измерительного устройства, определяющие зависимость выходного сигнала СИ от меняющихся во времени величин: параметров входного сигнала, внешних влияющих величин, нагрузки.

Процедура измерения состоит из следующих этапов: принятие модели объекта измерения, выбор метода измерения, выбор СИ, проведение эксперимента для получения результата. В итоге результат измерения отличается от истинного значения измеряемой величины на некоторую величину, называемую погрешностью измерения. Измерение можно считать законченным, если определена измеряемая величина и указана возможная степень ее отклонения от истинного значения.

По способу выражения погрешности средств измерения делятся на абсолютные, относительные и приведенные.

Абсолютная погрешность – погрешность СИ, выраженная в единицах измеряемой физической величины:

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Относительная погрешность – погрешность СИ, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины:

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Для измерительного прибора γотн характеризует погрешность в данной точке шкалы, зависит от значения измеряемой величины и имеет наименьшее значение в конце шкалы прибора.

Приведенная погрешность – относительная погрешность, выраженная отношением абсолютной погрешности СИ к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

где Хнорм – нормирующее значение, т. е. некоторое установленное значение, по отношению к которому рассчитывается погрешность. Нормирующим значением может быть верхний предел измерений СИ, диапазон измерений, длина шкалы и т. д.

По причине и условиям возникновения погрешности средств измерения подразделяются на основную и дополнительную.

Основная погрешность – это погрешность СИ, находящихся в нормальных условиях эксплуатации.

Дополнительная погрешность – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Предел допускаемой основной погрешности – наибольшая основная погрешность, при которой СИ может быть признано годным и допущено к применению по техническим условиям.

Предел допускаемой дополнительной погрешности – это та наибольшая дополнительная погрешность, при которой средство измерения может быть допущено к применению.

Обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность, называется классом точности СИ.

Систематическая погрешность – составляющая погрешности средства измерений, принимаемая за постоянную или закономерно изменяющуюся.

Случайная погрешность – составляющая погрешности СИ, изменяющаяся случайным образом.

Промахи – грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями.

По зависимости от значения измеряемой величины погрешности СИ подразделяют на аддитивные, не зависящие от значения входной величины Х, и мультипликативные – пропорциональные Х.

Аддитивная погрешность Δадд не зависит от чувствительности прибора и является постоянной по величине для всех значений входной величины Х в пределах диапазона измерений. Пример: погрешность нуля, погрешность дискретности (квантования) в цифровых приборах. Если прибору присуща только аддитивная погрешность или она существенна превышает другие составляющие, то предел допустимой основной погрешности нормируют в виде приведенной погрешности.

Мультипликативная погрешность зависит от чувствительности прибора и изменяется пропорционально текущему значению входной величины. Если прибору присуща только мультипликативная погрешность или она существенна, то предел допускаемой относительной погрешности выражают в виде относительной погрешности. Класс точности таких СИ обозначают одним числом, помещенным в кружок и равным пределу допускаемой относительной погрешности.

В зависимости от влияния характера изменения измеряемой величины погрешности СИ подразделяют на статические и динамические.

Статические погрешности – погрешность СИ применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность – погрешность СИ, возникающая при измерении изменяющейся (в процессе измерений) физической величины, являющаяся следствием инерционных свойств СИ.

По характеру изменения систематические погрешности разделяют на постоянные (сохраняющие величину и знак) и переменные (изменяющиеся по определенному закону).

По причинам возникновения систематические погрешности подразделяют на методические, инструментальные и субъективные.

Методические погрешности возникают вследствие несовершенства, неполноты теоретических обоснований принятого метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, из-за неправильного выбора измеряемых величин.

В большинстве случаев методические погрешности носят систематический характер, а иногда и случайный (например, когда коэффициенты рабочих уравнений метода измерения зависят от условий измерения, изменяющихся случайным образом).

Инструментальные погрешности обусловливаются свойствами применяемых СИ, их влиянием на объект измерений, технологией и качеством изготовления.

Субъективные погрешности вызываются состоянием оператора, проводящего измерения, его положением во время работы несовершенством органов чувств, эргономическими свойствами средств измерений – все это сказывается на точности визирования.

Обнаружение причин и вида функциональной зависимости позволяет скомпенсировать систематическую погрешность введением в результат измерения соответствующих поправок (поправочных множителей).

Полным описанием случайной величины, а следовательно и погрешности, является ее закон распределения, которым определяется характер появления различных результатов отдельных измерений.

В практике электрических измерений встречаются различные законы распределения, некоторые из которых рассмотрены ниже.

Нормальный закон распределения (закон Гаусса). Этот закон является одним из наиболее распространенных законов распределения погрешностей. Объясняется это тем, что во многих случаях погрешность измерения образуется под действием большой совокупности различных, независимых друг от друга причин. На основании центральной предельной теоремы теории вероятностей результатом действия этих причин будет погрешность, распределенная по нормальному закону при условии, что ни одна из этих причин не является существенно преобладающей.

Нормальный закон распределения погрешностей описывается формулой

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

где ω(Δx) —плотность вероятности погрешности Δx; σ[Δx]— среднее квадратическое отклонение погрешности; Δxc — систематическая составляющая погрешности.

Вид нормального закона представлен на рис. 1,а для двух значений σ[Δx]. Так как

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология, то закон распределения случайной составляющей погрешности Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

имеет тот же вид (рис 1,б) и описывается выражением

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

где Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология— среднее квадратическое отклонение случайной составляющей погрешности; Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология= σ[Δx]

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияЧто понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Рис. 1. Нормальный закон распредёления погрешности измерений (а) и случайной составляющей погрешности измерений (б)

Таким образом, закон распределения погрешности Δx отличается от закона распределения случайной составляющей погрешности Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологиятолько сдвигом по оси абсцисс на величину систематической составляющей погрешности Δхс.

Из теории вероятностей известно, что площадь под кривой плотности вероятности характеризует вероятность появления погрешности. Из рис.1, б видно, что вероятность Р появления погрешности в диапазоне ± Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияпри Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологиябольше, чем при Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология(площади, характеризующие эти вероятности, заштрихованы). Полная площадь под кривой распределения всегда равна 1, т. е. полной вероятности.

Учитывая это, можно утверждать, что погрешности, абсолютные значения которых превышают Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияпоявляются с вероятностью, равной 1 — Р, которая при Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияменьше, чем при Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология. Следовательно, чем меньше Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология, тем реже встречаются большие погрешности, тем точнее выполнены измерения. Таким образом, Среднее квадратическое отклонение Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияможно использовать для характеристики точности измерений:

Равномерный закон распределения. Если погрешность измерений с одинаковой вероятностью может принимать любые значения, не выходящие за некоторые границы, то такая погрешность описывается равномерным законом распределения. При этом плотность вероятности погрешности ω(Δx) постоянна внутри этих границ и равна нулю вне этих границ. Равномерный закон распределения представлен на рис. 2. Аналитически он может быть записан так:

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияпри –Δx1 ≤ Δx ≤ + Δx1;

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияЧто понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Рис 2. Равномерный закон распределения

С таким законом распределения хорошо согласуется погрешность от трения в опорах электромеханических приборов, не-исключенные остатки систематических погрешностей, погрешность дискретности в цифровых приборах.

Трапециевидный закон распределения. Это распределение графически изображено на рис.3, а. Погрешность имеет такой закон распределения, если она образуется из двух независимых составляющих, каждая из которых имеет равномерный закон распределения, но ширина интервала равномерных законов различна. Например, при последовательном соединении двух измерительных преобразователей, один из которых имеет погрешность, равномерно распределенную в интервале ±Δx1, а другой — равномерно распределенную в интервале ± Δx2, суммарная погрешность преобразования будет описываться трапециевидным законом распределения.

Треугольный закон распределения (закон Симпсона). Это распределение (см. рис.3, б) является частным случаем трапециевидного, когда составляющие имеют одинаковые равномерные законы распределения.

Двухмодальные законы распределения. В практике измерений встречаются двухмодальные законы распределения, т. е. законы распределения, имеющие два максимума плотности вероятности. В двухмодальный закон распределения, который может быть в приборах, имеющих погрешность от люфта кинематических механизмов или от гистерезиса при перемагничивании деталей прибора.

Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология Что понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияЧто понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрологияЧто понимают под действительным значением физической величины метрология. Смотреть фото Что понимают под действительным значением физической величины метрология. Смотреть картинку Что понимают под действительным значением физической величины метрология. Картинка про Что понимают под действительным значением физической величины метрология. Фото Что понимают под действительным значением физической величины метрология

Рис.3. Трапециевидный (а) и треугольный (б) законы распределения

Вероятностный подход к описанию погрешностей. Точечные оценки законов распределения.

Когда при проведении с одинаковой тщательностью и в одинаковых условиях повторных наблюдений одной и той же постоянной величины получаем результаты. отличающиеся друг от друга, это свидетельствует о наличии в них случайных погрешностей. Каждая такая погрешность возникает вследствие одновременного воздействия на результат наблюдения многих случайных возмущений и сама является случайной величиной. В этом случае предсказать результат отдельного наблюдения и исправить его введением поправки невозможно. Можно лишь с определенной долей уверенности утверждать, что истинное значение измеряемой величины находится в пределах разброса результатов наблюдений от л>.т до Хп. ах, где хтт. Ат

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *